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Abstract. Despite their impressive performance, deep neural networks
(DNNs) are widely known to be vulnerable to adversarial attacks, which
makes it challenging for them to be deployed in security-sensitive ap-
plications, such as autonomous driving. Image-dependent perturbations
can fool a network for one specific image, while universal adversarial per-
turbations are capable of fooling a network for samples from all classes
without selection. We introduce a double targeted universal adversar-
ial perturbations (DT-UAPs) to bridge the gap between the instance-
discriminative image-dependent perturbations and the generic universal
perturbations. This universal perturbation attacks one targeted source
class to sink class, while having a limited adversarial effect on other non-
targeted source classes, for avoiding raising suspicions. Targeting the
source and sink class simultaneously, we term it double targeted attack
(DTA). This provides an attacker with the freedom to perform precise
attacks on a DNN model while raising little suspicion. We show the ef-
fectiveness of the proposed DTA algorithm on a wide range of datasets
and also demonstrate its potential as a physical attack. 1

1 Introduction

Despite the recent success of deep learning [1–5], deep neural networks (DNNs)
remain vulnerable to adversarial attacks [6–11]. This poses a threat for deploy-
ing DNNs in security-sensitive applications, such as autonomous driving and
robotics. Various attack methods [12] have been proposed in the past few years,
which can be roughly divided into two main categories: image-dependent at-
tacks [6, 7, 13–15] and universal attacks [16–20]. Image-dependent attacks con-
struct perturbations tailored for a specific input image to be misclassified by the
network; while universal attack methods aim to generate one single universal
adversarial perturbation (UAP) that can fool the network for most samples of
all classes.

Bridging the gap between the discriminative nature of image-dependent per-
turbations and the non-discriminative universal perturbation, we propose to at-
tack a certain source class while limiting the influence of the attack on other,

1 Code: https://github.com/phibenz/double-targeted-uap.pytorch
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Fig. 1: Overview of the Double Targeted Attack (DTA). In this example, the
perturbation causes the network to classify images of the targeted source class
right turn as the sink class left turn. Image classifications from the non-
targeted source classes remain unaltered. The DT-UAP is added to all image
samples.

non-targeted classes. More specifically, we aim to fool the network with a single
perturbation that can systematically shift a certain source class to a different
sink class of choice. Since the proposed attack targets both the source and the
sink class, we name it double targeted attack (DTA). To avoid confusion, while
other works [15, 20] use the term “target class”, we adopt “sink class” instead,
since the proposed DTA also has target class(es) on the source side.

In this work, we focus on the exploration of universal perturbations due to
their merit of being image-agnostic. This property eases the attack procedure
for real-time applications such as autonomous driving or robotics, as the pertur-
bation can be constructed in advance, and applying the prepared perturbation
only requires one summation [16]. UAPs attack all classes, making it obvious
to an observer that a system is under attack. For achieving a more covert uni-
versal attack, class-discriminative universal adversarial perturbation (CD-UAP)
has been introduced in [8] to attack chosen class(es) on the source side. It would
be more challenging yet meaningful to not only being class-discrimiantve on the
source side, but also targets on the sink side. Compared with existing UAP at-
tacks, DTA can be more dangerous in practice, since it allows precise attacks
with flexible control over the targeted source class and the sink class. Applying
double targeted universal adversarial perturbations (DT-UAP) can have fatal
implications in practice. For instance, in the context of autonomous driving, an
attacker can intentionally craft a perturbation to fool a network to misclassify
traffic signs from “turn left” to “turn right” as shown in Fig. 1.

Technically, the proposed DTA does not strictly fall into the group of uni-
versal attacks, since it does not attack all classes. However, the DTA crafts one
single perturbation that can be applied to the entire data distribution, which is
similar to the existing UAPs [16]. It is a non-trivial task to craft the DT-UAP
because there is an inherent conflict between two objectives. For the samples
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from the targeted source class, the goal of the crafted perturbation is to shift
their classification output to the sink class. This will inevitably have a simi-
lar influence on the non-targeted source classes, which conflicts with the goal
of the attack being discriminative between the targeted source class and other
non-targeted source classes. Inspired by [8], we have designed an algorithm that
explicitly deals with the trade-off between them.

To demonstrate its effectiveness, we evaluate the proposed DTA on five clas-
sification datasets from different domains for various DNN architectures.

Our results establish the existence of DT-UAPs to attack data samples dis-
criminatively. Though the designed DTA algorithm is mainly for perturbing
samples to be misclassified from one targeted source class into one sink class,
it can also be extended for shifting multiple targeted source classes to one sink
class. We validate this specific attack scenario on the ImageNet dataset. Overall,
our proposed algorithm has been validated to be effective to achieve discrim-
inative targeted attacks with extensive experiments on different datasets and
scenarios. Finally, we also demonstrate the potential of DTA being applied as a
physical attack.

2 Related work

2.1 Image-Dependent Attacks

Adversarial attacks, which craft one perturbation specifically for one input im-
age to fool a network are called image-dependent attacks. Szegedy et al. opti-
mized such perturbations by using box-constrained L-BFGS [6]. Goodfellow et

al. then introduced the Fast Gradient Sign Method (FGSM), an efficient one-step
attack to generate adversarial examples [7]. The iterative variant of FGSM (I-
FGSM) updates the perturbation by only a fraction of the allowed upper bound
in each iteration [13]. Integrating the momentum term into the iterative process
of I-FGSM (MI-FGSM) further improved the success rate of adversarial attacks
[21]. DeepFool [14] is also an iterative attack, manipulating the models’ decision
boundaries in the perturbation crafting process. Incorporating the minimization
of the perturbation magnitude into the optimization function, Carlini and Wag-
ner (C&W) introduced another three variants of image-dependent attacks [15].
Another effective multi-step attack variant was introduced by Madry et al. using
projected gradient descent (PGD) to craft adversaries [22]. The proposed DTA
differentiates itself by attacking an entire class instead of only a single image.

2.2 Universal Attacks

A universal adversarial perturbation (UAP) is a single perturbation, which en-
ables fooling a network for most input samples. Accumulating image-dependent
perturbations by iteratively applying DeepFool [14], Moosavi et al. crafted the
first UAPs [16]. In another variant, UAPs are crafted by leveraging the Jaco-
bian matrices of the networks’ hidden layers [17]. Assuming no access to the
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original training data, Fast Feature Fool proposed to generate data-free UAPs
by optimizing the feature change caused by the applied UAP [18]. Generative
Adversarial Perturbations (GAP) were proposed by Poursaeed et al. [20], us-
ing generative models to craft image-dependent and universal perturbations.
Data-free targeted UAP has been introduced in [9], showing UAP have dom-
inant features ovre images. The almost absent computational overhead (single
summation) in the deployment of UAPs, makes them a favorable choice for the
attack of real-world applications. Despite being universal, our proposed DTA
differentiates itself from the existing universal attacks in its class-discriminative
nature, i.e. by having a different influence on a sample depending on whether or
not it belongs to the targeted source class. CD-UAP has been introduced in [8],
our DT-UAP also targets on the sink side and thus constitutes a more chal-
lenging task. Moreover, we show that our DTA can also been used in physical
attack [23, 24].

2.3 Attack on autonomous driving and robotics

Deep learning has achieved the maturity to be deployed in safety and security-
critical applications, such as autonomous driving [25] and robotics [26]. The
threat of adversarial attacks in these applications has also been widely explored.
For example, Melis et al. [27] demonstrated the vulnerability of robots to the
adversarially manipulated input images with the techniques in [6], and argue that
secure robotics need to adopt strategies to enforce DNNs to learn more robust
representations. Attack on the learning policy of robotics has been explored
in [28]. Considering adversarial attacks in the context of autonomous driving,
[29] generates UAPs to attack road sign classifiers. Another work [30] performs an
attack in autonomous driving with traffic signs. Besides the classical classification
dataset to evaluate the adversarial attack method, we also evaluate the proposed
method on a traffic sign dataset and another robotics-related dataset.

3 Double Targeted Attack

3.1 Problem Formulation

The purpose of the proposed attack is to craft a single perturbation to shift one
targeted source class to a different sink class. The source class to be attacked
as well as the sink class are determined by the attacker to realize a flexible and
precise attack. We term it double targeted attack (DTA).

Let x ∼ X denote a single sample from a distribution in Rd, and F̂ (x) = p

being a classification function, mapping input x ∈ Rd to a predicted class p ∈
[1, C] for a classification problem of C classes. Here the classification function is
represented through a DNN parameterized by the weights θ. For most samples
from the targeted source class xt ∼ Xt, we seek a perturbation δ that satisfies
the constraint

F̂ (xt + δ) = ysink subject to ||δ||p ≤ ǫ, (1)
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where the sink class satisfies ysink 6= F (xt), and ǫ indicates the magnitude limit
for the lp norm of the crafted perturbation δ. Note that limiting Xt in Eq. 1
to a single image results in an image-dependent targeted attack. Meanwhile, it
is equivalent to a non-discriminative targeted universal attack if the targeted
samples Xt comprise the entire dataset X.

Empirically, we find that a perturbation crafted under the constraint of Eq. 1
also shifts samples from the non-targeted source classes into the sink class with a
high targeted fooling ratio. To incorporate covertness within the proposed attack,
this effect of non-targeted samples xnt ∼ Xnt shifting to the sink class should
be minimized. The crafted perturbation should ideally shift instances from the
chosen source class to a different sink class while having limited influence on the
samples from the non-targeted source classes. More specifically, the proposed
DTA has two objectives: (1) to increase the targeted fooling ratio for the samples
from the chosen source class to the chosen sink class; (2) to decrease the targeted
fooling ratio for samples from the non-targeted source class(es) into the sink
class, where the targeted fooling ratio is defined as the ratio of samples fooled
into the sink class. These two objectives contradict each other, leading to an
inevitable trade-off. In the following subsection, we state the loss function for
DTA and design the algorithm for explicitly handling this trade-off between the
two objectives.

3.2 DTA Loss design

To achieve selectivity among the targeted source class and non-targeted source
classes, we explicitly design different loss functions for the two. For the targeted
class and the non-targeted classes, the loss is indicated by Lt and Lnt, respec-
tively. The final loss L can then be calculated as:

L = Lt + αLnt, (2)

where α is a hyper-parameter for weighting the trade-off between Lt and Lnt.
In practice, this hyper-parameter can be fine-tuned by the attacker for a specific
task. For simplicity, we set α to 1 in all of our experiments. We empirically found
that this setting works well when the same number of samples are sampled from
Xt and Xnt in every iteration update.

For the targeted class, the loss Lt should shape the perturbation to fool the
network by shifting the prediction from the source class into the sink class. This
can be realized through (1) decreasing the logit value for the originally predicted
class L̂p with p = argmax(L̂(xt)) to not being the highest logit anymore, while

(2) increasing the logit for the sink class L̂sink, to be the dominant logit, where
L̂(·) indicates the function mapping to the logit values and L̂i is the specific logit
value of class i. Thus, Lt can be decomposed into two parts as follows:

Lt = Lt1 + Lt2, with (3)

Lt1 = max(L̂p(xt + δ)−max
i 6=p

(L̂i(xt + δ)), 0) (4)

Lt2 = max( max
i 6=ysink

(L̂i(xt + δ)− L̂sink(xt + δ)),−D) (5)
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Algorithm 1: Double Targeted Attack Algorithm

Input: Data distribution X, Classifier F̂ , Loss function L, Mini-batch size m,
Number of iterations I, Perturbation magnitude ǫ

Output: Perturbation vector δ
Xt ⊆ X ⊲ Subset

Xnt ⊆ X ⊲ Subset

δ ← 0 ⊲ Initialize

for iteration = 1, . . . , I do

Bt ∼ Xt: |Bt| =
m

2
⊲ Randomly sample

Bnt ∼ Xnt: |Bnt| =
m

2
⊲ Randomly sample

B ← Bt

⋃
Bnt ⊲ Concatenate

gδ ← E
B

[∇δL] ⊲ Calculate gradient

δ ← Optim(gδ) ⊲ Update perturbation

δ ← δ

||δ||p
ǫ ⊲ Projection

end

where the hyper-parameter D constitutes an intensity value of the dominance
of the targeted logit value. A higher D implies a higher chance that the sample
will be classified as the sink class. For the non-targeted source classes, we adopt
the widely used cross-entropy function as:

Lnt = X (L̂(xnt + δ), 1(F̂ (xnt))) (6)

with 1(·) indicating a one-hot encoded vector of C classes. In practice, an attacker
can change the hyper-parameters according to the requirements. For instance,
the attacker can increase the parameter α in Eq. 2 to increase the covertness
of the proposed attack accompanied by a relatively low targeted fooling ratio
for the targeted class, or increase the parameter D in order to achieve stronger
classifications into the sink class.

To balance the two contradicting objectives, clamping of the logit values was
adopted in Lt. Without this clamping operation, the loss part of the targeted
classes Lt can prevail by shifting the samples from the targeted source class to
the sink class, while disregarding the other objective of limiting the influence
on samples from the non-targeted classes. Since this loss clamping is applied to
every targeted source class sample in the batch, it can also facilitate avoiding
any sample dominating over other samples for contributing to the gradient of the
universal perturbation. A similar clamping technique has been applied in [15]
but with the objective to achieve a minimum-magnitude (image-dependent) per-
turbation that can attack a specific sample.

3.3 DTA Algorithm

With the loss functions defined above, the procedure to craft DT-UAPs with
DTA is shown in Algorithm 1. For each perturbation update iteration, we in-
clude samples from both the targeted source class and the non-targeted source
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classes. More specifically, we randomly select the same number (half of the mini-
batch size) of samples from the targeted source class and the non-targeted source
classes to form Bt and Bnt, which can be concatenated to one batch B. We then
calculate the loss parts Lt and Lnt referring to Eq. 3 and Eq. 6, respectively. The
total loss L can then be calculated referring to Eq. 2. This procedure illustrates
how the loss L in Algorithm 1 is calculated. The perturbation can then be up-
dated with the loss gradient calculated with respect to the perturbation. Note
that the gradient thus computed is the expected gradient, i.e. the average of the
gradients in this mini-batch. For the update of the perturbation, we can adopt
any existing optimizer, but we empirically found that the ADAM [31] optimizer
converges the fastest for our method. In the final step, the perturbation is pro-
jected to the lp-ball with radius ǫ in order to satisfy the magnitude constraint.
This process is repeated for I iterations. Mini-batch training and balancing the
sample amount from the two data distributions result in a simple yet effective
algorithm. Our algorithm is mainly inspired by [8, 9]. Their algorithm has been
shown to outperform UAP [16] and GAP [20] by a large margin, achieving SOTA
performance for universal attack. Here, we tailor it to suite our purpose of being
double targeted.

4 Results and Analysis

4.1 Experimental Setup

We apply the proposed DTA to various deep convolutional neural network archi-
tectures and construct perturbations on various datasets: CIFAR-10 [32], GT-
SRB [33], EuroSAT [34], YCB [35] and large-scale ImageNet [36]. CIFAR-10
and ImageNet are two commonly used benchmark datasets for image classifica-
tion tasks. The GTSRB dataset consists of 43 classes of different German traffic
signs and is a commonly used dataset for autonomous driving applications. The
EuroSAT dataset is used for land cover classification tasks via satellite images
categorized into 10 classes. The YCB dataset is a benchmark dataset for robotic
manipulation and consists of a total of 98 classes of daily life objects.

For the different datasets, we evaluate DTA with at least two different net-
works. Overall, we explore various DNN architectures, including VGG-16 [37],
ResNet-20/50 [38], Inception-V3 [39] and MobileNet-V2 [40]. To evaluate our
approach, we use the metric of the targeted fooling ratio κ, which is defined as
the ratio of samples fooled into the sink class. We apply the targeted fooling
ratio to the targeted source class and non-targeted source classes, indicated by
κt and κnt, respectively. Consequently, the higher (lower) κt (κnt), the better.
For the following experiments, we set the number of iterations to I = 500, adopt
the l∞ norm and cap the perturbation magnitude at ǫ = 15 for images in the
range [0, 255]. All our experiments are performed using the PyTorch (v.0.4.1) [41]
framework on a single GPU TITAN X (Pascal). Note that for crafting the per-
turbation, we only use the correctly classified images from the training dataset
and report the results on all samples from the validation dataset.
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Table 1: Experimental results for the Double Targeted Attack (DTA) for the
datasets CIFAR-10, GTSRB, EuroSAT, YCB and ImageNet under 10 scenarios
S0 to S9. For each scenario, the targeted fooling ratios for the targeted source
samples (κt) and the non-targeted source samples (κnt) are reported. All num-
bers are reported in %.

Dataset Model
S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 Avg

κt κnt κt κnt κt κnt κt κnt κt κnt κt κnt κt κnt κt κnt κt κnt κt κnt κt κnt

CIFAR-10
VGG-16 77.5 20.5 83.5 22.0 78.2 14.7 81.4 21.5 73.0 18.6 79.1 14.2 75.1 15.1 76.7 24.6 75.0 20.3 86.2 16.6 78.6 18.8
ResNet-20 78.8 26.1 84.6 28.0 84.0 24.3 84.2 26.9 77.1 22.0 82.1 21.3 83.8 14.7 72.9 33.2 80.0 27.8 89.8 22.3 81.7 24.7

GTSRB
VGG-16 89.0 0.2 100 1.1 87.1 1.2 72.2 0.6 91.0 1.3 83.6 2.4 88.3 1.1 80.0 0.7 95.0 1.9 81.1 1.7 86.7 1.2
ResNet-20 84.3 0.5 100 1.6 53.1 0.2 77.8 1.8 87.6 2.9 77.1 4.4 70.0 2.7 88.3 1.2 80.0 0.3 64.4 0.7 78.3 1.6

EuroSAT
ResNet-50 96.2 33.0 98.8 18.0 95.2 31.1 96.6 22.1 99.2 28.7 95.0 24.0 94.4 44.3 96.3 17.6 96.3 24.5 91.2 22.7 95.9 26.6

Inception-V3 94.3 28.7 95.2 18.9 93.8 41.4 99.2 56.3 93.0 29.4 93.0 24.2 91.6 34.6 96.0 21.8 96.8 31.6 89.2 18.8 94.2 30.6

YCB
ResNet-50 100 14.5 100 24.2 100 32.4 96.7 38.0 100 33.5 99.2 38.3 100 44.4 99.2 41.7 100 19.0 100 33.1 99.5 31.9

Inception-V3 100 16.6 100 30.0 100 38.7 99.2 31.2 100 12.9 98.3 20.0 100 32.2 100 36.6 100 17.3 100 39.2 99.8 27.5

ImageNet

VGG-16 72.0 10.3 96.0 19.5 90.0 19.5 82.0 28.3 74.0 15.9 82.0 13.0 66.0 8.9 64.0 12.9 66.0 21.5 70.0 26.1 76.2 17.6
ResNet-50 74.0 13.9 94.0 21.4 82.0 15.2 72.0 20.9 62.0 13.6 84.0 15.5 72.0 9.8 66.0 21.4 66.0 17.3 62.0 18.1 73.4 16.7

Inception-V3 78.0 10.0 86.0 15.7 86.0 12.2 78.0 15.6 58.0 9.5 76.0 12.9 70.0 8.9 72.0 15.7 62.0 18.9 66.0 17.8 73.2 13.7
MobileNet-V2 74.0 11.3 94.0 17.0 88.0 20.4 70.0 15.3 72.0 16.0 84.0 15.0 74.0 14.5 74.0 21.7 72.0 18.8 70.0 21.9 77.2 17.2

Table 2: Targeted source class to sink class mapping for the datasets CIFAR-10,
GTSRB, YCB, EuroSAT, and ImageNet.

S CIFAR-10 GTSRB YCB EuroSAT ImageNet

S0 bird → airplane turn right ahead → turn left ahead large clamp → strawberry Herb. Vegetation → Annual Crop wig → lab coat
S1 deer → frog end prev. limitation → end no passing flat screwdriver → mini soccer ball Industrial → Permanent Crop photocopier → castle
S2 frog → cat no passing → no Lkw permitted cups type f → larger marker Permanent Crop → Highway flagpole → sewing machine
S3 ship → cat wild animals possible → bicycle lane hammer → lego duplo type i River → Highway jersey → rain barrel
S4 truck → horse no vehicles permitted → speed limit 70 cups type c → toy airplane part i Sea Lake → Residential theater curtain → brass
S5 airplane → deer no passing → speed limit 60 tuna fish can → plastic nut Residential → Pasture drilling platf. → pomegranate
S6 horse → dog slippery road → uneven surfaces tomato soup can → cups type g Permanent Crop → River fireboat → aircraft carrier
S7 dog → frog pedestrian crossing → double curves cups type h → chain Pasture → Permanent Crop torch → golfcart
S8 dog → deer speed limit 20 → Speed Limit 120 marbles type 3 → key Pasture → Industrial candle → howler monkey
S9 airplane → automobile road narrows right → children crossing cups type j → toy airplane part k Annual Crop → Forest ruddy turnstone → kuvasz

4.2 Quantitative Results

We evaluate the effectiveness of the proposed DTA by randomly selecting 10
source-to-sink shift scenarios indicated by S0 to S9 for each dataset. The results
are summarized in Table 1, where we report the targeted fooling ratio for both
the targeted class κt and the non-targeted classes κnt for each scenario. The
exact mapping of the targeted source class to the sink class can be found in
Table 2.

Overall, the results in Table 1 indicate that DTA achieves reasonable perfor-
mance for different mapping scenarios on a wide range of datasets. This conclu-
sion stems from two major observations. First, the targeted fooling ratio for the
targeted classes (κt) is quite high. Second, there is a significant gap between κt

and κnt, which indicates that the crafted perturbation is discriminative between
targeted class and non-targeted classes. We further analyze the performance of
each dataset.

CIFAR-10 With an average κt of around 80%, DTA performs reasonably well
on CIFAR-10, fooling most of the targeted source class into the sink class. The
gap between κt and κnt is about 58%, indicating sufficient selectivity.
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GTSRB For the task of road sign classification, our proposed DTA can even
achieve a 100% targeted fooling ratio for scenario S1 while maintaining a very low
targeted fooling ratio of 1.1% and 1.6% for VGG-16 and ResNet-20, respectively,
on the non-targeted source samples. Overall, DTA exhibits high κt values, while
maintaining the lowest κnt values among all examined datasets. Therefore, DTA
achieves the highest gap between κt and κnt for the GTSRB dataset. The low κnt

indicates that the perturbations for attacking GTSRB are especially covert. We
speculate that the reason behind the high performance on the GTSRB dataset
is that the in-class variation is very small, making the discriminative attack a
relatively easy task.

EuroSAT and YCB The results of DTA on the EuroSAT and YCB datasets
exhibit similar behavior, with very high values for κt ,above 94%, while having
κnt values of around 30%. With a gap of more than 60%, DTA poses a strong,
covert threat for applications deploying satellite images and classification tasks
for robotic manipulation.

ImageNet The results show that DTA is able to fool a network for a single
class out of the 1000 into a sink class for all 4 investigated DNNs, namely VGG-
16, ResNet-50, Inception-V3, and MobileNet-V2. For specific scenarios such as
S3 or S4, there can be a relatively large performance gap among different DNN
architectures. Overall, with an average κt of around 75% and an average κnt of
16%, different DNNs have comparable performance.

4.3 Qualitative Results

In this subsection, we illustrate perturbations and perturbed samples generated
by the proposed DTA. Fig. 2 shows the original targeted source image, along with
the amplified universal perturbation and the resulting adversarial image. It can
be observed that the DTA produces patterns with different characteristics for
each dataset. The adversarial image is still identifiable as a source class instance
to a human observer, however, the DNN classifies the manipulated image (from
the targeted source class) with high confidence into the sink class.

4.4 Universal Multi2One Targeted Perturbation

Finally, we extend the DT-UAPs to a more challenging scenario to demonstrate
an extension of the DTA. To this end, we alter the objective from one targeted
source class to instead support multiple source classes (MS) while still leading
the samples from these classes to one sink class. Due to this property of classify-
ing multiple source classes to one sink class, we term the resulting perturbation a
universal Multi2One targeted perturbation. Crafting such perturbations is more
challenging since multiple source classes add complexity which has to be com-
pensated by the universal perturbation. We evaluate this attack for 4 scenarios,
which are detailed in Table 4 under the same settings as before. The results in
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Fig. 2: Examples of adversarial perturbations for various datasets and networks.
The figure shows the original images (top), an amplified version of the corre-
sponding perturbations (middle) and the resulting adversarial examples (bot-
tom). The confidence values of the network and the predicted labels are stated
above the images. The target network is indicated above the amplified pertur-
bation.

Table 3 show that our proposed DTA also achieves reasonable performance in
the case of shifting multiple targeted source classes into the sink class.

4.5 Ablation Analysis

In the following, we perform ablation studies for the proposed DTA algorithm.
All ablation experiments are performed on ResNet-20 for CIFAR-10 and ResNet-
50 for the ImageNet dataset.

Loss Function We perform an ablation study for the loss function design.
In Table 5 the performance of DTA for different loss function configurations is
shown. We observe that our chosen loss design Lt + Lnt achieves the best per-
formance. In particular, we observe that excluding the non-targeted loss part
Lnt results in a very high κt close to 100% for both, the CIFAR-10 and Ima-
geNet dataset. However, the κnt also increases drastically compared to the result
obtained using Lt + Lnt. The average κnt for ImageNet is 74.5%, and that for
CIFAR-10 is even higher with a value of 98.7%. This clearly shows that under
the absence of Lnt, DTA fails to achieve the objective of being discriminative
between samples from the targeted source class and non-targeted source classes.
With the existence of Lnt, the absence of either Lt1 or Lt2 also leads to inferior
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Table 3: Experimental results for the universal Multi2One targeted perturbation
on ImageNet under 4 scenarios MS0 to MS3. For each scenario, κt κnt are
reported. All numbers are reported in %.

Model
MS0 MS1 MS2 MS3 Avg
κt κnt κt κnt κt κnt κt κnt κt κnt

VGG16 63.3 24.9 69.3 33.7 76.0 25.8 69.3 26.8 69.5 27.8
ResNet-50 64.0 30.1 63.3 32.3 78.7 29.2 62.7 23.2 67.2 28.7

Inception-V3 58.0 19.4 56.7 23.8 66.7 19.0 66.7 20.8 62.0 20.8
MobileNet-V2 68.0 27.2 66.0 28.0 74.0 25.6 66.0 24.4 68.5 26.3

Table 4: Targeted source classes to sink class mapping for the Multi2One attack
on ImageNet.

MS ImageNet

MS0 affenpinscher, black grouse, alp → mosque
MS1 necklace, four-poster, jersey → llama
MS2 wig, photocopier, flagpole → castle
MS3 granny smith, dragonfly, drilling platform → brass

performance. Moreover, with the existence of Lnt, we further explore another
variant of Lt adopting the cross-entropy (CE) loss indicated as LCE

t . Similar to
Lt, L

CE
t is decomposed into two parts LCE

t1 and LCE
t2 . LCE

t1 aims to reduce the logit
value of the source class logit by calculating the negative cross-entropy between
the network output and the one hot encoded source class label and LCE

t2 aims to
increase the sink class logit by calculating the cross-entropy between the network
output and the one hot encoded sink class label. We observe that this setup also
achieves inferior performance compared to Lt +Lnt. The reason for this inferior
performance can be attributed to the nature of the CE loss manipulating all
logits, and not clamping the loss values.

Dominance Value D Further, we investigate the influence of the dominance
value D for clamping the loss part Lt2. Fig. 3 (left) shows the targeted fooling
rates κt and κnt plotted over various dominance values. We observe that the value
of D has a significant influence on the behavior of the proposed DTA. Increasing
D increases both κt and κnt. More specifically, κt increases and saturates with
further increasing D, while κnt increases almost linearly with the increase of D.
The results show that it is beneficial to choose an appropriate D for achieving
high κt with relatively low κnt. However, here we only aim to show the influence
of the hyper-parameter D on the behavior of the proposed DTA and do not
intend to find the optimal value which is dependent on the choice of models and
dataset.

Perturbation Magnitude ǫ One constraint of adversarial perturbations is to
be bound to a certain magnitude range. Here we investigate the influence of
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Table 5: Analysis of the influence of different loss function configurations. For
each scenario of the 4 different scenarios, κt and κnt are reported. All numbers
are reported in %.

L Dataset
S0 S1 S2 S3 Avg

κt κnt κt κnt κt κnt κt κnt κt κnt

Lt + Lnt

CIFAR-10 78.8 26.1 84.6 28.0 84.0 24.3 84.2 26.9 82.9 26.3
ImageNet 74.0 13.9 94.0 21.4 82.0 15.2 72.0 20.9 80.5 17.9

LCE
t + Lnt

CIFAR-10 77.4 46.1 89.4 49.6 88.8 44.6 88.1 57.0 85.9 49.3
ImageNet 66.0 10.4 98.0 29.5 92.0 29.2 78.0 27.0 83.5 24.0

Lt

CIFAR-10 99.2 97.9 99.6 98.4 99.7 99.3 100 99.3 99.6 98.7
ImageNet 100 68.5 100 76.7 94.0 67.3 98.0 85.4 98.0 74.5

Lt1 + Lnt

CIFAR-10 18.1 3.4 17.1 2.7 23.0 5.8 2.8 4.9 15.3 4.2
ImageNet 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.1

Lt2 + Lnt

CIFAR-10 81.9 32.4 88.9 38.9 89.4 34.4 90.0 35.3 87.6 35.3
ImageNet 78.0 23.7 96.0 31.4 90.0 22.7 76.0 30.1 85.0 27.0

Table 6: Influence of α in Eq. 2 on the targeted fooling ratios κt and κnt.

Dataset
0.1 0.5 1 2 10

κt κnt κt κnt κt κnt κt κnt κt κnt

CIFAR-10 98.0 68.4 90.1 37.8 84.6 28.0 70.8 15.3 29.4 5.1
ImageNet 98.0 60.6 94.0 31.5 94.0 21.4 90.0 9.0 0.0 0.1

the perturbation magnitude ǫ and report the results in Fig 3 (right). A sharp
increase of κt can be observed for ǫ values between 2.5 and 10 saturating around
a targeted fooling ratio of 90% for further increased ǫ values, while κnt increases
more steadily with increasing ǫ values.

Weighting Factor α One way an attacker can control the behavior of DTA
is by manipulating the weighting factor α in Eq. 2. In Table 6 we evaluate the
influence of α on κt and κnt. Higher values of α lead to lower values of κnt,
since α weights the contribution of Lnt to the final loss value. Even though
this behavior is desired, κt decreases simultaneously. For an effective attack, an
attacker might consider a large gap between κt and κnt, where neither a too
large nor too small α is beneficial.

Number of Available Training Samples Finally, we investigate the influence
of the available number of training samples on the attack behavior. In Table 7
we report the influence of the number of available training samples per class on
the attack performance. With the same number of training iterations, we find
that a smaller number of training samples per class lead to lower κt and κnt

and the gap between κt and κnt decreases accordingly. However, with as small
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Fig. 3: Analysis of the influence of the dominance value D (left) and perturbation
magnitude ǫ (right) on the targeted fooling ratios κt (top) and κnt (bottom) for
the ImageNet dataset.

Table 7: Influence of number of training samples per class on the targeted fooling
ratios κt and κnt.

Dataset
50 100 250 500 1000

κt κnt κt κnt κt κnt κt κnt κt κnt

CIFAR-10 46.7 18.4 60.2 20.3 73.9 22.7 80.9 27.6 83.2 27.8
ImageNet 50.0 2.9 64.0 4.3 86.0 12.5 94.0 19.0 96.0 17.7

as 50 samples per class, the algorithm still works reasonably well. For example,
for ImageNet κt is 50% while κnt is as low as 2.9%.

Table 8: Quantitative results for the generated DT-Patch on ImageNet

Hammer → Hummingbird Screwdriver → Go-Kart Coffee Mug → Chocolate Sauce
κt κnt κt κnt κt κnt

80.0 42.7 92.0 44.9 96.0 41.6

5 Double Targeted Patch

We extend DT-UAP to a physical-world attack [23, 24] by generating a physical
patch. We apply the concept of the DTA to attack one source class to a sink class.
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Fig. 4: Real-world examples of the DT-Patch for three different scenarios (see
Table 8).

We choose VGG-16 trained on ImageNet as the target network. For generating
a physical patch, we restrict the perturbation to a circular area, as well as its
magnitude to lie in image range, i.e. x + δ ∈ [0, 1]. We show three cases by
choosing the source-sink class pairs as indicated in Table 8. Despite being a
more challenging scenario than the original adversarial patch, we observe from
Table 8 that κt is larger than κnt by a non-trivial margin. This indicates that the
patch fulfills the objective. The qualitative results in Figure 4 show the applied
patch fooling the source into the sink class, while having no influence on a sample
from a non-targeted class.

6 Conclusion and Future Work

We proposed DTA to extend the exisitng UAP and CD-UAP for a more flex-
ible attack control. The generated DT-UAP shifts one predefined source class
into one predefined sink class, simultaneously attempts to minimize the targeted
fooling ratio for samples from the non-targeted source classes. The effective-
ness of DTA is demonstrated with extensive experiments on multiple datasets
for different network architectures. We further presented an extension of DTA
to the Multi2One scenario, driving multiple source classes into one sink class.
With some preliminary results we found it also worked for a very challenging
Multi2Multi scenario with limited success, and leave further explorations for
future work.
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