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Abstract. Unsupervised representation learning via generative model-
ing is a staple to many computer vision applications in the absence of
labeled data. Variational Autoencoders (VAEs) are powerful generative
models that learn representations useful for data generation. However,
due to inherent challenges in the training objective, VAEs fail to learn
useful representations amenable for downstream tasks. Regularization-
based methods that attempt to improve the representation learning as-
pect of VAEs come at a price: poor sample generation. In this paper, we
explore this representation-generation trade-off for regularized VAEs and
introduce a new family of priors, namely decoupled priors, or dpVAEs,
that decouple the representation space from the generation space. This
decoupling enables the use of VAE regularizers on the representation
space without impacting the distribution used for sample generation, and
thereby reaping the representation learning benefits of the regularizations
without sacrificing the sample generation. dpVAE leverages invertible
networks to learn a bijective mapping from an arbitrarily complex rep-
resentation distribution to a simple, tractable, generative distribution.
Decoupled priors can be adapted to the state-of-the-art VAE regulariz-
ers without additional hyperparameter tuning. We showcase the use of
dpVAEs with different regularizers. Experiments on MNIST, SVHN, and
CelebA demonstrate, quantitatively and qualitatively, that dpVAE fixes
sample generation and improves representation for regularized VAEs.

1 Introduction

Is it possible to learn a powerful generative model that matches the true data dis-
tribution with useful data representations amenable to downstream tasks in an
unsupervised way? —This question is the driving force behind most unsupervised
representation learning via state-of-the-art (SOTA) generative modeling meth-
ods (e.g., [1–4]), with applications in artificial creativity [5, 6], reinforcement
learning [7], few-shot learning [8], and semi-supervised learning [9]. A common
theme behind such works is learning the data generation process using latent

variable models [10, 11] that seek to learn representations useful for data gener-
ation; an approach known as analysis-by-synthesis [12, 13].

Variational autoencoders (VAEs) [14, 15] marry latent variable models and
deep learning by having independent, network-parameterized generative and in-

ference models that are trained jointly to maximize the marginal log-likelihood
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of the training data. VAE introduces a variational posterior distribution that ap-
proximates the true posterior to derive a tractable lower bound on the marginal
log-likelihood, a.k.a. the evidence lower bound (ELBO). The ELBO is then max-
imized using stochastic gradient descent by virtue of the reparameterization trick
[14, 15]. Among the many successes of VAEs in representation learning tasks,
VAE-based methods have demonstrated SOTA performance for semi-supervised
image and text classification tasks [16, 9, 17, 8, 18, 19].
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Figure 1. dpVAE fixes sample generation for a regularized VAE. The green
box shows β-VAE [2] (left column) and β-VAE with the proposed decoupled prior (right
column), each trained on the two moons dataset. β-VAE: Top to bottom shows the
generated samples (colors reflect probability of generation), the aggregate posterior
qφ(z) and the training samples. The low-posterior samples lie in the latent pockets
of qφ(z) (shown in enlarged section on the left) and correspond to off-manifold sam-
ples in the data space, and high-posterior samples correspond to latent leaks. The
β-dpVAE decouples the representation z and generation z0 spaces. The generation
space is pocket-free and very close to standard normal, resulting in generating samples
on the data manifold. Furthermore, the representation learning is well established in
the representation space (see section 4.1 for more discussion).

Representation learning via VAEs is ill-posed due to the disconnect between
the ELBO and the downstream task [20]. Specifically, optimizing the marginal
log-likelihood is not always sufficient for good representation learning due to
the inherent challenges rooted in the ELBO that result in the tendency to ig-

nore latent variables and not encode information about the data in the latent

space [1, 11, 20–22]. To improve the representations learned by VAEs, a slew
of regularizations have been proposed. Many of these regularizers act on the
VAE latent space to promote specific characteristics in the learned representa-
tions, such as disentanglement [1–3, 6, 23, 24] and informative latent codes [25,
26]. However, better representation learning usually sacrifices sample generation,
which is manifested by a distribution mismatch between the marginal (a.k.a. ag-
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gregate) latent posterior and the latent prior. This mismatch results in latent

pockets and leaks; a submanifold structure in the latent space (a phenomena
demonstrated in Figure 1 and explored in more detail in section 4.1). Latent
pockets contain samples that are highly supported under the prior but not cov-
ered by the aggregate posterior (i.e., low-posterior samples [27]), while latent
leaks contain samples supported under the aggregate posterior but less likely to
be generated under the prior (i.e., high-posterior samples). This behavior has
been reported for vanilla VAE [27, 28] but it is substantiated by augmenting the
ELBO with regularizers (see Figure 1).

To address this representation-generation trade-off for regularized VAEs, we
introduce the idea of decoupling the latent space for representation (represen-
tation space) from the space that drives sample generation (generation space);
presenting a general framework for VAE regularization. To this end, we propose
a new family of latent priors for VAEs — decoupled priors or dpVAEs — that
leverages the merits of invertible deep networks. In particular, dpVAE trans-
forms a tractable, simple base prior distribution in the generation space to a more
expressive prior in the representation space that reflects the submanifold struc-
ture dictated by the regularizer. This is done using an invertible mapping that
is jointly trained with the VAE’s inference and generative models. SOTA VAE
regularizers can thus be directly plugged in to promote specific characteristics
in the representation space without impacting the distribution used for sample
generation. We showcase, quantitatively and qualitatively, that dpVAE with
different SOTA regularizers improve sample generation, without sacrificing their
representation learning benefits.

It is worth emphasizing that, being likelihood-based models, VAEs are trained
to put probability mass on all training samples, forcing the model to over-

generalize [29], and generating blurry samples (i.e., off data manifold). This
is in contrast to generative adversarial networks (GANs) [30] that generate out-
standing image quality but could lack the full data support [31]. dpVAE is not
expected to resolve the over-generalization problem in VAEs, but to mitigate
poor sample quality resulting from regularization.

The contribution of this paper is fourfold:

– Analyze the latent submanifold structure induced by VAE regularizers.
– Introduce a decoupled prior family for VAEs as a general regularization

framework that improves both sample generation and representation learn-
ing, without sacrificing the ELBO of the vanilla VAE.

– Derive the dpVAE ELBO of SOTA regularized VAEs; β-dpVAE, β-TC-
dpVAE, Factor-dpVAE, and Info-dpVAE.

– Demonstrate empirically on three benchmark datasets the improved gen-
eration performance and the preservation of representation characteristics
promoted via regularizers without additional hyperparameter tuning.
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2 Related Work

To improve sample quality, a family of approaches exist that combine the in-
ference capability of VAEs and the outstanding sample quality of GANs [30].
Leveraging the density ratio trick [30, 32] that only requires samples, VAE-GAN
hybrids in the latent (e.g., [33, 34]), data (e.g., [27, 29]), and joint (both latent
and data e.g., [35]) spaces avoid restrictions to explicit posterior and/or likeli-
hood distribution families, paving the way for marginals matching [27]. However,
such hybrids scale poorly with latent dimensions, lack accurate likelihood bound
estimates, and do not provide better quality samples than GAN variants [27].
For instance, VAE variants, such as adversarial [36] and Wasserstein [37] au-
toencoders, introduce matching penalties (e.g., adversarial or maximum mean
discrepancy regularizers) to match distributions in the latent space. Nonethe-
less, such matching penalties, in contrast to dpVAE, modify the likelihood lower
bound and use looser bounds for training, and hence introduce a trade off with
sample reconstruction [38]. Expressive posterior distributions can lead to better
sample quality [33, 39] and are essential to prevent latent variables from being
ignored in case of powerful generative models [21]. But results in [27] suggest
that the posterior distribution is not the main learning roadblock for VAEs.

More recently, the key role of the prior distribution family in VAE training
has been investigated [22, 27, 28]; poor latent representations are often attributed
to restricting the latent prior to an overly simplistic distribution. Furthermore,
Xu et al. presented a formal proof of the necessity and effectiveness of learning
the latent prior and theoretically analyzed the failure of the aggregate posterior
to match the unit Gaussian prior [28]. This motivates several works to enrich
VAEs with more expressive priors. Bauer and Mnih addressed the distribution
mismatch between the aggregate posterior and the latent prior by learning a
sampling function, parameterized by a neural network, in the latent space [40].
However, this resampled prior requires the estimation of the normalization con-
stant and dictates an inefficient iterative sampling, where a truncated sampling
could be used at the price of a less expressive prior due to smoothing. Tomczak
and Welling proposed the variational mixture of posteriors prior (VampPrior),
which is a parameterized mixture distribution in the latent space given by a fixed
number of learnable pseudo (i.e., virtual) data points [41]. VampPrior sampling
is non-iterative and is therefore fast. However, density evaluation is expensive
due to the requirement of a large number of pseudo points, typically in the or-
der of hundreds, to match the aggregate posterior [40]. A cheaper version is a
mixture of Gaussian prior proposed in [42], which gives an inferior performance
compared to VampPrior and is more challenging to optimize [40]. Autoregres-
sive priors (e.g., [43, 44]) come with fast density evaluation but a slow, sequential
sampling process. VQ-VAE [45, 46] learns VAE prior using PixelCNN [47, 48] to
improve sample quality. Yet, unlike dpVAE, VQ-VAE is not trained end-to-end
and modify the underlying assumption of latent Gaussian models.

The proposed decoupled prior is inspired by flow-based generative models
[39, 49–51], which have shown their efficacy in generating images (e.g., GLOW
[52]). Such methods hinge on architectural designs that make the model invert-
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ible. However, the strict invertibility of these architectures dictate very high-
dimensional latent spaces, which are not condusive to representation learning
and lead to computationally expensive and oftentimes prohibitively long train-
ing. In the context of VAEs, learning latent prior using invertible networks has
been proposed by several works with the potential of generating high quality
samples [38, 53–55]. Nonetheless, the inherent trade-off between sample repre-
sentation and generation has not been explored. Such a trade-off is substantiated
with regularizers that promote predefined characteristics in the latent space, pro-
viding looser bounds for training. Here, we showcase the impact of these looser
bounds on sample generation and how dpVAE fixes sample generation.

With differences between expressiveness and efficiency, none of these meth-
ods address the fundamental challenge of VAE training in concert with existing
representation-driven regularization frameworks. The proposed decoupled family
of priors addresses the mismatch between the latent prior and the aggregate pos-
terior, which improves sample generation performance and is easy to integrate
with existing VAE regularizers that endow representation learning properties to
VAEs. Further, the decoupled prior by itself solves the fundamental problem of
representation learning in VAEs without using ad-hoc regularizers (see Table 1).

3 Background

In this section, we briefly lay down the foundations and motivations essential for
the proposed VAE formulation.

3.1 Variational Autoencoders

VAE seeks to match the learned model distribution pθ(x) to the true data dis-
tribution p(x), where x ∈ R

D is the observed variable in the data space. The
generative and inference models in VAEs are thus jointly trained to maximize a
tractable lower bound L(θ, φ) on the marginal log-likelihood Ep(x) [log pθ(x)] of
the training data, where z ∈ R

L is an unobserved latent variable in the latent
space with a prior distribution p(z), such as p(z) ∼ N (z;0, I).

L(θ, φ) = Ep(x)

[

Eqφ(z|x) [log pθ(x|z)]−KL [qφ(z|x)‖p(z)]
]

(1)

where θ denotes the generative model parameters, φ denotes the inference model
parameters, and qφ(z|x) ∼ N (z;µ

z
(x),Σz(x)) is the variational posterior distri-

bution that approximates the true posterior p(z|x), where µ
z
(x) ∈ R

L, Σz(x) =
diag(σz(x)), and σz(x) ∈ R

L
+.

Since the ELBO seeks to match the marginal data distribution without pe-
nalizing the poor quality of latent representation, VAE can easily ignore latent
variables if a sufficiently expressive generative model pθ(x|z) is used (e.g., Pix-
elCNN [47]) and still maximize the ELBO [11, 56, 21], a property known as in-

formation preference [21, 1]. Furthermore, VAE has the tendency to not encode
information about the observed data in the latent codes since maximizing the
ELBO is inherently minimizing the mutual information between z ∼ qφ(z|x)
and x [22]. Without further assumptions or inductive biases, these failure modes
hinder learning useful representations for downstream tasks.
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3.2 Invertible Deep Networks

The proposed decoupled prior family for VAEs leverages flow-based generative
models that are formed by a sequence of invertible blocks (i.e., transformations),
parameterized by deep networks. Consider two random variables z ∈ Z ⊂ R

L

and z0 ∈ Z0 ⊂ R
L. There exist a bijective mapping between Z and Z0 defined

by a function g : Z → Z0, where g(z) = z0, and its inverse g−1 : Z0 → Z
such that z = g−1(z0). Given the above condition, we can define the change of

variable formula for mapping probability distribution on z to z0 as follows:

p(z) = p(z0)

∣

∣

∣

∣

∂z0
∂z

∣

∣

∣

∣

= p(g(z))

∣

∣

∣

∣

∂g(z)

∂z

∣

∣

∣

∣

(2)

By maximizing the log-likelihood and parameterizing the invertible blocks
with deep networks, flow-based methods learn to transform a simple, tractable
base distribution (e.g., standard normal) into a more expressive one. To model
distributions with arbitrary dimensions, the g−bijection needs to be defined such
that the Jacobian determinant can be computed in a closed form. Dinh et al.

[50] proposed the affine coupling layers to build a flexible bijection function g

by stacking a sequence of K simple bijection blocks zk−1 = g
(k)
η (zk) of the form,

g(k)η (zk) = bk ⊙ zk + (1− bk)⊙ [zk ⊙ exp (sk(bk ⊙ zk)) + tk (bk ⊙ zk)] (3)

gη(z) = z0 = g(1)η ◦ · · · ◦ g(K−1)
η ◦ g(K)

η (z) (4)

where z = zK , ⊙ is the Hadamard (element-wise) product, bk ∈ {0, 1}L is a bi-
nary mask used for partitioning the k−th block input, and η = {s1, ..., sK , t1, ..., tK}
are the deep networks parameters of the scaling sk and translation tk functions
of the K blocks (see the supplementary material for network architectures).

Encoder Decoder

𝑔 𝑔!"

qφ(z|x)
<latexit sha1_base64="QX2Au1TDrVF6S17lsOaIIFB61+g=">AAACCHicbZC7TsMwFIYdrqXcAowMWFRIZalSqLhsFSyMRaIXqYkix3Vaq84F20GUkJGFV2FhACFWHoGNt8FJAwLKL1n69J9z5HN+J2RUSMP40KamZ2bn5gsLxcWl5ZVVfW29JYKIY9LEAQt4x0GCMOqTpqSSkU7ICfIcRtrO8DStt68IFzTwL+QoJJaH+j51KUZSWba+dWnHZjigSdn0kBw4bnyT3H7hdbJr6yWjYmSCk1DNoQRyNWz93ewFOPKILzFDQnSrRiitGHFJMSNJ0YwECREeoj7pKvSRR4QVZ4ckcEc5PegGXD1fwsz9OREjT4iR56jOdEXxt5aa/9W6kXSPrJj6YSSJj8cfuRGDMoBpKrBHOcGSjRQgzKnaFeIB4ghLlV0xC+E41cH3yZPQ2qtU9yu181qpfpLHUQCbYBuUQRUcgjo4Aw3QBBjcgQfwBJ61e+1Re9Fex61TWj6zAX5Je/sEE5uayQ==</latexit>

pθ(x|z)
<latexit sha1_base64="6C8DNElqMmRBF9dtZF+EDzWHlKw=">AAACCnicbZDLSsNAFIYn9VbrLerSTbQIdVNSLV52RTcuK9gLNCFMppN26OTCzIlYY9ZufBU3LhRx6xO4821M0ihq/WHg4z/nMOf8dsCZBF3/UAozs3PzC8XF0tLyyuqaur7Rln4oCG0Rn/uia2NJOfNoCxhw2g0Exa7NaccenaX1zhUVkvneJYwDarp44DGHEQyJZanbgRUZMKSA44rhYhjaTnQd337hTbxnqWW9qmfSpqGWQxnlalrqu9H3SehSDwjHUvZqegBmhAUwwmlcMkJJA0xGeEB7CXrYpdKMslNibTdx+prji+R5oGXuz4kIu1KOXTvpTFeUf2up+V+tF4JzbEbMC0KgHpl85IRcA19Lc9H6TFACfJwAJoIlu2pkiAUmkKRXykI4SXX4ffI0tPertYNq/aJebpzmcRTRFtpBFVRDR6iBzlETtRBBd+gBPaFn5V55VF6U10lrQclnNtEvKW+fuYibsQ==</latexit>

z
<latexit sha1_base64="jqSYv2CNwDXNZi1yer7a+ge7dAc=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiRaqu6KblxWsA9sQ5lMJ+3QySTMTIQa+hduXCji1r9x5984SYOo9cDA4Zx7mXOPF3GmtG1/WoWl5ZXVteJ6aWNza3unvLvXVmEsCW2RkIey62FFORO0pZnmtBtJigOP0443uUr9zj2VioXiVk8j6gZ4JJjPCNZGuusHWI89P3mYDcoVu2pnQIvEyUkFcjQH5Y/+MCRxQIUmHCvVc+xIuwmWmhFOZ6V+rGiEyQSPaM9QgQOq3CRLPENHRhkiP5TmCY0y9edGggOlpoFnJtOE6q+Xiv95vVj7527CRBRrKsj8Iz/mSIcoPR8NmaRE86khmEhmsiIyxhITbUoqZSVcpKh/n7xI2idV57Rau6lVGpd5HUU4gEM4BgfOoAHX0IQWEBDwCM/wYinryXq13uajBSvf2YdfsN6/ABlskVY=</latexit>

z0
<latexit sha1_base64="X0Pp//Zbq+Mhier/GG4U36CABAk=">AAAB9HicbVDLSsNAFL2pr1pfVZduBovgqiRafOyKblxWsA9oQ5lMJ+3QySTOTAo15DvcuFDErR/jzr9x0gZR64GBwzn3cs8cL+JMadv+tApLyyura8X10sbm1vZOeXevpcJYEtokIQ9lx8OKciZoUzPNaSeSFAcep21vfJ357QmVioXiTk8j6gZ4KJjPCNZGcnsB1iPPTx7Svl3qlyt21Z4BLRInJxXI0eiXP3qDkMQBFZpwrFTXsSPtJlhqRjhNS71Y0QiTMR7SrqECB1S5ySx0io6MMkB+KM0TGs3UnxsJDpSaBp6ZzEKqv14m/ud1Y+1fuAkTUaypIPNDfsyRDlHWABowSYnmU0MwkcxkRWSEJSba9DQv4TLD2feXF0nrpOqcVmu3tUr9Kq+jCAdwCMfgwDnU4QYa0AQC9/AIz/BiTawn69V6m48WrHxnH37Bev8CffWSDQ==</latexit>

ε ∼ N (0, I)
<latexit sha1_base64="6yATaihA9/s971K1rUf/7Sd/Iis=">AAACEXicbVDLSsNAFJ3UV62vqEs3g0WoICXV4mNXdKMbqWAf0IQymU7aoZNJmJkIJeQX3Pgrblwo4tadO//GSRpErQcGzpxzL/fe44aMSmVZn0Zhbn5hcam4XFpZXVvfMDe32jKIBCYtHLBAdF0kCaOctBRVjHRDQZDvMtJxxxep37kjQtKA36pJSBwfDTn1KEZKS32zYpNQUhZwaEvqQ9tHaoQRi6+TinUw/bpufJXs982yVbUywFlSy0kZ5Gj2zQ97EODIJ1xhhqTs1axQOTESimJGkpIdSRIiPEZD0tOUI59IJ84uSuCeVgbQC4R+XMFM/dkRI1/Kie/qynRF+ddLxf+8XqS8UyemPIwU4Xg6yIsYVAFM44EDKghWbKIJwoLqXSEeIYGw0iGWshDOUhx/nzxL2ofV2lG1flMvN87zOIpgB+yCCqiBE9AAl6AJWgCDe/AInsGL8WA8Ga/G27S0YOQ92+AXjPcvnpGdAg==</latexit>Generation Space Data SpaceRepresentation Space

Sample Generation

Representation Inference
(a) (b)

Figure 2. dpVAE: (a) The latent space is decoupled into a generation space with a
simple, tractable distribution (e.g., standard normal) and a representation space whose
distribution can be arbitrarily complex and is learned via a bijective mapping to the
generation space. (b) VAE with the decoupled prior. The g−bijection is jointly trained
with the VAE generative (i.e., decoder) and inference (i.e., encoder) models.

4 General Framework for VAE Regularization

In this section, we formally define and analyze how VAE regularizations affect
the generative property of VAE. We also present the decoupled prior family for
VAEs (see Figure 2) and analyze its utility to solve the submanifold problem of
SOTA regularization-based VAEs.
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4.1 VAE Regularizers: Latent Pockets and Leaks

ELBO regularization is a conventional mechanism that enforces inductive bi-
ases (e.g., disentanglement [1–3, 6, 23, 24] and informative latent codes [25, 26])
to improve the representation learning aspect of VAEs [20]. These methods have
shown their efficacy in learning good representations but neglect the genera-
tive property. Empirically, these regularizations improve the learned latent rep-
resentation but inherently cause a mismatch between the aggregate posterior
qφ(z) = Ep(x) [qφ(z|x)] and the prior p(z). This mismatch leads to latent pock-

ets and leaks, or a submanifold in the aggregate posterior that results in poor
generative capabilities. Specifically, if a sample z ∼ p(z) (i.e., likely to be gener-
ated under the prior) lies in a pocket, (i.e., qφ(z) is low), then its corresponding
decoded sample x ∼ pθ(x|z) will not lie on the data manifold. This problem,
caused by VAE regularizations, we call the submanifold problem.

To better understand this phenomena, we define two different types of sam-
ples in the VAE latent space that corresponds to two VAE failure modes.
Low-Posterior (LP) samples are highly likely to be generated under the
prior (i.e., p(z) is high) but are not covered by the aggregate posterior (i.e.,
qφ(z) is low). The low-posterior samples are typically generated from the latent

pockets dictated by the regularizer(s) used and are of poor quality since they
lie off the data manifold. To generate low-posterior samples, we follow the logic
of [27], where we sample z ∼ p(z) = N (z;0, I), rank them according to their
aggregate posterior support, i.e., values of qφ(z), and choose the samples with
lowest aggregate posterior values. In the case of dpVAEs, samples are generated
from z0 ∼ p(z0) = N (z0;0, I), which is a standard normal, and then transformed
by z = g−1

η (z0) before plugging it into the aggregate posterior.
High-Posterior (HP) samples are samples supported under the aggregate
posterior (i.e., qφ(z) is high) but are less likely to be generated under the prior
(i.e., p(z) is low). Specifically, these are samples in the latent space that can
produce good generated samples but are unlikely to be sampled due to the low
support of the prior, and thereby they are samples that are in the latent leaks.
To generate high-posterior samples, we sample from z ∼ qφ(z) = Ep(x) [qφ(z|x)],
rank them according to their prior support, i.e., values of N (z;0, I), and choose
the samples with lowest prior support values. For dpVAEs, sampled z are first
mapped to the z0−space by z0 = gη(z) before computing prior probabilities.

VAE performs well in the generative sense if the latent space is free of pockets
and leaks. A pocket-free latent space is manifested by low-posterior samples that
lie on the data manifold when mapped to the data space via the decoder pθ(x|z).
In a leak-free latent space, high-posterior samples are supported by the aggregate
posterior, yet with a tiny probability under the prior, and thereby these samples
fall off the data manifold. This submanifold problem is demonstrated using four
SOTA VAE regularizers (see Figure 1 and Figure 3). With β-VAE [2], FactorVAE
[3] and β-TCVAE [23], we can clearly see that the low-posterior samples lie in
the latent pockets formed in the aggregate posterior (see Figure 3b) and they
lie outside the data manifold (see Figure 3c), causing the sample generation to
be very noisy (see Figure 3a). In the case of InfoVAE, the low-posterior samples
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Figure 3. Sample generation and latent spaces for regularized VAEs: Each
block is a VAE trained with a different regularizer on the moons dataset, with and
without the decoupled prior. In each block, (a) showcases the sample quality, (b) shows
the aggregate posterior qφ(z) with top five low- and high-posterior samples marked,
and (c) shows the generation space for the decoupled prior and the training samples
in the data space with corresponding low- and high-posterior samples are marked.

lie in regions with not much aggregate posterior support causing a slightly noisy
sample generation (see Figure 3a). More importantly, there are high-posterior
samples that come from qφ(z) but can very rarely be captured by a standard
normal prior distribution. With the InfoVAE, for instance, the model fails to
generate samples that lie on the tail-end of the top moon.

Although VAE regularizers improve latent representations, they sacrifice
sample generation through the introduction of latent pockets and leaks. To fix
sample generation, we propose a decoupling of the representation and genera-
tion spaces (see Figure 2a for illustration). This is demonstrated for β-VAE with
and without decoupled prior in Figure 1, where the decoupled generation space
p(z0) ∼ N (z0;0, I) is used for generation and all the low-posterior samples lie
on the data manifold. We formulate this prior in detail in following section.

4.2 dpVAE: Decoupled Prior for VAE

Decoupled prior family, as the name suggests, decouples the latent space that
performs the representation and the space that drives sample generation. For this
decoupling to be meaningful, the representation and generation spaces should
be related by a functional mapping. The decoupled prior effectively learns the
latent space distribution p(z) by simultaneously learning the functional mapping
gη together with the generative and inference models during optimization.

Specifically, the latent variables z ∈ Z ⊂ R
L and z0 ∈ Z0 ⊂ R

L are the ran-
dom variables of the representation and generation spaces, respectively, where
p(z0) ∼ N (z0;0, I). The bijective mapping between the representation space Z
and the generation space Z0 is defined by an invertible function gη(z) = z0,
parameterized by the network parameters η. VAE regularizers still act on the
posteriors in the representation space, i.e., qφ(z|x) and/or qφ(z), without affect-
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ing the latent distribution of the generation space. Sample generation starts by
sampling z0 ∼ p(z0), passing through the inverse mapping to obtain z = g−1

η (z0),
which is then decoded by the generative model pθ(x|z) (see Figure 2a). These
decoupled spaces can allow any modifications in the representation space dic-
tated by the regularizer to infuse its submanifold structure in that space (see
Figure 3b) without significantly impacting the generation space (see Figure 3c),
and thereby improving sample generation for regularized VAEs (see Figure 3a).
Moreover, the decoupled prior p(z) is an expressive prior that is learned jointly
with the VAE, and thereby it can match an arbitrarily complex aggregate poste-
rior qφ(z), thanks to the flexibility of deep networks to model complex mappings.
Additionally, due to the bijective mapping gη, we have a one-to-one correspon-
dence between samples in p(z0) ∼ N (z0;0, I) and those in p(z).

To derive the ELBO for dpVAE, we replace the standard normal prior in (1)
with the decoupled prior defined in (2). Using the change of variable formula,
the KL divergence term in (1) can be simplified into1:

KL [qφ(z|x)‖p(z)] = −Eqφ(z|x)

[

K
∑

k=1

L
∑

l=1

blksk
(

blkz
l
k

)

]

−
1

2
log |Σz(x)|+ Eqφ(z|x)

[

gη(z)
T gη(z)

]

(5)

where L is the latent dimension, K is number of invertible blocks that defines the
decoupled prior in (4), sk is the scaling network of the k−th block, Σz(x) is the
covariance matrix of the variational posterior qφ(z|x) (typically assumed to be
diagonal), and blk and zlk are the l−th element in bk and zk vectors, respectively.

4.3 dpVAE in Concert with VAE Regularizers

The KL divergence in (5) can be directly used for any regularized ELBO. How-
ever, there are some regularized models such as β-TCVAE [23], and InfoVAE [1]
that introduce additional terms other than KL [qφ(z|x)‖p(z)] with p(z). These
regularizers need to be modified when used with decoupled priors2.
β-dpVAE: For β-VAE (both β-VAE-H [2] and β-VAE-B [57] versions), the only
difference in the ELBO (1) is reweighting the KL-term and the addition of certain
constraints without introducing any additional terms. Hence, β-dpVAE will
retain the same reweighting and constraints, and only modify the KL divergence
term according to (5).
Factor-dpVAE: FactorVAE [3] introduces a total correlation term KL [qφ(z)‖qφ(z̄)]

to the ELBO in (1), where qφ(z̄) =
∏L

l=1 qφ(z
l) and zl is the l−th element of

z. This term promotes disentanglement of the latent dimensions of z, impacting
the representation learning aspect of VAE. Hence, in the case of the decoupled
prior, the total correlation term should be applied to the representation space. In
this sense, the decoupled prior only affects the KL divergence term as described
in (5) for the Factor-dpVAE model.

1 Complete derivation can be found in the supplementary material.
2 The ELBOs for these regularizers can be found in the supplementary material.
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β-TC-dpVAE: Regularization provided by β-TCVAE [23] factorizes the ELBO
into the individual latent dimensions based on the decomposition given in [22].
The only term that includes p(z) is the KL divergence between marginals, i.e.,
KL [qφ(z)‖p(z)]. This term in β-TCVAE is assumed to be factorized and is evalu-
ated via sampling, facilitating the direct incorporation of the decoupled prior. In
particular, we can just sample from the base distribution z0 ∼ p(z0) = N (z0;0, I)
and compute the corresponding sample z ∼ p(z) using z = g−1

η (z0).
Info-dpVAE: In InfoVAE [1], the additional term in the ELBO is again the
divergence between aggregate posterior and the prior, i.e., KL [qφ(z)‖p(z)]. This
KL divergence term is replaced by different divergence families; adversarial train-
ing [34], Stein variational gradient [58], and maximum-mean discrepancy MMD
[59–61]. However, adversarial-based divergences can have unstable training and
Stein variational gradient scales poorly with high dimensions [1]. Motivated by
the MMD-based results in [1], we focus here on the MMD divergence to evaluate
this marginal divergence. For Info-dpVAE, we start with the ELBO of InfoVAE
and modify the standard KL divergence term using (5). In addition, we com-
pute the marginal KL divergence using MMD, which quantifies the divergence
between two distributions by comparing their moments through sampling. Sim-
ilar to β-TC-dpVAE, we can sample from p(z0) and use the inverse mapping to
compute samples in the z−space.

Table 1. Generative metrics (lower is better) for vanilla VAE and regularized VAEs
using standard normal and decoupled priors. FID = Frchet Inception Distance. LP
= Low-Posterior FID score. sKL = symmetric KL divergence. NLL = Negative Log-
Likelihood (×103)

Methods
MNIST SVHN CelebA

FID LP sKL NLL FID LP sKL NLL FID LP sKL NLL

VAE [14, 15] 137.4 165.0 1.26 3.56 78.9 83.8 53.67 0.386 81.4 79.0 59.3 9.26

dpVAE 129.0 153.1 0.88 3.53 50.8 55.2 13.02 0.318 71.5 74.3 10.4 4.91

β-VAE-H [2] 144.2 163.1 4.49 4.12 96.7 97.6 10.35 0.611 80.3 79.9 39.7 6.93

β-dpVAE-H 127.1 127.4 1.07 2.98 65.2 67.7 4.05 0.592 67.2 72.5 33.5 10.6

β-VAE-B [57] 130.8 163.6 2.74 3.11 61.7 68.5 2.62 0.606 75.7 79.6 25.8 12.5

β-dpVAE-B 113.3 114.1 1.32 2.80 51.1 50.3 2.47 0.550 67.9 72.0 19.1 10.4

β-TCVAE [23] 149.8 200.3 4.48 2.91 69.2 70.5 7.76 9.86 83.8 83.0 93.6 9.33

β-TC-dpVAE 133.3 133.1 2.07 2.70 50.3 53.8 2.94 4.52 80.3 81.4 90.3 10.0

FactorVAE [3] 130.5 191.2 1.04 3.50 97.2 108.5 1.91 2.13 82.6 86.8 71.3 9.89

Factor-dpVAE 120.8 121.3 0.85 3.60 86.3 86.9 1.57 2.36 65.0 73.4 51.3 12.2

InfoVAE [1] 128.7 133.2 2.89 2.88 81.3 83.2 4.91 1.55 76.5 79.1 30.6 11.1

Info-dpVAE 110.1 110.5 1.70 2.81 62.9 67.7 2.67 1.56 68.9 72.9 20.3 12.1

5 Experiments

We experiment with three benchmark image datasets, namely MNIST [62],
SVHN [63], CelebA (cropped version) [64] to provide a fair comparison with
SOTA regularized VAEs, which used the same datasets. We train these datasets
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with VAE [14, 15] and five regularized VAEs, namely β-VAE-H [2], β-VAE-B
[57], β-TCVAE) [23], FactorVAE [3] and InfoVAE [1]. We showcase, qualitatively
and quantitatively, that dpVAEs improve sample generation while retaining the
benefits of representation learning provided by the regularizers3

5.1 Generative Metrics

We use the following quantitative metrics to assess the generative performance
of the regularized VAEs with and without the decoupled prior.

eτ
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Figure 4. dpVAEs have less latent leaks: Leakage scores for regularized VAEs
on MNIST (a) and CelebA (b) data (missing values mean there are no samples with
log(p(z)) < τ , implying zero leakage at that threshold). The illustration on the left
represents the intuition behind the lekage score. For a probability threshold τ , the
leakage score is proportional to the probaility difference at a sample in latent sapce,
this area is marked in grey : Eqφ(z) [Sτ (z)]

.

Frchet Inception Distance (FID): The FID score is based on the statistics,
assuming Gaussian distribution, computed in the feature space defined using the
inception network features [65]. FID score quantifies both the sample diversity
and quality. Lower FID means better sample generation.
Symmetric KL Divergence (sKL): To quantify the overlap between p(z) and
qφ(z) in the representation space (p(z) being the decoupled prior for dpVAEs or
the standard normal), we compute sKL= KL [p(z)‖qφ(z)] + KL [qφ(z)‖p(z)]
through sampling (using 5,000 samples). sKL also captures the existence of pock-
ets and leaks in qφ(z). Lower sKL implies there is a better overlap between p(z)
and qφ(z), indicating better generative capabilities.
Negative Log-likelihood: We estimate the likelihood of held-out samples un-
der a trained model using importance sampling (with 21,000 samples) as in [15],
where NLL = logEqφ(z|x) [pθ(x|z)p(z)/qφ(z|x)]. Lower NLL means better sam-

3 Architectures and hyperparameters are described in the supplementary material.
Additionally, results showcasing that representation learning (specifically disentan-
glement) is not adversely affected by the introduction of decoupled priors are also
presented in the supplementary material.
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ple generation since the learned model supports unseen samples drawn from the
data distribution.
Leakage Score: To assess the effect of decoupled priors on latent leaks (as
manifested by high posterior samples), we devise a new metric based on log-
probability differences. We sample from the aggregate posterior z ∼ qφ(z). If
log(p(z)) < τ , where τ ∈ R is a chosen threshold value, then we consider the
sample to lie in a “leakage region” defined by τ . This sample is considered a
high-posterior sample at the τ−level since the sample is better supported under
the aggregate posterior than the prior (see Figure 4). Based on the threshold
value, these leakage regions are less likely to be sampled from. In order to not
lose significant regions from the data manifold, we want the aggregate posterior
corresponding to these samples to attain low values as well. To quantify latent
leakage for a trained model, we propose a leakage score as LS(τ) = Eqφ(z) [Sτ (z)],
where for a given z ∼ qφ(z) at a particular threshold τ , Sτ (z) is defined in (6),
where h is the identity function for VAEs and gη for dpVAEs.

Sτ (z) =

{

log
(

qφ(z)
p(h(z))

)

log(p(z)) < τ

0 log(p(z)) ≥ τ
(6)
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Figure 5. Latent traversal for dpVAEs does not path through latent pockets:
The top rows showcases latent traversal for FactorVAE and Factor-dpVAE on MNIST
data. The orange box is the qφ(z) for FactorVAE and the red line shows the traversal
between starting and ending points (green and yellow stars, respectively). The green
box shows the same traversal in qφ(z0) that is mapped using g−1

η to the representation
space, demonstrated using qφ(z). We see that the traversal path in qφ(z) tries to avoid
low probability regions, which correspond to better image quality.
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5.2 Generation Results and Analysis

In Table 1, we observe that dpVAEs perform better than their corresponding
regularized VAEs without the decoupled prior.When comparing VAEs with and
without decoupled priors (e.g., InfoVAE and Info-dpVAE), we use the same hy-
perparameters and perform no additional tuning. This showcases the robustness
of the decoupled prior wrt hyperparameters, facilitating its direct use with any
regularized VAE. We report the FID scores on both the randomly generated
samples from the prior and the low-posterior samples. As analyzed in section
4.1, if the low-posterior samples lie on the data manifold, then the learned la-
tent space is pocket-free. Results in Table 1 suggest that for all dpVAEs, the
FID scores for the randomly generated samples and low-posterior ones are com-
parable, suggesting that all the pockets in the latent space are filled. Qualitative
results of sample generation for CelebA and MNIST are shown in the supple-
mentary material (due to space constraints). We show both the random prior
and low-posterior sample generation with and without the decoupled prior for
three different regularizers. Sample quality of dpVAEs is better or on par with
those without the decoupled prior. But more importantly, one can observe a sig-
nificant quality improvement in the low-posterior samples, which aligns with the
quantitative results in Table 1. In Figure 4, we report the leakage score LS(τ)
as a function of log-probability thresholds for different regularizers with and
without the decoupled priors. We observe that dpVAEs result in models with
lower latent leakage. This is especially true at lower thresholds, which suggests
that even when p(z) is small, the qφ(z) is small as well, preventing the loss of
significant regions from the data manifold.

5.3 Latent Traversals Results

We perform latent traversals between samples in the latent space. We expect that
in VAEs, there will be instances of the traversal path crossing the latent pockets
resulting in poor intermediate samples. In contrast, we expect dpVAEs will
map the linear traversal in z0 (generation space) to a non-linear traversal in z
(representation space), while avoiding low probability regions. This is observed
for MNIST data traversal (L = 2) and is depicted in Figure 5.

We also qualitatively observe similar occurrences in CelabA traversals (see
supplementary material). Finally, we want to attest that the addition of the
decoupled prior to a regularizer does not affect it’s ability to improve the latent
representation. We demonstrate this by observing latent factor traversals for
CelebA trained on Factor-dpVAE, where we vary one dimension of the latent
space while fixing the others. One can observe that Factor-dpVAE is able to
isolate different attributes of variation in the data, as shown in Figure 6.

6 Conclusion

In this paper, we define and analyze the submanifold problem for regularized
VAEs, or the tendency of a regularizer to accentuate the creation of pockets
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Figure 6. Factor-dpVAE latent traversals across the top 5 latent dimensions:
Traversals start with the reconstructed image of a given sample and move ±5 standard
deviations along a latent dimension. Results from other dpVAEs similarly retain the
latent space disentanglement.

and leaks in the latent space. This submanifold structure manifests the mis-
match between the aggregate posterior and the latent prior which in turn causes
degradation in generation quality. To overcome this trade-off between sample
generation and latent representation, we propose the decoupled prior family
as a general regularization framework for VAE and demonstrate its efficacy on
SOTA VAE regularizers. dpVAE does not modify the ELBO of the vanilla VAE,
rather it leverages learnable priors that are optimized jointly with the inference
and generation models to match the aggregate posterior and the latent prior. We
demonstrate that dpVAEs generate better quality samples as compared with
their standard normal prior based counterparts, via qualitative and quantitative
results. Additionally, we qualitatively observe that the representation learning
(as improved by the regularizer) is not adversely affected by dpVAEs. Decoupled
priors can act as a pathway to realizing the true potential of VAEs as both a rep-
resentation learning and a generative modeling framework. Further work in this
direction will include exploring more expressive inference and generative models
(e.g., PixelCNN [47]) in conjuction with decoupled priors. We also believe more
sophisticated invertible architectures (e.g.,. RAD [66]) and base distributions
will provide further improvements.
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