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Abstract. Arbitrarily-shaped text detection faces two major challenges:
1) various scales and 2) irregular angles. Previous works regress the text
boundary in Cartesian coordinates as ordinary object detection. How-
ever, such grid space interleaves the unique scale and angle attributes
of text, which seriously affects detection performance. The implicit dis-
regard of text scale also impairs multi-scale detection ability. To better
learn the arbitrary text boundary and handle the text scale variation, we
propose a novel Scale-Aware Polar Representation (SAPR) framework.
The text boundary is represented in Polar coordinates, where scale and
angle of text could be both clearly expressed for targeted learning. This
simple but effective transformation brings significant performance im-
provement. The explicit learning on separated text scale also promotes
the multi-scale detection ability. Based on the Polar representation, we
design line IoU loss and symmetry sine loss to better optimize the scale
and angle of text with a multi-path decoder architecture. Furthermore,
an accurate center line calculation is proposed to guide text boundary
restoration under various scales. Overall, the proposed SAPR framework
is able to effectively detect arbitrarily-shaped texts and tackle the scale
variation simultaneously. The state-of-the-art results on multiple bench-
marks solidly demonstrate the effectiveness and superiority of SAPR.

1 Introduction

Scene text detection plays an important role in numerous applications, such as
real-time text translation, product identification, image retrieve and autonomous
driving. In recent years, deep learning based methods exhibit promising detection
performance [1–4]. The promotion mainly benefits from the development of Con-
volutional Neural Networks (CNN) [5] and research on detection [6–8] and seg-
mentation [9, 10]. However, many existing methods with quadrilateral bounding-
box outputs may suffer from texts with arbitrary shapes. Consequently, more and
more recent works [11–18] begin to focus on arbitrarily-shaped text detection.

The two basic and independent attributes of arbitrarily-shaped text are: 1)
various scales and 2) irregular angles, which also become the major challenges
in detection task. As shown in Fig. 1, the text prototypes could form arbitrary
shapes based on scale and angle transformations. Since text is usually composed
of multiple individual characters, the formulation of arbitrary boundary in Fig. 1
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Fig. 1. Scale and angle attributes are the two basic and independent attributes of text
boundary, which could form arbitrary shapes. From a decomposition perspective, the
shape formulation is actually the scaling and rotation of small local areas.

is actually the simple scaling and rotation of small local areas, which could be
naturally expressed in Polar coordinates. Therefore, we are motivated to detect
arbitrarily-shaped text using Polar representation.

Fig. 2 presents the comparison of existing regular Cartesian representation
and our novel Polar representation. For the scene text in Fig. 2(a), many meth-
ods [19, 20, 15, 21] regress the text boundary in Cartesian coordinates, as shown
in Fig. 2(b)-(c). Compared with Fig. 2(b), Fig. 2(c) is more reasonable and stable
which only focuses on the nearest boundary. While this is common in ordinary
object detection, the unique scale and angle attributes of text are interleaved
in such grid space. The force learning of unrelated attributes seriously affects
detection performance, as shown in following experiments. The scale attribute
of text is also implicitly disregarded, which impairs multi-scale detection ability.
The overall detection performance in Cartesian space is thus largely suppressed.
Conversely, Fig. 2(d) shows our Polar representation for arbitrarily-shaped texts.
The independent scale and angle attributes are both clearly expressed, which is
beneficial to boundary learning. Furthermore, the scale attribute is explicitly ex-
tracted and allows more effective end-to-end optimization. The multi-scale detec-
tion ability is thus promoted. On the whole, the transformation from Cartesian
space to Polar space is simple but effective, which breaks the grid bottlenecks
and brings significant performance improvement.

Based on the novel Polar representation, a unified Scale-Aware Polar Rep-
resentation (SAPR) framework is proposed to better detect arbitrarily-shaped
text and handle scale variation simultaneously. We dedicatedly design line IoU
loss and symmetry sine loss to optimize the scale and angle attributes of text,
respectively. Compared with L1 loss and monotonous cosine loss, the tailored
losses bring more performance improvement. A novel network architecture with
multi-path decoder is also developed to better extract features from different
scales. Besides, we propose a more accurate calculation of text center line which
is frequently used in text detection task to complete entire boundary. Instead
of complicated network prediction, we simply encode the symmetry distances of
scale attribute. The produced center line could automatically fit various scales.
Integrating above work, the unified SAPR framework is able to effectively detect
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Fig. 2. (a) Arbitrarily-shaped texts. (b)-(c) Cartesian representations on global and
local text. (d) The proposed Polar representation, which clearly depicts angle and
scale attributes of text. Specifically, the scale attribute in (d) is decomposed into top
distance (green arrow) and bottom distance (purple arrow).

texts with arbitrary shapes and handle the scale variation. The state-of-the-art
empirical results on different benchmarks, especially the large improvement on
arbitrarily-shaped datasets, demonstrate the effectiveness of SAPR.

The contributions of this work are summarized as follows: (1) We propose
a novel Polar representation to better model arbitrary text boundary and learn
the scale attribute simultaneously; (2) Based on the Polar representation, we
develop line IoU loss and symmetry sine loss with multi-path decoder archi-
tecture as a unified Scale-Aware Polar Representation (SAPR) framework; (3)
Instead of learning segmentation or attractive links, we proposed a more accu-
rate and simple text center line extraction based on the symmetry distances of
scale attribute; (4) SAPR achieves state-of-the-art performances on challenging
Total-Text, CTW1500 and MSRA-TD500 benchmarks, which contain curved,
multi-oriented and long texts.

2 Related Work

In recent years, most of the scene text detection methods are based on deep learn-
ing. They can be roughly divided into two categories: regression based methods
and segmentation based methods.

Regression based methods benefit from the development of general ob-
ject detection. Inspired by the Faster RCNN [7], CTPN [1] detects horizontal
texts by grouping adjacent and compact text components. TextBoxes [22] and
RRD [23] adopt the architecture of SSD [8] to detect texts with different as-
pect ratios. As the anchor-free methods, EAST [2] and DeepReg [24] predict the
text boundary directly, which is similar to DenseBox [6]. RRPN [3] generates
proposals with different rotations to detect multi-oriented texts. PMTD [4] is
built on Mask RCNN [25] and produces quadrilateral boundary from pyramid
mask. [26] detects texts by localizing corner points of bounding boxes. Most of
the regression-based methods only predict quadrilateral bounding boxes with
fixed number of vertexes. Therefore, such methods are difficult to detect texts
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with arbitrary shapes. Besides, the limited receptive field of CNN also affects
the detection performance on long texts.

Segmentation based methods benefit from the development of semantic
segmentation. The Fully Convolutional Network (FCN) [9] and U-Net [10] are
widely used structures. These methods aim to segment the text instances from
backgrounds. For example, PixelLink [27] predicts the pixel classification and
its neighborhood connections to obtain instances. With the rise of arbitrarily-
shaped text detection trend, segmentation based methods become the main-
stream because pixel-level classification is friendly to irregular shapes. However,
the segmentation may cause adhesion when two text instances are close. There-
fore, most of the segmentation based methods struggle to split adjacent texts.
TextSnake [11], MSR [20] and LOMO [15] segment the center region and re-
store the boundary based on their regression results. TextField [17] predicts
directional field to aggravate different instances. PSENet [28] predicts multiple
kernels with different sizes and gradually merge them to produce final result.
TextMountain [18] segment the center region of texts which are unconnected,
then assign boundary pixels to corresponding center.

It is worth noting that compared with heuristic TextSnake, our method learns
the text boundary end-to-end using polar representation. TextSnake and LOMO
limit the shape regression to center region, while our method adaptively repre-
sents arbitrary texts anywhere. Moreover, our center line is calculated automat-
ically with the symmetry scale distances in polar representation, which avoids
extra complicated center learning.

3 Method

In this section, we first introduce the entire pipeline of SAPR framework. Next,
the structure of network with multi-path decoder and the loss functions tailored
for Polar representation are introduced. Then, the reconstruction of complete
text boundary is presented in details. Finally, the label generation is described.

3.1 Scale-Aware Polar Representation Framework

The entire pipeline of SAPR framework is presented in Fig. 3. Overall, SAPR
employs classification branch as mask to roughly locate texts and employs re-
gression branch to precisely refine the boundary in Polar space. Specially, the
scale attribute is decomposed into top distance and bottom distance, as shown
by the green and purple arrows in Fig. 2(d). The angle is defined as the counter-
clockwise rotation along the positive half axis. For an input image, the network
produces text confidence from classification branch and angle, top distance, bot-
tom distance from regression branch. The text confidence map is segmented to
obtain text mask, which is used to cover valid text regions in regression maps.
Based on top distance and bottom distance, we calculate the center line and ex-
tract the skeleton. Each individual center line skeleton is used to integrate local
boundary restored by regression results and form a complete text boundary.
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Fig. 3. The overview of SAPR framework. The center line skeleton is obtained auto-
matically based on top distance and bottom distance, which guides the entire boundary
restoration. The blue boxes with solid lines denote the outputs of network. The green
boxes with dash lines denote post-processing.

Based on the suitable representation in Polar space, SAPR could better learn
arbitrary text boundary and handle the scale problem compared with Cartesian
methods [19, 20, 15, 21]. Different from heuristic approach [11], SAPR directly
learns the text boundary with more effective and end-to-end manner which also
simplifies the boundary restoration. In addition, the center text line is calculated
easily and accurately with symmetry distances of scale attribute, which avoids
complicated network learning of segmentation [11, 15] or attractive links [29,
30]. It is worth noting that the instance segmentation [31] also employ the polar
representation with single center and fixed angle prior. However, the above simple
representation is not suitable to curved texts with complex ribbon shapes. In
contrast, our polar representation with various local centers and flexible angles
could precisely describe irregular boundary and obtain promising performance.

On the whole, the Polar representation artfully express the scale and angle
attributes of arbitrarily-shaped texts. Many bottlenecks in ordinary Cartesian
space are solved gracefully. Therefore, SAPR achieves significant improvement
of detection performance.

3.2 Network

The network of SAPR follows the typical encoder-decoder structure shown in
Fig. 4. As a powerful feature extractor, the encoder produces rich feature maps
with multiple levels. Generally, single path structure like U-Net is employed as
the decoder. However, simple decoder may be too weak to process the rich and
abstract information passed from encoder under complex multi-task learning.
Besides, the high-level semantic information from the deep layers would also be
diluted gradually during fusion.

Inspired by DLA [32] and GridNet [33], we develop a new decoder with mul-
tiple paths to better utilize information under different scales. During decoding,
each path creates new aggregated features which are passed to next path via
residual connections. We concatenate outputs from different paths for two par-
allel branches: text/non-text classification and shape regression. The multi-path
decoder has more powerful representation ability to extract and analyze infor-
mation from encoder for abstract and complex regression. At the same time,
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Fig. 4. The detailed structure of network with multi-path decoder. “Conv”, “BN”,
“ReLU” and “UpSample” denote convolution, batch normalization, rectified linear unit
and 2× bilinear up-sampling, respectively.

residual connections allow network to automatically learn the utilization degree
of features in different scales. Thus the aggregation produces more effective fea-
tures for multi-scale text detection.

3.3 Loss Function

The loss for multi-task learning is formulated as

L = λ1Lcls + λ2Ldis + λ3Lθ (1)

where Lcls, Ldis and Lθ represent the losses of text/non-text classification, dis-
tance regression and angle regression, respectively.

Binary cross-entropy loss shown in Eq. 2 is employed as the classification loss
for fair comparison. M is the training mask to ignore invalid regions. ŷi and yi
denote ground truth and predicted label in the ith location, respectively.

Lcls =
1

|M|

∑

i∈M

(−ŷi log yi − (1− ŷi) log (1− yi)) (2)

Instead of using norm losses like L2, L1 and Smooth L1, we design line
IoU loss, i.e., the one-dimensional (1D) version of original IoU loss [34] for top

and bottom distances regression. In Eq. 5, the d̂topi , d̂boti , dtopi and dboti denote
top distance label, bottom distance label, predicted top distance and predicted
bottom distance in the ith location, respectively. T denotes valid text regions.
The proposed line IoU loss could better handle texts with various heights and
thus contributes to the multi-scale detection.

dinteri = min
(
d̂topi , dtopi

)
+min

(
d̂boti , dboti

)
(3)

d̂i = d̂topi + d̂boti , di = dtopi + dboti (4)

Ldis = −
1

|T |

∑

i∈T

log

(
dinteri

d̂i + di − dinteri

)
(5)
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In horizontal text areas, the angle may change dramatically between 180◦ and
0◦. The angle label is thus discontinuous. However, the actual shape appearances
of texts in such areas are stable. It is both reasonable to predict θ or π − θ in
these areas. Therefore, we design symmetry sine loss in Eq. 6 to alleviate the
confusion in transition areas and make network easier to converge. θ̂i and θi
denote the angle label and predicted angle in the ith location, respectively.

Lθ =
1

|T |

∑

i∈T

sin(|θ̂i − θi|) (6)

In the whole training stage, λ1, λ2 and λ3 are set to 10, 1 and 1, respectively.

3.4 Label Generation

The labels includes: (1) text confidence, (2) top distance, (3) bottom distance and
(4) angle. Fig. 5 shows the detailed label generation from polygon annotation.

Assuming that the annotations only include ordered vertexes. The prepa-
ration of label generation is finding the 4 key vertexes denoted by the green
numbers 1-4 in Fig. 5. For convenience, each text instance annotation is for-
mulated as V = {v1, ..., vi, ..., vn} and n ≥ 4, where n denotes the number of
polygon vertexes. Each vertex vi can be viewed as the intersection point of two
adjacent sides denoted by ~vl and ~vr. We define θi in Eq. 7 to measure degree of
direction change of these two adjacent sides. The vi is more likely to being a key
vertex when θi is smaller, i.e., the adjacent sides construct a 90◦ angle.

θi = |90◦ − arccos (~vl · ~vr/ (‖~vl‖ ‖~vr‖))| (7)

The entire label generation requires the nearest two side points pt and pb
on polygon annotation in the normal direction, which are the white points in
Fig. 5. Firstly, we construct the two paths between key vertexes 1-2 and key
vertexes 3-4, denoted by lt and lb. Then, these two paths are sampled densely
as lt = {pt1, ..., pti...ptm} and lb = {pb1, ..., pbi...pbm} where m is the number of
sampled points. For any location p in text region, we can calculate the distance
di between p and the each line determined by (pti, pbi). In this way, the nearest
two side points pt and pb assigned for current location p could be obtained as:

pt = p
t̂i
, pb = p

b̂i
, (8)

î = argmin
i

di. (9)

The text confidence label is the height-shrunk version of complete text mask,
while the length on reading direction remains unchanged. For the height-shrunk
mask, a appropriate ratio helps avoiding adhesion and ambiguous regression
in the edge area compared with the original ratio=0 mask. A big ratio would
cause confusion to classify the surrounding text as background. The ratio is not
sensitive and works well in [0.15, 0.4], so we chose 0.3. The top distance label
(green arrow) and bottom distance label (purple arrow) are the lengths between
current location p with the higher side point pt and the lower side point pb,
respectively. The angle label (red sector) is the angle between the local normal
vector 〈pb, pt〉 and horizontal direction which ranges from 0◦ to 180◦.
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Fig. 5. The label generation based on original polygon annotation. The text confidence
label is the height-shrunk version of complete text mask. The top distance and bottom
distance labels are the lengths between current location p with the higher side point
pt and the lower side point pb, respectively. The angle label is the angle between the
local normal vector 〈pb, pt〉 with horizontal direction.

3.5 Text Boundary Restoration

Fig. 6 presents the detailed text boundary restoration. Firstly, the centerness is
calculated based on top distance and bottom distance:

ci =
2 ∗min

(
dtopi , dboti

)

dtopi + dboti

(10)

where dtopi , dboti and ci denote predicted top distance, predicted bottom distance
and centerness in the ith location, respectively. The centerness ranges in [0, 1]
with mountain appearance where the regions closer to center have larger values.
Then, the center line could be easily segmented and skeletonized from centerness
map. Each center line skeleton is considered as a individual instance to avoid
adhesion. For example, the two small texts in the bottom right corner of Fig.
6 are dense and stick together. The skeleton successfully separate the adhesive
texts. Next, the anchor points are sampled on each center line skeleton evenly.
Based on the Polar coordinates regression in its surrounding region, each anchor
point could directly produce corresponding local boundary.

Specifically, the transformation from predicted Polar coordinates to Cartesian
coordinates contains two steps: 1) scale restoration and 2) angle restoration.
Assuming that (xi, yi) denotes ith location in original image, where the regressed
Polar coordinates are top distance dtopi , bottom distance dboti and angle θi. It is
noteworthy that θi is the counterclockwise rotation along the positive half axis.
The Cartesian coordinates of two local boundary points (xt

i, y
t
i) and

(
xb
i , y

b
i

)
are:

[
xt
i x

b
i

yti ybi

]
=

[
cos∆θ − sin∆θ
sin∆θ cos∆θ

] [
0 0

dtopi −dboti

]
+

[
xi

yi

]
(11)
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Fig. 6. The details of text boundary restoration. Based on top distance and bottom
distance, centerness is calculated and segmented to automatically obtain center line.
Anchor points are sampled on each skeleton line and restore scale and angle attributes.
The complete boundary is formed by integrating local boundaries.

where ∆θ = θ−
π

2
. The complete detection boundary is obtained by integrating

the local boundary points.
Overall, the encoded centerness automatically produces accurate center line

under different scales. The extracted skeletons naturally solve the adhesion prob-
lem. Besides, it avoids complicated network prediction of segmentation [11, 15] or
attractive links [29, 30] to integrate local boundaries. The entire text boundary
restoration is thus simplified and more robust.

4 Experiments

4.1 Datasets

SynthText [35] is a synthetic dataset which contains about 800K synthetic
images. The texts are artificially rendered with random attributes. Like other
methods, SynthText is used to pre-train our network.
Total-Text [36] is a recently released word-level dataset. It consists 1255 train-
ing images and 300 testing images with horizontal, multi-oriented, and curved
texts. The annotations are polygons with variable vertexes.
CTW1500 [37] is a text-line based text dataset with 1000 training images and
500 testing images. Similar to Total-Text, the texts are also horizontal, multi-
oriented, and curved. The annotations are polygons with fixed 14 vertexes.
MSRA-TD500 [38] is a line-level dataset with 300 training images and 200 test
images of multi-oriented and long texts. The annotations are rotated rectangles.
The training set is relatively small, so we also include 400 images from HUST-
TR400 [39] according to previous works [2, 26, 11].

4.2 Implementation Details

We use ResNet50 [5] pre-trained on ImageNet [40] as the backbone of network,
which produces 4 levels feature maps denoted by C2, C3, C4 and C5. Their
channels are reduced to 32, 64, 128 and 256, respectively. The decoder is equipped
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Fig. 7. Qualitative results of SAPR on different benchmarks. From top to bottom in
rows: Total-Text, CTW1500, MSRA-TD500.

with 3 paths. The output channel of aggregation module is the same as the
minimum channel number of two input features. The final outputs have strides
of 4 pixels with respect to the input image.

The training contains two phase: pre-train and fine-tune. The model is op-
timized using ADAM with batch-size 32 and the learning rate decreases under
cosine schedule. We use SynthText [35] to pre-train the model for 1 epoch. The
learning rate is from 1×10−3 to 1×10−4. Then, we fine-tune the model on differ-
ent benchmarks for 100 epochs, respectively. The learning rate is from 3× 10−4

to 1×10−5. The blurred texts labeled as DO NOT CARE are ignored in training.
During the data augmentation, we set the short sides of training images in

[640, 1280] randomly. The heights of images are set in ratio [0.7, 1.3] randomly
while widths keep unchanged. The images are rotated in [−15◦, 15◦] randomly.
640× 640 random patches are cropped as the final training data.

During the evaluation on three benchmarks, the short sides of images are all
fixed to 960 to report the single scale results. The evaluation on MSRA-TD500
requires box with fixed 4 vertexes, so we extract rotated rectangle with the
minimum area around original detected polygon as the final result.

4.3 Comparisons with State-of-the-Art Methods

Arbitrarily-Shaped Text. Total-Text and CTW1500 are recently introduced
datasets with arbitrarily-shaped texts. They are specially curated as the two
most important benchmarks to evaluate the arbitrarily-shaped text detection
performance. The quantitative comparisons on Total-Text and CTW1500 are
shown in Table 1. SAPR achieves the new state-of-the-art performances on both
challenging datasets with significant improvements. SAPR designs better polar
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Table 1. Quantitative results of different methods on Total-Text, CTW1500 and
MSRA-TD500 benchmarks. The best score is highlighted in bold.

Datasets Total-Text CTW1500 MSRA-TD500

Method Precision Recall F-score Precision Recall F-score Precision Recall F-score

SegLink [29] 30.3 23.8 26.7 - - - 86.0 70.0 77.0

EAST [2] 50.0 36.2 42.0 - - - 87.3 67.4 76.1

CENet [41] 59.9 54.4 57.0 - - - 85.9 75.3 80.2

CTD [42] 74.0 71.0 73.0 74.3 65.2 69.5 84.5 77.1 80.6

SLPR [19] - - - 80.1 70.1 74.8 - - -

TextSnake [11] 82.7 74.5 78.4 67.9 85.3 75.6 83.2 73.9 78.3

SAE [13] - - - 82.7 77.8 80.1 84.2 81.7 82.9

MSR [20] 85.2 73.0 78.6 84.1 79.0 81.5 87.4 76.7 81.7

AGBL [43] 84.9 73.5 78.8 83.9 76.6 80.1 86.6 72.0 78.6

TextField [17] 81.2 79.9 80.6 83.0 79.8 81.4 87.4 75.9 81.3

PSENet [28] 84.0 78.0 80.9 84.8 79.7 82.2 - - -

FTSN [44] 84.7 78.0 81.3 - - - 87.6 77.1 82.0

SWSL [45] 80.6 82.3 81.4 77.0 79.9 78.5 - - -

SegLink++ [30] 82.1 80.9 81.5 82.8 79.8 81.3 - - -

IncepText [46] - - - - - - 87.5 79.0 83.0

MCN [47] - - - - - - 88.0 79.0 83.0

Relation [48] 86.0 80.5 83.1 85.8 80.9 83.3 87.2 79.4 83.1

LOMO [15] 87.6 79.3 83.3 85.7 76.5 80.8 - - -

CRAFT [16] 87.6 79.9 83.6 86.0 81.1 83.5 88.2 78.2 82.9

ContourNet [49] 86.9 83.9 85.4 83.7 84.1 83.9 - - -

SAPR(ours) 89.5 82.6 85.9 89.8 83.2 86.4 92.5 75.7 83.3

representation thus output boundaries are more accurate with high confidence.
Therefore, we use higher threshold to show precision superiority while suppress
recall. Some detection results are presented in the first and second rows of Fig.
7, where arbitrarily-shaped texts under different scales are all precisely located.
It solidly demonstrates the effectiveness of Polar representation and tailored
framework on arbitrarily-shaped text detection.
Regular Text. We also evaluate SAPR on regular quadrilateral texts to prove
the generalization ability. Among the different regular datasets, MSRA-TD500
is more challenging with a large amount of multi-oriented and extreme long
texts. The quantitative comparison result is shown in Table 1 and SAPR still
achieves the state-of-the-art performance. Some detection results are presented
in the third row of Fig. 7, where the texts with multiple orientations and extreme
long lengths are all accurately detected under various scales. This comparison
indicates that SAPR could also seamlessly adapt to other types of text detection.

4.4 Ablation Study

Scale-Aware Polar Representation. To exhibit the effectiveness of SAPR,
we train a similar model using the Cartesian representation [20, 15] in Fig. 2(c)
as baseline while other configurations remain the same. Meanwhile, we divide
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Fig. 8. The qualitative comparison between Cartesian baseline and SAPR under dif-
ferent scales. The red arrow, green arrow and yellow arrow denote false alarm, miss
and inaccurate boundary, respectively.

Table 2. Comparison of Cartesian baseline and SAPR framework. “F”, “F-small”,
“F-medium” and “F-large” denote the overall F-score, F-scores of small, medium and
large texts, respectively.

Method
Polar

Space

Multi-Path

Decoder

Line IoU

Loss

Symmetry

Sine Loss
F F-small F-medium F-large

Cartesian Baseline
- - - 77.3 66.1 74.1 78.4

- X - - 78.4 68.5 75.4 79.6

SAPR(ours)

X 81.6 70.4 81.1 84.0

X X 82.7 72.7 82.4 84.1

X X X 85.3 77.3 85.3 87.1

X X X X 85.9 77.9 84.5 87.5

texts into small, medium and large inspired by COCO dataset [50] to clearly
demonstrate the scale-aware ability. For Total-Text, the texts with height in (0,
27), (27, 50) and (50,∞) are defined as small, medium and large, which occupy
42%, 31% and 27% of entire dataset, respectively.

Table 2 presents the detailed ablation results. During the evaluation, we
use single path decoder, L1 loss and monotonous cosine loss [2] as substitutes.
The Cartesian baseline obtains 77.3% F-score. When our Polar representation
is adopted, the F-score obviously increases to 81.6%. The F-scores of all three
scale ranges also obtain promising improvement. It solidly demonstrates that the
proposed Polar representation clearly decouple the independent scale and angle
attributes of text, which is more suitable for learning distinguish features and
improves detection performance. At the same time, the explicit learning of scale
attribute also contributes to multi-scale detection ability.

Furthermore, the multi-path decoder promotes both the performances of
Cartesian baseline and SAPR. It indicates the effectiveness of poposed multi-
path structure to extract features from multiple scales. With the line IoU loss, the
overall F-score increases obviously to 85.3% where the F-small obtains around
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5% absolute improvement. Moreover, symmetry sine loss brings 0.6% absolute
improvement. It proves that the tailored losses could effectively describe and op-
timize the scale and angle attributes of text. On the whole, the F-scores of overall
and different scale ranges are gradually improved with proposed components. It
demonstrates the effectiveness of SAPR framework to detect arbitrarily-shaped
texts and handle the scale variation problem. In particular, the evaluation tool
DetEval [51] allows many-to-one and one-to-many matches which may slightly
affect the detection results in current scale range [52].

Fig. 8 shows qualitative comparison between Cartesian baseline and SAPR
under different scales. The decoupling learning of independent angle and scale at-
tributes is beneficial for network to explore more essential features of texts, which
effectively reduces the false alarms (red arrow). Meanwhile, the miss of vague
and indistinguishable text (green arrow) which are easy to mix with background
are also improved. In addition, the Cartesian baseline may produce inaccurate
boundaries with low quality (yellow arrow). By contrast, SAPR precisely locates
texts with arbitrary shapes and various scales, which solidly demonstrates the
superior performance of SAPR.

Table 3. The comparison of mean and variance of F-scores over dataset with multiple
scale-fluctuations.

Method F-score Mean F-score Variance

Cartesian Baseline 75.1 3.17

SAPR(ours) 83.7 2.51

Although SAPR exhibits promising performances on different benchmarks,
there are two types of fail cases: (1) The texts with blurry appearance are difficult
to distinguish by the classification branch; (2) The boundary of too small/short
texts produced by the regression branch may be not accurate and unstable.
Scale Robustness. To further confirm the scale-aware ability, the short sides
of input images in Total-Text dataset are set in [640, 1280] with step 40 to
obtain the F-score fluctuation as metric. Table 3 presents the mean and variance
of F-scores with multiple scale-fluctuations. SAPR achieves 8.6% absolute F-
score improvement compared with Cartesian baseline. Meanwhile, the variance
also decreases obviously. It solidly demonstrates that the Polar representation
clearly separates scale attribute of text, which allows more focused and effective
learning on scale problem. With tailored line IoU loss, SAPR is able to be robust
to complex scale variation.
Center Line Generation. We propose to use local top and bottom distance
to encode the center line of text. For comparison, the classification branch is
added a new channel to predict center line as baseline. During inference, the
center line is directly segmented from the output of corresponding channel. As
shown in Table 5, encoding the distance to produce center line achieves 5.4%
absolute improvement compared with direct segmentation. Actually, it is hard
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Table 4. Comparison of decoder with paths of different numbers.

#Path 1 2 3 4

Params(M) 35.44 34.43 32.53 33.59

Flops(G) 11.04 7.95 7.43 8.14

F-score 83.5 84.4 85.9 83.7

Table 5. Comparison of center line generation between common direct segmentation
and our distance encoding.

Center Line Precision Recall F-score

Direct Segmentation 83.9 77.3 80.5

Distance Encode 89.5 82.6 85.9

for network to learn the accurate center line, which is imagined artificially and
prone to confused by the similar texts in surrounding sides. From the perspective
of symmetry distance, encoding the top and bottom could naturally and easily
produce reasonable center line with better quality.

Number of Decoder Path. The number of paths in decoder would affect final
performance. We design decoders with paths of different numbers to find the
best configuration. The parameters and flops (224 × 224 input) are tried to set
similar by adjusting channels for fair comparison. Table 4 shows the comparison
on Total-Text dataset. Compared with single-path decoder, multi-path decoders
usually have better performance. However, more paths may be too complex to
be trained efficiently with limited data. The decoder with 3 paths achieves the
highest F-score, which is selected as our default configuration.

5 Conclusion

In this paper, we reveal the basic independent attributes of arbitrarily-shaped
text boundary: 1) various scales and 2) irregular angles. Cartesian based methods
interleave the independent angle and scale attributes, which affects detection
performance and suppresses multi-scale detection ability. We propose a novel
Scale-Aware Polar Representation (SAPR) framework to better learn arbitrary
shapes and handle the scale variation of text. The decoupling learning of scale
and angle attributes in Polar coordinates produces promising improvement. We
then propose line IoU loss and symmetry sine loss to effectively optimize the scale
and angle, respectively. The base network is equipped with multi-path decoder
to better utilize the multi-scale features. A more accurate and simple center
line calculation is also developed to automatically fit various scales. Extensive
experiments on benchmarks and ablation study solidly demonstrate the scala-
aware ability and excellent performance of SAPR.
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