
Multi-View Consistency Loss for Improved

Single-Image 3D Reconstruction of Clothed

People

Akin Caliskan1[0000−0003−2918−5603], Armin Mustafa1[0000−0002−1779−2775],
Evren Imre2[0000−0002−7837−7516], and Adrian Hilton1[0000−0003−4223−238X]

1 Center for Vision, Speech and Signal Processing University of Surrey, UK
{a.caliskan, a.mustafa, a.hilton}@surrey.ac.uk

2 Vicon Motion Systems Ltd, UK
evren.imre@vicon.com

Abstract. We present a novel method to improve the accuracy of the
3D reconstruction of clothed human shape from a single image. Recent
work has introduced volumetric, implicit and model-based shape learning
frameworks for reconstruction of objects and people from one or more
images. However, the accuracy and completeness for reconstruction of
clothed people is limited due to the large variation in shape resulting
from clothing, hair, body size, pose and camera viewpoint. This paper in-
troduces two advances to overcome this limitation: firstly a new synthetic
dataset of realistic clothed people, 3DVH ; and secondly, a novel multiple-
view loss function for training of monocular volumetric shape estimation,
which is demonstrated to significantly improve generalisation and recon-
struction accuracy. The 3DVH dataset of realistic clothed 3D human
models rendered with diverse natural backgrounds is demonstrated to
allows transfer to reconstruction from real images of people. Compre-
hensive comparative performance evaluation on both synthetic and real
images of people demonstrates that the proposed method significantly
outperforms the previous state-of-the-art learning-based single image 3D
human shape estimation approaches achieving significant improvement
of reconstruction accuracy, completeness, and quality. An ablation study
shows that this is due to both the proposed multiple-view training and
the new 3DVH dataset. The code and the dataset can be found at the
project website: https://akincaliskan3d.github.io/MV3DH/.

1 Introduction

Parsing humans from images is a fundamental task in many applications includ-
ing AR/VR interfaces [1], character animation [2], autonomous driving, virtual
try-on [3] and re-enactment [4]. There has been significant progress on 2D hu-
man pose estimation [5, 6] and 2D human segmentation [7, 8] to understand the
coarse geometry of the human body. Following this, another line of research
has advanced 3D human pose estimation from monocular video [9–11]. Recent
research has investigated the even more challenging problem of learning to esti-
mate full 3D human shape from a single image with impressive results [12–15].
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For clothed people in general scenes accurate and complete 3D reconstruction re-
mains a challenging problem due to the large variation in clothing, hair, camera
viewpoint, body shape and pose. Fig. 1 illustrates common failures of existing
single-view reconstruction approaches [13, 14, 12] where the reconstructed model
does not accurately reconstruct the pose or shape from a different view. The
proposed multiple view training loss successfully addresses this problem.

Fig. 1. Single view 3D reconstruction of clothed people from Deephuman [14], PIFu
[13], VRN [15] and the proposed method.

In previous studies [16–21], learning-based human reconstruction from multi-
view or depth camera systems in controlled environments has achieved a high
level of shape detail. However, the ultimate challenge is monocular 3D human
reconstruction from a single image. To address this problem, parametric model-
based 3D human shape estimation methods have been proposed [22–24]. How-
ever, existing parametric models only represent the underlying naked body shape
and lack important geometric variation of clothing and hair. Augmented para-
metric model representations proposed to represent clothing [25] are limited to
tight clothing which maps bijectively to body shape and does not accurately
represent general apparel such as dresses and jackets.

Recent model-free approaches have achieved impressive results in 3D shape
reconstruction of clothed people from a single image using learnt volumetric [14,
15, 26], point cloud [27], geometry image [28] and implicit [13] surface representa-
tions. Learnt volumetric [15, 18, 26] and implicit [13] surface representations have
achieved human reconstruction with clothing detail. Comparative evaluation of
existing approaches (Sec. 4.2), shows that using a 3D voxel occupancy grid shows
better accuracy than implicit functions because of encoding the complete topol-
ogy of the human body. For example in PIFu [13], lack of global coherence is due
to the sampling schema during training. Learning detailed shape representations
of clothed humans requires a training dataset that represents the wide variety
of clothing and hairstyles together with body shape, pose, viewpoint and scene
variation for people observed in natural images. Previous studies presented var-
ious datasets to learn 3D human reconstruction from a single image. However,
they have limited variation in human pose [15, 13] or details in surface geome-
try [19, 14], which limits learning accurate 3D human reconstruction. To address
this problem [28] proposed a large synthetic training data of clothed people.
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However, despite the number of training samples, the rendered images have an
unrealistic appearance for skin, hair and clothing texture.

In this paper, we improve the accuracy of clothed 3D human shape recon-
struction from a single image, as shown in Fig. 1. To overcome the limitations
of previous training data, we introduce the 3DVH dataset, which provides 4
million realistic image-3D model pairs of people with a wide variety of clothing,
hairstyles and poses giving detailed surface geometry and appearance rendered
in both indoor and outdoor environment with realistic scene illumination. To
improve the reconstruction accuracy we propose learning a volumetric shape rep-
resentation using a novel multi-view loss function which ensures accurate single-
view reconstruction of both visible and occluded surface regions. The novel loss
function learns to incorporate surface photo-consistency cues in the single-view
reconstruction which are not present in the observed image or 3D ground-truth
shape reconstruction. The contributions of this work are:
– A novel learning based framework for 3D reconstruction of clothed people

from a single image, trained on multi-view 3D shape consistency.
– A dataset of realistic clothed 3D human models with a wide variety of cloth-

ing, hair, body shape, pose, viewpoint, scenes and illumination.
The proposed approach gives a significant improvement in the accuracy and
completeness of reconstruction compared to the state-of-the-art methods for
single image human reconstruction [14, 13, 15] evaluated on real and synthetic
images of people. The 3DVH dataset will be released to support future research.

2 Related Work

2.1 Single View 3D Human Reconstruction

Estimation of 3D human reconstruction from a single image requires a large
amount of prior data to learn accurate predictions due to the large variation in
clothing, pose, shape, and hair for people. Initial monocular human reconstruc-
tion methods use parametric human model such as SMPL [29, 30] to estimate
the body and shape parameters in an iterative manner using either 2D joint loca-
tions and silhouettes [22] or 3D joints and mesh coordinates [12]. To address the
requirement of accurate 2D/3D joint labelled data, Kanazawa et. al [23] directly
regress the shape parameters using weakly labelled 2D human body joints. To
improve the accuracy of the models, an iterative optimization stage was added to
the regression network [24]. Even though parametric model-based methods are
able to reliably estimate the human body from a single image in the wild, esti-
mated shapes are a naked human body without hair, clothing and other surface
details. Recent approaches have extended this to tight-fitting clothing [31].

Two categories of methods have been proposed to address this issue and
perform model-free non-parametric reconstruction of clothed people: the first
category of methods estimate the parametric human model with clothing on
top [25, 32] and the second category of methods directly estimates the shape
from clothed human.This section focuses on the second category of model-free
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Table 1. Comparison of Single View 3D Reconstruction Methods.

3D Training Clothed 3D Single(S)/
Representation Data Reconstruction Multiple(M)

Supervision

Bodynet [19] Explicit-Voxel Surreal [19] No M

VRN [15] Explicit-Voxel - No S

SiCloPe [26] Implicit RenderPeople Yes S

DeepHuman [14] Explicit-Voxel THUman [14] No S

3DPeople [28] Explicit-Geo. Img 3DPeople [28] Yes S

Mould.Hum. [27] Explicit-Point Clo. 3D-Humans [27] Yes S

PIFu [13] Implicit RenderPeople Yes S

Ours Explicit-Voxel 3DVH Yes M

methods, Table 1. Model-free methods such as Bodynet [19] and Voxel Regres-
sion Network (VRN) [15] draw a direct inference of volumetric 3D human shape
from a single image. However, the training dataset in Bodynet lacks geometric
details of human body shape like hair and clothing, resulting in the reconstruc-
tion preserving the parametric body model shape. As shown in Table 1, Bodynet
is supervised from multi-view images. However, different from our method, Bo-
dynet uses multi-view silhouettes to learn 3D reconstruction. In VRN the train-
ing dataset lacks variation in shape, texture and pose limiting the generalisation
capability. SiCloPe [26] introduces a method to predict multi-view silhouettes
from a frontal image and 3D pose of a subject, the 3D visual hull is inferred
from these silhouettes. However, this method achieves accurate reconstructions
only for a limited number of human poses. Another recent line of research [28]
obtained geometric image inference from a single image using a generative ad-
versarial network. A concurrent work [14] predicts voxel occupancy from a single
image using the initial SMPL model. This is followed by coarse-to-fine refine-
ment to improve the level of detail in the frontal volumetric surface. However,
both of these methods achieve limited accuracy in the reconstruction of clothing
and hair detail. Other recent approaches to single image human reconstruction
fit the parametric SMPL model to the input image and predict the surface dis-
placements to reconstruct clothed human shape [33]. Front and back view depth
maps are merged to obtain a full shape reconstruction [27].

PIFu [13] recently introduced pixel-wise implicit functions for shape estima-
tion followed by mesh reconstruction, achieving impressive results with a high
level of details on the surface. However, the method cannot handle wide varia-
tions in human pose, clothing, and hair. In summary, existing methods either ob-
tain reconstruction for limited human poses or are unable to reconstruct clothing
and hair details. The proposed method gives 3D reconstruction of human shape
with a wide variety of clothing, body shape, pose, and viewpoint. Comparative
evaluation with previous approaches on synthetic and real images demonstrate
significant improvement in reconstruction accuracy and completeness.

2.2 Datasets for 3D Human Reconstruction

Datasets are fundamental to learn robust and generalized representation in deep
learning. For 2D tasks such as 2D human pose estimation [5, 6] or segmenta-
tion [7, 8], it is relatively straight forward to annotate ground-truth landmarks.
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However, this becomes more challenging for 3D tasks such as annotating 3D
joint locations which requires advanced motion capture systems [9–11] or ob-
taining ground-truth human body surface shape which requires sophisticated
multi-camera capture system [34, 35]. Additionally, these datasets require con-
strained indoor environments to obtain high quality results, which limits the
amount of available data for training. Synthetic datasets have been introduced
in the literature to address these issues [36].

Table 2. Existing dynamic 3D human datasets and 3DVH are listed here. 3D- Number
of 3D models, Img- 2D images, Cam - Number of views, BG - Number of different
backgrounds in the dataset, and Act - Human Actions. - represents missing details in
the related publication. K and M stands for thousand and million respectively.

#of #of GT Data 3D Human
Data Act

3D Img Cam BG 3D Depth Normal Cloth Hair

Odzemok [34] 250 2K 8 1 1 ✓ ✗ ✗ ✓ ✓

Vlasic [35] 2K 16K 8 1 10 ✓ ✗ ✗ ✓ ✓

Dressed Hu. [37] 54 120K 68 1 3 ✓ ✗ ✗ ✓ ✓

MonoPerfCap [38] 2K 2K 1 8 53 ✓ ✗ ✗ ✓ ✓

Surreal [19] - 6.5M 1 - - ✓ ✓ ✓ ✗ ✗

THUman [14] 7K 7K 1 - 30 ✓ ✓ ✗ ✗ ✗

3DPeople [28] - 2M 4 - 70 ✗ ✓ ✓ ✓ ✓

3DVH 33K 4M 120 100 200 ✓ ✓ ✓ ✓ ✓

Table 2 lists the properties and details of existing datasets. Varol et.al [36]
proposed the Surreal synthetic human dataset with 3D annotated ground-truth
and rendered images. 3D human meshes are generated by overlapping tight skin
clothing texture on the SMPL [29] model. This leads to a lack of details in hair
and clothing. Similar to this, [14] propose the THUman dataset, with 3D hu-
man models created using DoubleFusion [20] from a single depth camera and
fitted with a parametric SMPL model. [39] provides natural images and SMPL
[29] models fitted to the associated images. However, these datasets give limited
quality of reconstruction due to the lack of detail in the parametric model. 3D
human model datasets were also introduced in [26, 13], with a limited range of
pose and geometric details for clothing and hair. Recently, [28] proposed syn-
thetic 3DPeople dataset with renderings of 3D human models with clothing and
hair. However this dataset does not provide realistically rendered images and
ground-truth (GT) 3D models (Table 2). The proposed dataset, 3DVH, renders
3D models onto image planes using High Dynamic Range (HDR) illumination
from real environments with ray casting rendering, leading to realistic camera
images with GT 3D human models. The details of our rendering and the dif-
ference from the 3DPeople dataset is explained in Section 3.4. 3DVH is the
largest dataset of high-quality 3D Human models and photo-realistic renderings
on multiple camera views > 4m image-model pairs.

3 Single-View Human Shape with Multi-view Training

This section explains the novel method proposed for single-view 3D human re-
construction and training dataset generation. A single image of a person with
arbitrary pose, clothing, and viewpoint is given as input to the pipeline, and
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the network predicts the 3D voxelized output of clothed human shape including
both visible and occluded parts of the person.

Fig. 2. The learning architecture of the proposed method. Stacked hourglass networks
are trained with shared parameters (blue dashed lines), and two loss functions are
computed (Sec 3.3). However, one view is given as input to one stacked hourglass
network for testing (red dashed lines) to predict voxel occupancy grid.

In contrast to previous single-view 3D reconstruction approaches [19, 40], the
proposed approach is trained using a novel loss function on multiple view im-
ages of a person, as shown in Fig. 2. Each viewpoint image is passed through
its own convolutional network and the parameters are shared between the net-
works. The proposed single view reconstruction network learns to reconstruct
human shape observed from multiple views, giving a more complete reconstruc-
tion from both visible and invisible human body parts in the image. The network
for single image 3D volumetric reconstruction consists of K stacked hourglass
networks. For training with an N−view loss function, we train N single image
networks in parallel with shared parameters. The error between the estimated
3D voxel occupancy and ground-truth 3D model is computed for each viewpoint,
and view-dependent 3D occupancy grids are transformed from one camera to all
other camera coordinate systems to evaluate the multi-view loss in 3D domain.
This loss term enables the network to learn feature extraction robust to cam-
era view changes and to predict multi-view consistent 3D human reconstruction
from a single image. The proposed network is scalable to N views, and a de-
tailed ablation study on the performance of the network with number of views
is provided (Sec. 4.4).

3.1 Learning Architecture

The proposed learning architecture is illustrated in Fig. 2. Inspired by previous
work [41], we use a stacked hourglass network architecture with skip connections
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to propagate information at every scale. Each hourglass network estimates the
voxel occupancy as slices. The learning architecture consists of multiple parallel
stacked hourglass networks with shared parameters. This allows the introduction
of a multi-view loss function. In each hourglass module, there is a 2-dimensional
convolution layer followed by a ReLU as an activation function, group normaliza-
tion and res-net module (full details in the supplementary material). Due to the
small memory requirements, we use a small batch size with group normalization
[42] instead of batch normalization for efficient convergence. This network archi-
tecture is different from previous use of hourglass networks [15], as follows: the
proposed hourglass module uses a single scale res-net [41] together with group
normalization [42] instead of a multi-scale res-net and batch normalization re-
spectively. In addition, we propose a novel multi-view learning framework with a
N−view consistency loss combined with 3D losses. The 3DVH dataset and the
code will be made available for research and evaluation.

3.2 3D Human Representation

Representation of 3D content is crucial in single view reconstruction methods,
as the design of the learning architecture is based on the representation. Pre-
vious studies investigate two groups of model-free 3D representations: implicit
and explicit. As shown in Table 2, voxel [15, 14], depth maps [27], and implicit
surface representations [13] are used to represent 3D human shape. In implicit
representation [13], pixel-aligned local feature extraction and the occupancy grid
prediction for individual 3D point results in losing global topology of the 3D hu-
man body during inference due to the sampling-based training scheme. This
makes it challenging to resolve ambiguities in occluded human body parts, caus-
ing inaccurate 3D reconstruction (Fig. 1). Similarly, in [27], back and front depth
map representation of the 3D human body disconnects the human body parts
during inference, leading to incomplete 3D prediction. Hence we use a complete
volumetric voxel occupancy based representation in the network. The network
infers voxel occupancy for both visible and occluded body parts allowing shape
reconstruction with self-occlusions. To obtain a smooth surface human recon-
struction, iso-surface of the voxel occupancy grid are extracted using marching
cubes.

3.3 The Proposed Loss Functions

The proposed learning architecture is supervised from the ground truth 3D hu-
man models rendered from multiple views and self-supervised with N − 1 other
views. The 3D loss function L3D computes the error between the estimated 3D
voxel occupancy grid (V̂ij) and 3D ground-truth (Vij) for the ith stack and for
the jth camera view of the same subject. As stated in Equation 1, the binary
cross entropy [43] is computed after applying a sigmoid function on the network
output. In particular, we used weighted binary cross entropy loss and γ is a
weight to balance occupied and unoccupied points in the voxel volume:
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L3D =

K∑

j=1

N∑

i=1

L(Vij , V̂ij) (1)

L(Vij , V̂ij) =
∑

x

∑

y

∑

z

γVxyz
ij log V̂xyz

ij + (1− γ)(1− Vxyz
ij )(1− log V̂xyz

ij )

where Vxyz stands for occupancy value of a voxel grid, V, at position (x, y, z).
Training a network with only binary cross entropy loss gives limited reconstruc-
tion quality for the occluded parts of the 3D human body, as shown in Fig.
8. In order to improve 3D model accuracy, we propose a second loss function,
multi-view consistency loss (LMVC) between multiple camera views of the same
scene. With a multi-view training loss, the proposed representation can learn
features robust to camera view changes and self-occlusion. 3D voxel occupancy
grids estimated per-camera view are transformed to N − 1 other camera coordi-
nate system and the error is computed between the overlapped 3D voxel grids.
The multi-view loss function is defined in Equation 2, the L2 loss is computed
between voxel occupancy estimates, V̂, from one camera and N−1 other camera
views for K stacks.

LMVC =

K∑

j=1

N∑

i=1

N∑

l=1
l 6=i

L̂(V̂ij , V̂lj) (2)

L̂(V̂ij , V̂lj) =
∑

x

∑

y

∑

z

‖V̂xyz
ij − V̂

P(xyz)
lj ‖

2

where P(X ) = RX + T is the transformation operator defined with rotation
matrix, R, and translation vector, T for a 3D point, X . The combined loss
function is the weighted sum of the 3D loss and multi-view consistency loss:

L = L3D + λLMVC (3)

The value of λ is chosen experimentally and remains constant for all tests as
explained in Sec. 4.

3.4 3DVH Dataset

To improve the generalisation of human reconstruction with respect to clothing,
hair and pose, we introduced a new dataset, 3DVirtualHuman (3DVH) which
is the first multi-view and multiple people 3D dataset to train monocular 3D
human reconstruction framework. A comparison of the number of data samples,
variation in human actions, ground-truth data, and details of 3D human models
between the existing datasets and 3DVH is shown in Table 2. 3DVH is the
largest synthetic dataset of clothed 3D human models with high level of details
and realistic rendered images from multiple views.

As illustrated in Fig. 3, the 3DVH dataset is generated in three main steps:
textures and clothed 3D human model generation; motion sequence application
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Fig. 3. Proposed 3DVH dataset generation framework.

on these models; and multiple-view realistic rendering of the models. In the
dataset, 3D human models with a wide variation in hair, clothing and pose are
generated [44] for random motion sequences [45] to enable more complete and
accurate 3D shape estimation.

Fig. 4. Example images and associated 3D ground-truth models from the proposed
3DVH dataset.

In order to estimate high-fidelity and accurate 3D models on real images, the
synthetic rendering should be as realistic as possible [13]. However existing syn-
thetic datasets give unrealistic renderings with 3D human models with limited
surface characteristics, such as surface normal maps [36]. To address this issue,
we generate gloss, normal, diffuse and specular maps along with the 3D models
to overcome the limitations of previous datasets [28] which use a point based
light source, we use these appearance maps with spherical harmonics from 100
indoor/outdoor scenes from High Dynamic Range Image (HDRI) database [46]
to apply realistic environmental illumination/lightning on the 3D models and
render them into 120 cameras uniformly placed along a circular rig around the
subjects. In 3DVH, images are rendered using ray-tracing with environmental
lighting, specular and normal maps to achieve realistic results. Previous syn-
thetic datasets [28] use rasterization technique with single point light sources
resulting in a lower non-realistic visual quality. Further detail on the facial ap-
pearance and hair could be included to achieve full photo-realism. In the sup-
plementary document, various synthetic renderings are provided to show that
the proposed dataset improves the realism. For every time frame, we randomly
change the background HDR image to increase the data variety. The proposed
dataset contains 4M image - 3D model pairs which are used for single-image
3D human reconstruction with 512 × 512 image resolution. Samples from the
3DVH dataset are shown in Fig. 4. Multiple views are generated for each time
instant to enable multi-view supervision in training the proposed network. 120
views for a single person at a time instant with the same background are gener-
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ated. For comparison and evaluation in the paper we have trained the proposed
network on 6 views. An ablation study is provided in Sec. 4.4 to evaluate the
accuracy and completeness of the reconstruction with change in the number of
views (N ≤ 6) during training.

The 3DVH dataset will be made available to support research and bench-
marking, which complies with the Adobe FUSE licensing terms for release of
generated 3D models. We will release a framework with 3DVH Dataset for
users to reproduce all source 3D models. The generated RGB images, depth,
segmentation and normal maps will be made available to download.

4 Experimental Evaluation

This section presents the implementation details together with qualitative and
quantitative results on the test set of the 3DVH dataset and real images of people
with varying poses and clothing. We evaluate the proposed method on 30,000
test images randomly chosen from the test split of the 3DVH dataset. For each
test image, we give the network a single RGB image and associated foreground
segmentation mask. For a given test sample, the proposed method estimates
the voxel occupancy grid from a single image. This is followed by surface mesh
generation from the voxel grid by applying marching cubes.

4.1 Implementation Details

The proposed network is trained on the 3DVH dataset, which is split into train-
ing, validation and test sets. The size of the input image is 512 × 512 × 3 (as
required by the network filters) and output voxel grid resolution is 128×128×128.
In ground-truth data, the points inside and outside the occupied volume are as-
signed to 1 and 0 values, respectively. During training, batch size and epochs
are set to 4 and 40 respectively. The value of λ in Eq. 3 is experimentally set to
2e− 1. With these settings the network is trained for 3 days using an NVIDIA
Titan X with 12GB memory. Our method is trained on low memory GPUs
restricting the resolution to 1283, however we can run our method with the res-
olution of 2563 with the same memory and reduced batch size, or, high memory
GPU devices could be used. Also, reducing the model complexity by decreasing
the number of stacks in the hourglass network will reduce memory requirements
with a slight decrease in accuracy. The Adam optimizer is used with a learning
rate lr = 2.5e − 4 with the decimation of step-size in every 20 epoch. Refer to
supplementary material for full implementation details.

4.2 Comparison

The proposed network is compared qualitatively and quantitatively with three
recent state-of-the-art deep learning-based methods for single image 3D human
reconstruction: DeepHuman [14], PIFu [13] and VRN [15]. To allow fair compar-
ison, we retrain VRN and PIFu with the 3DVH dataset using the code provided
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by the authors and use the pre-trained network of Deephuman (training code un-
available). The 3D reconstruction results of these methods are illustrated as they
are produced by the papers’ codes. The results are illustrated in mesh data for-
mat. Qualitative and quantitative comparison of the proposed approah against
state-of-the-art methods are shown in Fig. 5 and 6, along with the ground-truth.
We compute two error metrics using the ground-truth 3D models to measure
the global quality of shape reconstruction: Chamfer Distance (CD) and 3D In-
tersection of Union (3D IoU) [47]. Fig. 6 shows the comparison of results with
ground-truth through the error comparison models with the Chamfer distance
error coloured from blue to red as error increases. Colorbar shows the error in
centimeter scale.

Qualitatively the proposed approach achieves significantly more complete and
accurate reconstruction than previous approaches DeepHuman, PIFu, and VRN.
VRN [15] produces over-complete 3D models with lack of reconstruction details
and DeepHuman [14] fails on reconstruction of surface details with inaccurate
reconstruction on clothing and erroneous estimation of limb positions resulting
in shape distortion. Comparison of the proposed method and DeepHuman [14]
is not a fair comparison, because DeepHuman requires additional a registered
SMPL mesh to reconstruct 3D human. However, the proposed method does not
requires prior registered SMPL model to predict 3D reconstruction. PIFu [13]
gives limited accuracy for occluded (or invisible) body parts, as illustrated in
rendered 3D reconstructions for both visible and invisible views in Fig. 5-6 and
the Chamfer error metric illustration in Fig. 6. PIFu method is overfitted to
its training dataset which is consisting of the people with mostly standing up
pose. So, PIFu gives incomplete and inaccurate 3D reconstruction results for
arbitrary human pose cases (Fig. 5) resulting in shape distortion. This is also
shown in another study [48] that proposed method in PIFu [13] focuses on more
cloth details and is less robust against pose variations. Note that PIFu’s results
can be superior in terms of high frequency details on the 3D surface because
of the implicit 3D representation used in the method. The goal of single im-
age 3D human shape estimation is to reconstruct the complete surface not just
the visible part of the surface. As illustrated in Fig. 1, previous methods fail to
accurately reconstruct occluded body parts or body poses when observed from
different views. The proposed method solves the complete 3D reconstruction for
both surface accuracy and completeness in arbitrary human pose as illustrated
in Figs. 1, 5 and 6. Overall, our method using a multi-view training loss demon-
strates better completeness and accuracy in both visible and occluded parts for
arbitrary human poses and clothing. These results indicate that human meshes
recovered by the proposed method have better global robustness and alignment
with the ground truth mesh. Note limbs are correctly reconstructed even when
not visible in the single input image. This is due to the novel network architec-
ture with multi-view supervision combined with training on the 3DVH dataset
of high-variety of human poses, clothing and hair styles. The proposed method
correctly estimates reconstruction of clothing, shape and pose even when limbs
are occluded.
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Fig. 5. Reconstruction results of Deephuman [14], PIFu [13], VRN [15] and the pro-
posed method with 6-view training and ground-truth 3D human model. Reconstruction
results are illustrated for both visible and invisible sides.

Fig. 6. [Left]Reconstruction results of Deephuman [14], PIFu [13], VRN [15] and the
proposed method with 6-view training and ground-truth 3D human model. Also, this
figure shows associated per vertex chamfer distance from reconstruction to ground-
truth model. Both 3D reconstruction results and error maps are illustrated for visible
and invisible sides.[Right]Comparison of the proposed method with the state-of-the-
art methods for different error metrics. CD: Chamfer Distance, 3D IoU: 3D Intersec-
tion of Union For more details, please refer to the text.

4.3 Generalization to Real Images of People

In order to see the generalization of the proposed method, we design an experi-
ment on real images. For this purpose, we used the THUman Dataset [14] which
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Fig. 7. The results of the proposed single image reconstruction method, PIFu [13] and
DeepHuman [14] on real images.

is a collection of real images of dynamic humans for a wide range of subjects
and human poses for which ground-truth 3D reconstructon is available. This
dataset provides 7000 data items in high variety of pose and clothing for more
than 200 different human subjects. As with all previous methods [13–15], the
proposed method uses the person pre-segmented from the background. Given
this segmentation, the proposed method can reconstruct people in arbitrary in-
door or outdoor scenes. In the experiments, the network weights are trained on
3DVH, followed by fine tuning on the training split of the THUman dataset.
The proposed single image reconstruction presented in Fig. 7 compares the re-
construction results of the proposed method with DeepHuman [14] and PIFu [13]
on the test split of the THUman dataset. The DeepHuman network is trained
only on the train split of THUman dataset. As shown in Fig. 7, the proposed
method gives significantly more accurate 3D reconstructions from a single image
compared to DeepHuman for a wide range of human poses, clothing and shape.
The proposed method is able to estimate shape reliably even in the case of
self-occlusions, where DeepHuman fails. The proposed method also shows more
complete 3D reconstruction than PIFu with accurate 3D reconstruction of limbs.
This is due to the multi-view supervision in the proposed method and the robust
features learned from the 3DVH dataset.

4.4 Ablation Study

The proposed single image human reconstruction exploits multiple views (N) to
learn and predict a more complete reconstruction (Sec. 3). This section presents
an ablation study with respect to the number of views and novel loss function,
to evaluate how this affects the quality of the 3D human shape reconstruction.
The proposed method is trained on the train split of the 3DVH dataset with
variable number of views N = {2, 4, 6}. The views are selected such that the
cameras are equidistant along a circular camera rig in order to capture full
human body shape. Each trained model is then tested on the test examples
of the 3DVH dataset and Chamfer distance (CD) and 3D intersection-over-
union (3D IoU) errors are estimated, Fig. 8. The single image 3D reconstruction
accuracy increases with the increase in the number of views used for training
(Fig. 8). This demonstrates that the network gives better reconstruction with
more supervision. We further trained and tested the proposed network with
N > 6. However, marginal improvements were noticed because of the redundancy
in the information across views.
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Fig. 8. Results of the proposed method with different loss functions (Sec. 3.3) and
different number of view used in training. This figure shows the 3D reconstruction
results of the network trained with both 3D ground-truth loss (L3D) and multi-view
consistency loss (LMV C) and the results with only 3D ground-truth loss (L3D) for
N = {2, 4, 6} number of views. The table (right) also demonstrates the comparison of
performance of the proposed method for different number of views.

We also investigated the effect of the proposed multi-view loss function on
the accuracy of the reconstruction results in Fig. 8. The proposed network is
trained with the train split of the 3DVH dataset using 3D loss L3D (Sec. 3.3)
with 2-view supervision and complete loss L = L3D + LV C with N = {2, 4, 6}.
Fig. 8 demonstrates that the 3D reconstructions from the network trained with
complete loss, L, achieves more accurate and complete 3D human shape. This
demonstrates that the proposed multi-view consistency loss makes a significant
contribution to the results. More results are in the supplementary document.

Limitations: Although the proposed single image human reconstruction demon-
strates significant improvement in the reconstruction quality over state-of-the-art
methods, it suffers from the same limitations as previous methods. The approach
assumes complete visibility of the person in the scene and can not handle partial
occlusions with objects, as with previous approaches the method also requires a
silhouette of the person along with the single image for 3D reconstruction.

Conclusion and Future Work: This paper introduces a novel method for
single image human reconstruction, trained with multi-view 3D consistency on a
new synthetic 3DVH dataset of realistic clothed people with a wide range of vari-
ation in clothing, hair, body shape, pose and viewpoint. The proposed method
demonstrates significant improvement in the reconstruction accuracy, complete-
ness, and quality over state-of-the-art methods (PIFu, DeepHuman, VRN) from
synthetic and real images of people. The multi-view consistency loss used in net-
work training together with the novel 3DVH dataset of realistic humans are both
demonstrated to significantly improve the reconstruction performance achieving
reliable reconstruction of human shape from a single image with a wide varia-
tion in pose, clothing, hair, and body size. Multi-view consistency loss enables
reliable reconstruction of occluded body parts from a single image. For future
work, we will exploit using multi-view loss for implicit 3D representations to-
gether with temporal information from a single-view video exploiting temporal
coherence in the reconstruction to further improve the accuracy and details in
the reconstruction.
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