
FKAConv: Feature-Kernel Alignment

for Point Cloud Convolution

Alexandre Boulch1, Gilles Puy1, and Renaud Marlet1,2

1 valeo.ai, Paris, France
2 LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France

Abstract. Recent state-of-the-art methods for point cloud processing
are based on the notion of point convolution, for which several approaches
have been proposed. In this paper, inspired by discrete convolution in im-
age processing, we provide a formulation to relate and analyze a number
of point convolution methods. We also propose our own convolution vari-
ant, that separates the estimation of geometry-less kernel weights and
their alignment to the spatial support of features. Additionally, we de-
fine a point sampling strategy for convolution that is both effective and
fast. Finally, using our convolution and sampling strategy, we show com-
petitive results on classification and semantic segmentation benchmarks
while being time and memory efficient.

1 Introduction

Convolutional Neural Networks (CNNs) have been a breakthrough in machine
learning for image processing [7, 19]. The discrete formulation of convolution al-
lows a very efficient processing of grid-structured data such as images in 2D or
videos in 3D. Yet a number of tasks require processing unstructured data such
as point clouds, meshes or graphs, with application domains such as autonomous
driving, robotics or urban modeling. However discrete convolution does not di-
rectly apply to point clouds as 3D points are not usually sampled on a grid.

The most straightforward workaround is to voxelize the 3D space to use
discrete CNNs [31]. However, as 3D points are usually sampled on a surface, most
of the voxels are empty. For efficient large-scale processing, a sparse formulation
is thus required [37, 60]. Other deep learning approaches generalize convolution
to less structured data, such as graphs or meshes [41, 5], but applying them to
point clouds requires addressing the issue of sensible graph construction first.

Deep-learning techniques that directly process raw data have been devel-
oped to overcome the problem of point cloud pre-processing [33, 50]. Just as for
structured data, such networks are usually designed as a stack of layers and are
optimized using stochastic gradient descent and back-propagation. Key issues
when designing these networks include speed and memory efficiency.

In this context, we propose a new convolution method for point cloud pro-
cessing. It is a mixed discrete-continuous formulation that disentangles the ge-
ometry of the convolution kernel and the spatial support of the features: using a

2 A. Boulch et al.

geometry-less kernel domain, we stick to a discrete convolution scheme, which is
efficient and has been successful on grid data; the spatial domain however keeps
its continuous flavor, as point clouds are generally sampled on manifolds.

Our contributions are the following: (1) we provide a formulation to relate
and analyze existing point convolution methods; (2) we propose a new convolu-
tion method (FKAConv) that explicitly separates the estimation of geometry-
less kernel weights and their alignment to the spatial support of features; (3) we
define a point sampling strategy for convolution that is both efficient and fast;
(4) experiments on large-scale datasets for classification and semantic segmenta-
tion show we reach the state of the art, while being memory and time efficient.

2 Related work

Projection in 2D. Some methods project the point cloud in a space suitable for
using standard discrete CNNs. 2D CNNs have been use for 3D data converted as
range images [13, 29] or viewed from virtual viewpoints [44, 4, 21]. As neighbor-
ing points in the resulting image can be far away in 3D space, 2D CNNs often
fail to capture well 3D relations. 2D CNNs can also be applied locally to point-
specific neighborhoods by projecting data on the tangent plane [45]; the result is
then highly dependant on the tangent plane estimation. Other approaches use a
volumetric data representation, such as voxels [31, 39, 34, 54]. These approaches
however suffer from encoding mostly empty volumes, calling for sparsity han-
dling, e.g., with octree-based 3D-CNNs [37] or sparse convolution [11, 12].

Graph convolution, geometric deep learning. Graph Neural Networks (GNNs)
[41, 5] extend neural networks to irregular structures (not on a grid), using edges
between nodes for message passing [10, 24] or defining convolution in the spectral
domain [6, 9, 18]. Point convolution using GNNs requires first explicitly building
a graph from the point cloud [36]. To scale to large point clouds, SPG [20] defines
a graph over nodes corresponding to point segments. In contrast, our approach
directly applies to the raw point cloud, with no predefined relation between
points, somehow making point association as part of the method.

MLP processing. PointNet [33] directly processes point coordinates with a
multi-layer perceptron (MLP), gathering context information with a permutation-
invariant max-pooling. PointNet++ [35] and So-Net [22] reduce the loss of local
information due to subsampling with a cascade of MLPs at different scales.

Point convolution. A first line of work considers an explicit spatial location
for the kernel, in the same space as the point cloud. Kernel elements can be
located on a regular grid (voxels) [16], at the vertices of a polyhedron [47] or
randomly sampled and optimized at training [3]. In KPConv [47], an adjustment
of the kernel locations may also be predicted at test time to better fit the data.

Another type of approaches models kernel locations implicitly. The kernel can
be a family of polynomials like in SpiderCNN [55], or it can be estimated with an
MLP, like in PCCN [50], RSConv [27] or PointConv [53]. The weights of the input
features are then directly estimated based on the local geometry of points. In
contrast, we learn the weights of a discrete kernel and, at inference time, we only

FKAConv 3

estimate the spatial relation between the kernel and input points. PointConv [53]
reweights the input features based on local point densities. Our method reaches
state-of-the-art performances without the need of such a mechanism.

Finally, PointCNN [23] shares apparent similarities with our work as one of
its main components is the estimation of a matrix, that actually differs from ours.
Besides, geometric information in [23] is lifted to the feature space and used as
additional features. Our work shows it is sufficient to use the geometry only for
features-kernel alignment, mimicking the discrete convolution on a regular grid.

Our approach lies in between these lines of work. On the one hand, our kernel
weights are explicitly modeled as in [16, 3, 47], which gives a discrete flavor to
our method; on the other hand, we estimate a transformation of input points to
apply the convolution as in [50, 27, 53], which operates in the continuous domain,
avoiding kernel spatialization. The key is that, contrary to fully-continuous ap-
proaches that re-estimate at inference time how to weigh given sets of points to
operate the convolution, we estimate separately a kernel while learning, and we
predict the relation between the kernel and input points while testing. Besides,
we perform the convolution with a direct matrix multiplication rather than get-
ting indirectly results from a network output. This separation and the explicit
matrix multiplication (outside the network) allows a better learning of kernel
weights and spatial relations, without the burden and inaccuracy of estimating
their composition, resulting in a time and memory efficient method.

Point sampling. Like PointNet [33], several methods maintain point clouds
at full resolution during the whole processing [56, 26, 28]. These methods suffer
from a high memory cost, which requires to either limit the input size [33, 56],
split the input into parts [26], or use a coarse voxel grid [28]. Other approaches
[35, 23, 3], as ours, use an internal sub-sampling of the point cloud. The choice of
sampled points forming a good support is a key step for this reduction. Furthest
point sampling (FPS) [35], where points are chosen iteratively by selecting the
furthest point from all the previously picked points at each iteration, yields very
good performance but is slow and its performance depends on the initialization.
In [56], point sampling is based on a learned attention, which induces a high
memory cost. Our sampling strategy, based on the quantization of the 3D space,
ensures a good sampling of the space, like FPS, and is fast and memory efficient.

3 A general formulation of point cloud convolution

We base our convolution formulation on the discrete convolution used in image
or voxel grid processing. The formulation is general enough to cover a wide range
of state-of-the-art convolution methods for point clouds, and to relate them.

Discrete convolution. Let F be the dimension of the input feature space, d
the spatial dimension (e.g., 2 for images, 3 for voxel grids), K the convolution
kernel, and f the input features. The classical discrete convolution, noted h, is:

h[n] =
∑

f∈{1,...,F}

∑

m∈{−M/2,...,M/2}d

Kf [m] ff [n+m], (1)

4 A. Boulch et al.

Kernel

Output

Input

Kernel

Output

Input

Aligned

input

Kernel

Input features

located in

spatial domain

Point-wise feature

distribution on kernel

Geometry to kernel

space change

Output

(a) Discrete conv. aligned (b) Discrete conv. misaligned (c) FKAConv point convolution

Fig. 1. Kernel-input alignment for grid inputs (a,b) and point clouds (c).

where Md is the grid kernel size, f indexes the feature space, n is the spatial
index, and Kf [m] and ff [n+m] are scalars. Defining vectors Kf = (Kf [m], m ∈
{−M/2, . . . ,M/2}d}) and ff (n) = (ff [n+m], m ∈ {−M/2, . . . ,M/2}d), we can
highlight the separation between the kernel space (K) and the feature space (f):

h[n] =
∑

f∈{1,...,F}

K⊤
f

︸︷︷︸

Kernel space

ff (n)
︸ ︷︷ ︸

Feature space

. (2)

The kernel Kf and the features ff (n) are perfectly aligned: the grid index m as-
sociates a kernel element Kf [m] with a single input element ff [n+m] (Fig. 1(a)).

Point convolution. To generalize this discrete convolution to point clouds, we
first consider a hypothetical misalignment between the feature and kernel spaces,
assuming the feature grid is rotated with respect to the kernel grid (Fig. 1(b)),
thus obfuscating the correspondence between kernel elements and feature ele-

ments. Yet, provided that the rotation matrix A ∈ R
Md

× R
Md

is known, the
correspondences can be recovered by rotating the support points of features:

h[n] =
∑

f∈{1,...,F}

K⊤
f A ff (n). (3)

This equation actually holds in a more general setting, with an arbitrary linear
transformation between the feature space and the kernel space; A is then the
alignment matrix that associates the feature values to the kernel elements.

The discrete convolution on a regular grid becomes a particular case of Equa-
tion (3), with A = IMd , the identity matrix. In the case of a point cloud, ff (n) is
the feature associated to the point at spatial location n, typically computed on
a neighborhood N[n]. These features are generally not grid-aligned. But Equa-
tion (3) can still apply, provided we can estimate an alignment matrix A that
distributes each input point onto the kernel elements (Fig. 1(c)).

In this context, a fixed matrix A is suboptimal as it cannot cope well with
both a regular grid (A = IMd) and arbitrary point configurations in a point

FKAConv 5

cloud. A thus has to be a function of the input points, which in practice have
to be limited to neighbors N[n] at location n. The convolution becomes:

h[n] =
∑

f∈{1,...,F}

K⊤
f A(N[n]) ff (n). (4)

It is a mixed discrete-continuous formulation: Kf and ff (n) have a discrete
support and continuous values, while A(N[n]) provides a continuous mapping.

Analysis of exiting methods. This formulation happens to be generic enough
to describe a range of existing methods for point convolution [43, 47, 3, 50, 23].

Using spatial kernel points. The most common approach to discrete convolu-
tion on a point cloud assigns a spatial point to each kernel element. The distribu-
tion of features on kernel elements is then based on the distance between kernel
points and points in N[n], corresponding to an association matrix A invariant by
rotation. A simple method would be to assign the features to the nearest kernel
point, but it is unstable as a small perturbation in the point position may result
in a different kernel point attribution. A workaround is to distribute the input
points to several close kernel points. In SplatNet [43], an interpolation distribute
points onto the kernel space. However, this handcrafted assignment is arbitrary
and heavily relies on the geometry of kernel points. KPConv [47] chooses to
distribute the input points over all the neighboring kernel points, with a weight
inversely proportional to their distance to kernel points. Moreover, KPConv al-
lows deformable kernels, for which local shifts of kernel points are estimated,
offering more adaptation to input points. Yet, this handcrafted distribution is
still arbitrary and still relies on the geometry of kernel points. ConvPoint [3]
randomly samples the kernel points, and their position is learned along with an
assignment function A, with an MLP is applied to the kernel points represented
in the coordinate system centered on the input points. All these methods [43,
47, 3] raise the issue of defining and optimizing the position of kernel points.

Feature combination and geometry lifting. In PointCNN [23], geometric infor-
mation is extracted with an MLPδ, parameterized by δ, and concatenated with
the input features to create mixed spectral-geometric features. The summands
in Equation (4) become K⊤A(N[n])[ff (n),MLPδ(N[n])].

Joint estimation of K⊤A(N[n]). In fully implicit approaches [50, 3, 47], MLPs
are used to directly estimate the weights W(n) to apply to input features ff (n),
i.e., not separating W(n) into a product K⊤ ×A(N[n]), and thus mixing esti-
mations in the spatial and feature domains.

Kernel separation. As acknowledged by the authors of PCCN themselves [50],
a direct estimation of W(n)=K⊤A(N[n]) is too computationally expensive to
be used in practice. Instead, they resort to an implementation which falls into our
formulation: for Nout output channels, they consider Nout parallel convolution
layers with a size-1 kernel, corresponding to using a different A for each filter.
In PointCNN [23], the extra features generated by the geometry lifting induce a
larger kernel (1/4 more weights with default parameters [23]), thus an increased
memory footprint. To overcome this issue, [23] also chooses to factorize the kernel

6 A. Boulch et al.

Features

Projection

on kernel

domain

Output

Concatenation

Element-wise mult.Point-wise linear

Max pooling Spatial gating

Centered and

normalized

points

Alignment matrix estimation

Kernel weights

Input

Convolution

Fig. 2. FKAConv convolutional layer.

as the product of two smaller matrices. Notice that this kernel separation trick
can be implemented in any method that uses explicit kernel weights. Although
we could as well, we do not need to resort to that trick in our method.

4 Our method: estimating a feature-kernel alignment

Our own convolution method is also based on Equation (4). However, contrary
to preceding approaches, we do not use kernel points. Instead, we estimate a
soft alignment matrix A based on the coordinates of neighboring points in N[n].
Our convolutional layer is illustrated on Figure 2.

Neighborhood normalization. To be globally invariant to translation, all co-
ordinates of the points of N[n] are expressed in the local coordinates system
of n. This is particularly important for scene segmentation: the network should
behave the same way for similar objects at different spatial locations. Please no-
tice that it is not the case in RSConv [27] where absolute coordinates are used,
making it appropriate for shape analysis, not for scene processing.

N[n] is typically defined as the k-nearest neighbors (k-NNs) of n, or as all
points in a ball around n. Both definitions have pros and cons. Using k-NNs is
relatively fast, but the radius of the encompassing ball is (potentially highly)
variable. As observed in [47], it may degrade spatial consistency compared to
using a ball with a fixed radius. But searching within a radius is slower and
yields (potentially widely) different numbers of neighbors, requiring strategies
to deal with variable sizes, e.g., large tensor sizes and size tracking as in [47].

We propose an intermediate approach based on the k nearest neighbors, with
a form a rescaling. As opposed to [35, 23, 3], we do not normalize the neighbor-
hood to a unit sphere regardless of its actual size in the original space. We
estimate a normalization radius rt of the neighborhood at the layer level using
the exponential moving average of Eq. (5) computed at training time, where t is
the update step, m is a momentum parameter and r̂t is the average neighbor-
hood radius of the current batch. Let q be the support point associated to n,

FKAConv 7

and pi the i-th point of N[n]. The points (p̂i)i actually used for the estimating
A are the points (pi)i centered and normalized using q and rt as follows:

rt = r̂t ∗m+ rt−1 ∗ (1−m), (5)

p̂i = (pi − q)/rt. (6)

At inference time, this normalization ensures that all neighborhood are processed
at the same scale while on average, neighborhoods are mapped to the unit ball.

Gating mechanism on distance to support point. While solving the problem
of the neighborhood scale, this normalization strategy does not prevent points
far away from the support point (the neighborhood center) to influence nega-
tively the result. One could use hard-thresholding on the distance based on the
estimated normalization radius r to filter these points, but this approach may
cut too much information from the neighborhood, particularly in the case of
high variance in neighborhood radii. Instead, we propose a gating mechanism
to reduce, if needed, the effect of such faraway points. Given (p̂i)i as defined in
Equation (6), the spatial gate weight s = (si)i satisfies

si = σ(β − α||p̂i||2), (7)

where σ(·) is the sigmoid function, β is the cutoff distance (50% of the maximal
value) and α parametrize the slope of the transition between 0 (points filtered
out) and 1 (points kept). Both α and β are learned layer-wise.

Estimation of A. As underlined in [33], a point cloud is invariant by point
permutation: changing the order of points should not change the point cloud
properties. Hence, the product Aff (n) must be invariant by permutation of the
inputs. This can be achieved by estimating independently each line Aj of the
matrix A using only the corresponding point pj ∈ N[n], with an MLP shared
accross all points. But it does not take the neighborhood into account, and thus
may ignore useful information such as the local normal or curvature. To ad-
dress point permutation invariance, PointNet [33] uses a max-pooling operation.
Likewise, we use a three-layer point-wise MLP with max-pooling after the first
two layers. To reduce the influence of outliers, max-pooling inputs are weighted
with s. The output is then concatenated to the point-wise features and given as
input to the next fully-connected layer. This series of computations is illustrated
in Figure 2 in the block called “alignment matrix estimation.”

5 Efficient point sampling with space quantization

Networks architectures for point cloud processing operates at full resolution
through the entire network [50], or have an encoder/decoder structure [23, 3]
similar to networks used in image processing, e.g., U-Net [38]. While the former
maintain a maximum of information through the network, the later are usually
faster as convolutions are applied to smaller point sets. However, decreasing the
size of the point cloud requires to select the support points, i.e., the points at the
center of the neighborhoods used in the convolution.

8 A. Boulch et al.

Cardinality

not reached

Cardinality

exceeded

random discard of

 3 points from

last selection step

objective: 20 support points

Input

On all points: space quatization

and unique per quantile point selection

On remaining points: space quatization

and unique per quantile point selection Outputs

9 support points selected () 14 new support points selected () Support points (U)

Fig. 3. Point sampling with space quantization.

PointNet++ [35] introduces farthest point sampling, an iterative sampling
procedure where the next sampled point is the farthest from the already picked
points. The main advantage of this sampling is to ensure a somewhat spatially
uniform distribution which favors extreme points (e.g., at wing extremities for
planes) as they are usually important for shape recognition. However, it requires
to keep track of distances between all pairs of points, which is costly and increases
the computation time, in particular when dealing with large point clouds.

In ConvPoint [3], the point-picking strategy only takes into account seen
and unseen points, without distance consideration. Points are randomly picked
among points that were not previously seen (picked points and points in the
neighborhood of these points). While being much faster than farthest point sam-
pling, it appears to be less efficient (see experiments in Section 6). In particular,
the sampling is dependent of the neighborhood size: the sampling is done out-
side the neighborhoods of the previously picked support points. A very small
neighborhood size reduces the method to a pure random sampling.

Space quantization. We propose an alternative approach that ensures a better
sampling than [3] while being much faster than [35]. The procedure is illustrated
on Fig. 3. We discretize the space using a regular voxel grid. Each point is
associated to the grid cube it falls in. In each non-empty grid cube, one point
is selected. We continue with the non-selected points and a voxel size divided
by two, and repeat the process until the desired number of sampled points is
reached or exceeded. In the later case, some points selected at the last iteration
are discarded at random to reduce the cardinality of Q, the set selected points.

Quantization step estimation. Our approach is voxel-size dependent. On the
one hand, a coarse grid leads to many iterations in the selection procedure, at the
expense of computation time. On the other hand, a fine grid reduces to random
sampling. Finding the optimal voxel size could be achieved using a exhaustive
search (for |Q| filled voxels at a single quantization step), but it is very slow.
Instead, we propose to estimate the voxel size via a rule of thumb derived by
considering a simple configuration where a plane is intersecting a cube of unit
length divided by a voxel grid of size a × a × a. If the plane is axis aligned,
it intersects a2 voxels. A sensible sampling would pick a support point in each
intersected voxel, i.e., |Q| = a2. This indicates that letting the length v = 1/a of
a voxel be proportional to 1/

√

|Q| is a reasonable choice for the voxel size. We

FKAConv 9

found experimentally that choosing the diagonal length of the bounding box of
the point cloud, denoted hereafter by diag, as factor of proportionality is usually
a good choice (see Section 6.2). The voxel size is thus set to

v = diag/
√

|Q|. (8)

6 Experiments

In this section, we evaluate our convolutional layer on shape classification, part
segmentation and semantic segmentation, reaching the state of the art regarding
task metrics while being efficient regarding computation time and memory usage.

Network architectures. In our experiments, we use a simple yet effective resid-
ual network for classification and semantic segmentation. We mimic the archi-
tecture of [47], except that ours is designed for k-NN convolution, i.e., we do not
need to add phantom points and features to equalize the size of data tensor due
to a variable number of points in radius search. The network has an encoder-
decoder structure. The encoder is composed of an alternation of residual blocks
maintaining the resolution and residual blocks with down-sampling. The decoder
is a stack of fully-connected and nearest-neighbor upsampling layers. The classi-
fication network is the encoder of the previously described network followed by
a global average pooling. For large scale semantic segmentation, we use either
input modality dropout [47] or dual network fusion [3], as indicated in tables.

Experimental setup. Our formulation (and code) allows a variable input size,
but in order to use optimization with mini-batches, with train the networks with
fixed input sizes. As every operations of FKAConv are differentiable, all param-
eters are optimized via gradient descent (including the spatial gating parameters
α’s and β’s). Finally, we use a standard cross-entropy loss.

6.1 Benchmark results

Shape classification. The classification task is evaluated on ModelNet40 [54]. As
the spatial pooling process is stochastic, multiple predictions with the same point
cloud might lead to different outcomes. We aggregate 16 predictions for each
point cloud and select the most predicted shape (we use a similar approach for
part segmentation). On the classification task (Table 1(a)), we present average
(and best) results over five runs. For fair comparison, we train with 1024 (resp.
2048) points. We rank first (resp. second) among the method trained with 1024
(resp. 2048) points. We mainly observe that increasing the number points of
reduces the standard deviation of the performances.

Part segmentation. On ShapeNet [57], the network is trained with 2048 input
points and 50 outputs (one for each part). The loss and scores are computed
per object category (16 object categories with 2- to 6-part labels). The results
are presented in Table 1(b). We rank among the best methods: top-2 or top-5
depending on the metric used, i.e., mean class intersection over union (mcIoU)
or instance average intersection over union (mIoU); we are only 0.3 point mcIoU

10 A. Boulch et al.

Table 1. Classification and part segmentation benchmarks.

(a) ModelNet40

Methods Num. OA AA
points

Mesh or voxels
Subvolume [34] - 89.2 -
MVCNN [44] - 90.1 -
Points
DGCNN [52] 1024 92.2 90.2

PointNet [33] 1024 89.2 86.2
PointNet++ [35] 1024 90.7 -
PointCNN [23] 1024 92.2 88.1
ConvPoint [3] 2048 92.5 89.6
KPConv [47] 2048 92.9 -
Ours Average±std. (best run)
FKAConv 1024 92.3±0.2 (92.5) 89.6±0.3 (89.9)

2048 92.5±0.1 (92.5) 89.5±0.1 (89.7)

(b) ShapeNet

Method mcIoU mIoU
PointNet++ [35] 81.9 85.1
SubSparseCN [12] 83.3 86.0
SPLATNet [43] 83.7 85.4
SpiderCNN [55] 81.7 85.3
SO-Net [22] 81.0 84.9
PCNN [2] 81.8 85.1
KCNet [42] 82.2 83.7
SpecGCN [49] - 85.4
RSNet [17] 81.4 84.9
DGCNN [52] 82.3 85.1
SGPN [51] 82.8 85.8
PointCNN [23] 84.6 86.1
ConvPoint [3] 83.4 85.8
KPConv [47] 85.1 86.4

FKAConv (Ours) 84.8 85.7

and 0.7 point mIoU behind the best method. It is interesting to notice that we
are as good as or better than several methods for which the convolution falls
into our formalism, such as ConvPoint [3] or SPLATNet [43].

Semantic segmentation Three datasets are used for semantic segmentation
corresponding to three different use cases. S3DIS [1] is an indoor dataset acquired
with an RGBD camera. The evaluation is done using a 6-fold cross validation.
NPM3D [40] is an outdoor dataset acquired in four sites using a lidar-equipped
car. Finally, Semantic8 [14] contains 30 lidar scenes acquired statically. NPM3D
and Semantic8 are datasets with hidden test labels. Scores in the tables are
reported from the official evaluation servers.

We use 8192 input points but, as subsampling the whole scene produces a
significant loss of information, we select instead points in vertical pillars with
a square footprint of 2m for S3DIS, and 8m for NPM3D and Semantic8. The
center point of the pillar is selected randomly at training time and using a sliding
window at test time. If a point is seen several times, the prediction scores are
summed and the most probable class is selected afterward.

The results are presented in Fig. 4 and Table 2. We use S3DIS (Table 2(a)) to
study the impact of the training strategy. As underlined in [47, 3], direct learning
with colored points yields a model relying too much on color information, at the
expense of geometric information. We train three models. The first is the baseline
model trained with color information, the second uses color dropout as in [47],
and the third is a dual model with a fusion module [3]. We observe that fusion
gives the best results. In practice, the model trained with modality dropout tends
to select one of the two modalities, either color or geometry, depending on what
modality gives the best results. On the contrary, the fusion technique uses two
networks each trained with a different modality, resulting in a lot larger network,
but ensuring that the information of both modalities is taken into account.

Our network is second on S3DIS, first on NPM3D and third on Semantic8.
On S3DIS, it is the best approach for 3 out of 13 categories and it performs well
on the remaining ones. We are only outperformed by KPConv, which is based

FKAConv 11

Table 2. Semantic segmentation benchmarks.

(a) S3DIS
Method Search IoU ceil. floor wall beam col. wind. door chair table book. sofa board clut.

Pointnet [33] Knn 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 42.0 54.1 38.2 9.6 29.4 35.2
RSNet [17] - 56.5 92.5 92.8 78.6 32.8 34.4 51.6 68.1 60.1 59.7 50.2 16.4 44.9 52.0
PCCN [50] - 58.3 92.3 96.2 75.9 0.27 6.0 69.5 63.5 65.6 66.9 68.9 47.3 59.1 46.2
SPGraph [20] Super pt. 62.1 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 45.9 8.7 52.9
PointCNN [23] Knn 65.4 94.8 97.3 75.8 63.3 51.7 58.4 57.2 71.6 69.1 39.1 61.2 52.2 58.6
PointWeb [59] Knn 66.7 93.5 94.2 80.8 52.4 41.3 64.9 68.1 71.4 67.1 50.3 62.7 62.2 58.5
ShellNet [58] Knn 66.8 90.2 93.6 79.9 60.4 44.1 64.9 52.9 71.6 84.7 53.8 64.6 48.6 59.4
ConvPoint [3] Knn 68.2 95.0 97.3 81.7 47.1 34.6 63.2 73.2 75.3 71.8 64.9 59.2 57.6 65.0
KPConv [47] Radius 70.6 93.6 92.4 83.1 63.9 54.3 66.1 76.6 57.8 64.0 69.3 74.9 61.3 60.3

FKAConv (Ours RGB only) Knn 64.9 94.0 97.8 80.5 38.5 48.5 49.8 68.0 79.4 70.7 48.4 43.7 62.9 61.4
FKAConv (Ours RGB drop.) Knn 66.6 94.4 97.8 81.5 38.7 43.3 56.4 71.6 80.2 71.8 63.5 54.1 50.6 62.5

FKAConv (Ours fusion) Knn 68.4 94.5 98.0 82.9 41.0 46.0 57.8 74.1 77.7 71.7 65.0 60.3 55.0 65.5

Rank 2 3 1 2 7 4 6 2 1 2 3 4 5 1

(b) NPM3D
Method Av.IoU Ground Building Pole Bollard Trash can Barrier Pedestrian Car Natural

RF MSSF [46] 56.3 99.3 88.6 47.8 67.3 2.3 27.1 20.6 74.8 78.8
MS3 DVS [39] 66.9 99.0 94.8 52.4 38.1 36.0 49.3 52.6 91.3 88.6
HDGCN [25] 68.3 99.4 93.0 67.7 75.7 25.7 44.7 37.1 81.9 89.6
ConvPoint [3] 75.9 99.5 95.1 71.6 88.7 46.7 52.9 53.5 89.4 85.4
KPConv [47] 82.0 99.5 94.0 71.3 83.1 78.7 47.7 78.2 94.4 91.4

FKAConv (ours fusion) 82.7 99.6 98.1 77.2 91.1 64.7 66.5 58.1 95.6 93.9

Rank 1 1 1 1 1 2 1 2 1 1
Note: We report here only the published methods at the time of writing.

(c) Semantic3D
Method Av. OA Man Nat. High Low Build. Hard Art. Cars

IoU made veg. veg. scape

TML-PC [32] 39.1 74.5 80.4 66.1 42.3 41.2 64.7 12.4 0. 5.8
TMLC-MS [15] 49.4 85.0 91.1 69.5 32.8 21.6 87.6 25.9 11.3 55.3
PointNet++ [35] 63.1 85.7 81.9 78.1 64.3 51.7 75.9 36.4 43.7 72.6
EdgeConv [8] 64.4 89.6 91.1 69.5 65.0 56.0 89.7 30.0 43..8 69.7
SnapNet [4] 67.4 91.0 89.6 79.5 74.8 56.1 90.9 36.5 34.3 77.2
PointGCR [30] 69.5 92.1 93.8 80.0 64.4 66.4 93.2 39.2 34.3 85.3
FPCR [48] 72.0 90.6 86.4 70.3 69.5 68.0 96.9 43.4 52.3 89.5
SPGraph [20] 76.2 92.9 91.5 75.6 78.3 71.7 94.4 56.8 52.9 88.4
ConvPoint [3] 76.5 93.4 92.1 80.6 76.0 71.9 95.6 47.3 61.1 87.7

FKAConv* (ours fusion) 74.6 94.1 94.7 85.2 77.4 70.4 94.0 52.9 29.4 92.6

Rank 3 1 1 1 2 3 5 2 9 1
Note: We report here only the published methods at the time of writing.

*In the official benchmark, the entry corresponding to our method is called LightConvPoint,

which refers to the framework used for our implementation.

on radius search. On NPM3D, we reach an average intersection over union (av.
IoU) of 82.7, which is 0.7 point above the second best method. On Semantic8,
we place third according to average IoU, and first on overall accuracy among the
published and arXiv methods. We obtain the best scores in 3 out 8 categories
(the top-3 for 6 categories out of 8). More interestingly, we exceed the scores of
ConvPoint [3] on 5 categories. The only downside is the very low score on the
category of artefacts. One possible explanation could be that the architecture
used in this paper (the residual network) is not suitable to learn a reject class
(the artefact class is mainly all the points that do not belong to the 7 other
classes, i.e., pedestrians but also scanning outliers). It is future work to train the
ConvPoint network with our convolution layer to support this hypothesis.

6.2 Support point sampling: discretization parameter.

The rule of thumb in Equation (8) was derived in a simplistic case: a point cloud
sampled from an axis aligned plane crossing a regular voxel grid. In practice,
planar surfaces are very common, particularly in semantic segmentation (walls,
floors, etc.), but are not a good model for most of the object of the scenes (chairs,
cars, vegetation, etc.). To validate Eq. (8), we compute the optimal quantiza-
tion parameter (i.e., the parameter with the largest value leading to the desired

12 A. Boulch et al.

Input: 3D w/RGB Groung truth PointWeb[59] ConvPoint [3] FKAConv (ours)

In: 3Dw/laser intensity Elevation view ConvPoint [3] FKAConv (ours)

Input: 3D with RGB Elevation view ConvPoint [3] FKAConv (ours)

Fig. 4. Visual results of semantic segmentation: S3DIS (1st row), NPM3D (2nd row)
and Semantic3D (3rd row). Ground truth of test data publicly unavailable for last two.

number of support points in a single quantization) computed using a dichotomic
search on the parameter space and compare it to the derived expression. Fig-
ure 5 presents the results of the experiment. For each point cloud, the optimal
voxel size is represented by a semi-transparent disk (blue for ShapeNet, orange
for S3DIS) and can be compared to the derived expression (red curve). In our
setting, a curve under the colored disks is not desired; it is an over-quantization.
We prefer a curve above these disks, possibly leading to extra iterations, but not
affecting performance. We observe that Equation (8) provides a good estimate
of the voxel size, especially for S3DIS which is a dataset containing a lot of
planes. For ShapeNet, we observe a higher variance, due to the great variability
of shapes. Because of numerous objects that cannot be modeled well by planes
in ShapeNet, we slightly overestimate the voxel size, leading only to one spurious
iteration, which only slightly slows down the operation.

6.3 Support point sampling: computation times.

To assess our sampling approach, we run two experiments. First, in Table 3(a),
we compare the sampling time as a function of the size of the input point cloud.
The number of support points is half the input point cloud size, and the number
of neighbors is 16. The scores are averaged over 5000 random points clouds
sampled in a cube. We also report the ShapeNet scores to relate the performance
and the computation times. We compare our sampling strategy with farthest
point sampling [35], with iterative neighborhood rejection [3] and with a random

FKAConv 13

y=1/sqrt(|Q|)

|Q|

Fig. 5. Empirical validation of voxel size estimation: ShapeNet (blue), S3DIS (orange).
Each dot is the empirical optimal voxel size obtained by dichotomic search. The red
line is the voxel size defined as the inverse square root of the number of support points.

Table 3. Computation time and memory consumption.

(a) Computation times for different
sampling strategies.

Method Sampling time (ms) ShapeNet
1k pts 5k pts 10k pts (mIoU)

Random 1.66 8.6 18.6 84.4
(baseline) (-60%) (-89%) (-94%)

ConvPoint [3] 2.60 25.4 88.2 84.6
(-37%) (-68%) (-71%)

Farthest [35] 4.12 79.8 310.2 84.7
(-) (-) (-)

FKAConv sampling 1.93 10.3 20.4 84.6
(-53%) (-87%) (-93%)

(time for n inputs points, n/2 support points,
16 neighbors, averaged over 5000 iterations).

(b) Time and memory consumption for a
segmentation network, with 8192 points.

Convolution Training Test
Layer Time Memory Time Memory

(ms) (GB) (ms) (GB)

ConvPoint [3] 85.7 10.1 65 2.9
ConvPoint* 12.2 4.3 4.29 1.6
PointCNN* [23] 33.6 3.5 6.23 1.7
PCCN* [50] 31.1 4.9 10.2 2.3
PCCN** (bs4) 64.2 6.4 19.7 2.6

FKAConv (Ours) 19.1 5.6 4.9 1.4

*: reimplemented in our framework.
**: original formulation without separation trick,

differs from code used for experiments in [50].

baseline. As farthest point sampling [35] is the reference of several state-of-the-art
methods, we give the gain relatively to this method in percentage. Our quantized
sampling is almost as fast as random sampling and much more efficient than
farthest point sampling. In fact, our sampling has almost a linear complexity,
compared to farthest point sampling, that has a quadratic complexity.

6.4 Inference time and memory consumption

We present in Table 3(b) the performance of our convolution layer and compare
it to other convolutional layers. All computation times and memory usage are
given for the segmentation network architecture and for one point cloud. The
measures were done with 8192 points in each point cloud and a batch size of 16
(except for PCCN** for which the batch size is reduce to 4 to fit in the 11 GB
GPU memory). Computational times are given per point cloud in milliseconds,
and memory usage is reported in gigabytes.

We observe that our computation times at inference are very similar to those
of ConvPoint [3], which is expected as it falls into our same general formulation.
The same would probably be observed for a k-NN version of the KPConv [47].
Then, we remark that PointCNN [23] and PCCN [50] are up to twice slower for
inference. PCCN uses the separable kernel trick to improve memory performance
(cf. Section 3). In this form, it is similar to Nout (Nout being the number of

14 A. Boulch et al.

Low-level features High-level features

Fig. 6. FKAConv filter response for different input shapes on ModelNet40. Low-level
features are extracted from the first layer (4 filters), and high-level features from the
fourth layer (5 filters). The colormap represents the filter response for the shape, from
blue (low response) to red (high response).

filters of the layer) parallel instances of our layer with one kernel element, i.e., it
is equivalent to estimating a different A for each f ∈ {1, . . . , F}. We also report
in Table 3(b) the performance for PCCN**, which is the the purely continuous
convolution described in PCCN [50], but without the separable kernel trick.

6.5 Filter visualization

Our method FKAConv was derived from the discrete convolution on regular
grids. The behavior of our 3D filters should thus be comparable to their 2D
counterparts. In Figure 6, we present the outputs of early and deep filters for
the classification network on ModelNet40. For easier visualization, the features at
coarse scales (high level / deep features) have been upsampled at the full point-
cloud resolution. We notice that early layers produce features based on surface
orientation. This is consistent with the small receptive field of early layers, that
yields fine-scale features. On the contrary, deep layers produces shape-related
features detecting objects parts, such as people heads or airplane bodies.

7 Conclusion

We presented a formulation for convolution on point clouds that unifies a range
of existing convolutional layers and suggests a new point convolution approach.
The core of the method is the estimation of an alignment matrix between the
input points and the kernel. We also introduced an alternative point sampling
strategy to farthest point sampling by using a progressive voxelization of the
input space. While being almost as efficient as farthest point sampling, it is
nearly as fast as random sampling. With these conceptually simple and easy
to implement ideas, we obtained state-of-the-art results on several classification
and semantic segmentation benchmarks among methods based on k-NN search,
while being among the fastest and most memory-efficient approaches.

FKAConv 15

References

1. Armeni, I., Sener, O., Zamir, A.R., Jiang, H., Brilakis, I., Fischer, M., Savarese, S.:
3D semantic parsing of large-scale indoor spaces. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 1534–1543 (2016)

2. Atzmon, M., Maron, H., Lipman, Y.: Point convolutional neural networks by ex-
tension operators. SIGRAPH, ACM Transaction on Graphics (TOG) 37(4) (2018)

3. Boulch, A.: ConvPoint: Continuous convolutions for point cloud processing. Com-
puters & Graphics 88, 24 – 34 (2020)

4. Boulch, A., Guerry, J., Le Saux, B., Audebert, N.: SnapNet: 3D point cloud se-
mantic labeling with 2D deep segmentation networks. Computers & Graphics 71,
189–198 (2018)

5. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric
deep learning: going beyond euclidean data. IEEE Signal Processing Magazine
34(4), 18–42 (2017)

6. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally
connected networks on graphs. In: International Conference on Learning Repre-
sentation (ICLR) (2014)

7. Cireşan, D.C., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J.: Flexible,
high performance convolutional neural networks for image classification. In: 22nd
International Joint Conference on Artificial Intelligence (IJCAI). pp. 1237–1242
(2011)

8. Contreras, J., Denzler, J.: Edge-convolution point net for semantic segmentation
of large-scale point clouds. In: IEEE International Geoscience and Remote Sensing
Symposium (IGARSS). pp. 5236–5239 (2019)

9. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. In: Advances in Neural Information
Processing Systems (NeurIPS). pp. 3844–3852 (2016)

10. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message
passing for quantum chemistry. In: International Conference on Machine Learning
(ICML) (2017)

11. Graham, B.: Spatially-sparse convolutional neural networks. arXiv preprint
arXiv:1409.6070 (2014)

12. Graham, B., Engelcke, M., van der Maaten, L.: 3D semantic segmentation with
submanifold sparse convolutional networks. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 9224–9232 (2018)

13. Gupta, S., Girshick, R., Arbeláez, P., Malik, J.: Learning rich features from RGB-D
images for object detection and segmentation. In: European Conference on Com-
puter Vision (ECCV). pp. 345–360. Springer (2014)

14. Hackel, T., Savinov, N., Ladicky, L., Wegner, J.D., Schindler, K., Pollefeys, M.:
Semantic3D.net: A new large-scale point cloud classification benchmark. In: ISPRS
Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
(ISPRS Annals). vol. IV-1-W1, pp. 91–98 (2017)

15. Hackel, T., Wegner, J.D., Schindler, K.: Fast semantic segmentation of 3D point
clouds with strongly varying density. ISPRS Annals of Photogrammetry, Remote
Sensing & Spatial Information Sciences (ISPRS Annals) 3(3) (2016)

16. Hua, B.S., Tran, M.K., Yeung, S.K.: Pointwise convolutional neural networks. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 984–
993 (2018)

16 A. Boulch et al.

17. Huang, Q., Wang, W., Neumann, U.: Recurrent slice networks for 3D segmentation
of point clouds. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 2626–2635 (2018)

18. Kipf, T.N., Welling., M.: Semi-supervised classification with graph convolutional
networks. In: International Conference on Machine Learning (ICML) (2017)

19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Systems
(NeurIPS). pp. 1097–1105 (2012)

20. Landrieu, L., Simonovsky, M.: Large-scale point cloud semantic segmentation with
superpoint graphs. In: IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). pp. 4558–4567 (2018)

21. Lawin, F.J., Danelljan, M., Tosteberg, P., Bhat, G., Khan, F.S., Felsberg, M.: Deep
projective 3D semantic segmentation. In: International Conference on Computer
Analysis of Images and Patterns (CAIP). pp. 95–107 (2017)

22. Li, J., Chen, B.M., Hee Lee, G.: SO-Net: Self-organizing network for point cloud
analysis. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 9397–9406 (2018)

23. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: Convolution on
X-transformed points. In: Advances in Neural Information Processing Systems
(NeurIPS). pp. 820–830 (2018)

24. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence neural
networks. In: International Conference on Learning Representations (ICLR) (2016)

25. Liang, Z., Yang, M., Deng, L., Wang, C., Wang, B.: Hierarchical depthwise graph
convolutional neural network for 3D semantic segmentation of point clouds. In:
IEEE International Conference on Robotics and Automation (ICRA). pp. 8152–
8158 (2019)

26. Liu, J., Ni, B., Li, C., Yang, J., Tian, Q.: Dynamic points agglomeration for hierar-
chical point sets learning. In: IEEE International Conference on Computer Vision
(ICCV). pp. 7546–7555 (2019)

27. Liu, Y., Fan, B., Xiang, S., Pan, C.: Relation-shape convolutional neural network
for point cloud analysis. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 8895–8904 (2019)

28. Liu, Z., Tang, H., Lin, Y., Han, S.: Point-voxel CNN for efficient 3D deep learning.
In: Advances in Neural Information Processing Systems (NeurIPS). pp. 965–975
(2019)

29. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 3431–3440 (2015)

30. Ma, Y., Guo, Y., Liu, H., Lei, Y., Wen, G.: Global context reasoning for semantic
segmentation of 3D point clouds. In: IEEE Winter Conference on Applications of
Computer Vision (WACV). pp. 2931–2940 (2020)

31. Maturana, D., Scherer, S.: VoxNet: A 3D convolutional neural network for real-time
object recognition. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). pp. 922–928 (2015)

32. Montoya-Zegarra, J.A., Wegner, J.D., Ladickỳ, L., Schindler, K.: Mind the gap:
modeling local and global context in (road) networks. In: German Conference on
Pattern Recognition (GCPR). pp. 212–223. Springer (2014)

33. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: Deep learning on point sets for
3D classification and segmentation. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2017)

FKAConv 17

34. Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.J.: Volumetric and
multi-view CNNs for object classification on 3D data. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 5648–5656 (2016)

35. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: Deep hierarchical feature learn-
ing on point sets in a metric space. In: Advances in Neural Information Processing
Systems (NeurIPS). pp. 5105–5114 (2017)

36. Qi, X., Liao, R., Jia, J., Fidler, S., Urtasun, R.: 3D graph neural networks for
RGDB semantic segmentation. In: IEEE International Conference on Computer
Vision (ICCV). pp. 5199–5208 (2017)

37. Riegler, G., Osman Ulusoy, A., Geiger, A.: OctNet: Learning deep 3D representa-
tions at high resolutions. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 3577–3586 (2017)

38. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional networks for biomedi-
cal image segmentation. In: International Conference on Medical Image Computing
and Computer-Assisted Intervention (MICCAI). pp. 234–241. Springer (2015)

39. Roynard, X., Deschaud, J.E., Goulette, F.: Classification of point cloud scenes with
multiscale voxel deep network. arXiv preprint arXiv:1804.03583 (2018)

40. Roynard, X., Deschaud, J.E., Goulette, F.: Paris-Lille-3D: A large and high-quality
ground-truth urban point cloud dataset for automatic segmentation and classifica-
tion. International Journal of Robotics Research (IJRR) 37(6), 545–557 (2018)

41. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE Transactions on Neural Networks 20(1), 61–80 (2008)

42. Shen, Y., Feng, C., Yang, Y., Tian, D.: Mining point cloud local structures by
kernel correlation and graph pooling. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). vol. 4 (2018)

43. Su, H., Jampani, V., Sun, D., Maji, S., Kalogerakis, E., Yang, M.H., Kautz, J.:
SPLATNet: Sparse lattice networks for point cloud processing. In: IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR). pp. 2530–2539 (2018)

44. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional
neural networks for 3D shape recognition. In: IEEE International Conference on
Computer Vision (ICCV). pp. 945–953 (2015)

45. Tatarchenko, M., Park, J., Koltun, V., Zhou, Q.Y.: Tangent convolutions for dense
prediction in 3D. In: IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR). pp. 3887–3896 (2018)

46. Thomas, H., Goulette, F., Deschaud, J.E., Marcotegui, B.: Semantic classification
of 3D point clouds with multiscale spherical neighborhoods. In: IEEE International
Conference on 3D Vision (3DV). pp. 390–398 (2018)

47. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.:
KPConv: Flexible and deformable convolution for point clouds. In: IEEE Interna-
tional Conference on Computer Vision (ICCV) (2019)

48. Truong, G., Gilani, S.Z., Islam, S.M.S., Suter, D.: Fast point cloud registration
using semantic segmentation. In: IEEE Digital Image Computing: Techniques and
Applications (DICTA) (2019)

49. Wang, C., Samari, B., Siddiqi, K.: Local spectral graph convolution for point set
feature learning. In: European conference on computer vision (ECCV). pp. 52–66
(2018)

50. Wang, S., Suo, S., Ma, W.C., Pokrovsky, A., Urtasun, R.: Deep parametric con-
tinuous convolutional neural networks. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). pp. 2589–2597 (2018)

18 A. Boulch et al.

51. Wang, W., Yu, R., Huang, Q., Neumann, U.: SGPN: Similarity group proposal net-
work for 3D point cloud instance segmentation. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 2569–2578 (2018)

52. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic
graph CNN for learning on point clouds. ACM Transactions On Graphics (TOG)
38(5), 1–12 (2019)

53. Wu, W., Qi, Z., Fuxin, L.: PointConv: Deep convolutional networks on 3D
point clouds. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 9621–9630 (2019)

54. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3D ShapeNets:
A deep representation for volumetric shapes. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 1912–1920 (2015)

55. Xu, Y., Fan, T., Xu, M., Zeng, L., Qiao, Y.: SpiderCNN: Deep learning on point sets
with parameterized convolutional filters. In: European Conference on Computer
Vision (ECCV). pp. 87–102 (2018)

56. Yang, J., Zhang, Q., Ni, B., Li, L., Liu, J., Zhou, M., Tian, Q.: Modeling point
clouds with self-attention and Gumbel subset sampling. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 3323–3332 (2019)

57. Yi, L., Kim, V.G., Ceylan, D., Shen, I., Yan, M., Su, H., Lu, C., Huang, Q., Sheffer,
A., Guibas, L., et al.: A scalable active framework for region annotation in 3D shape
collections. ACM Transactions on Graphics (TOG) 35(6), 210 (2016)

58. Zhang, Z., Hua, B.S., Yeung, S.K.: ShellNet: Efficient point cloud convolutional
neural networks using concentric shells statistics. In: IEEE International Confer-
ence on Computer Vision (ICCV). pp. 1607–1616 (2019)

59. Zhao, H., Jiang, L., Fu, C.W., Jia, J.: PointWeb: Enhancing local neighborhood
features for point cloud processing. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 5565–5573 (2019)

60. Zhou, Y., Tuzel, O.: VoxelNet: End-to-end learning for point cloud based 3D ob-
ject detection. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 4490–4499 (2018)

