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(a) Input (b) Zhang et al.[1] (c) DRHT[2] (d) Hdrcnn[3]

(e) Lu et al.[4] (f) Yu et al.[5] (g) Ours (h) Ground-truth

Fig. 1. Over-exposure correction results of several image correction methods. As shown
in (b)-(f), existing methods have the limitation in recovering the saturated details of
the overexposed region. In comparison, as shown in (h), we recover the saturated details
and generate a naturalness-preserved result.

Abstract. Over-exposure correction is an important problem of great
consequence to social media industries. In this paper, we propose a nov-
el model to tackle this task. Considering that reasonable enhanced re-
sults can still vary in terms of exposure, we do not strictly enforce
the model to generate identical results with ground-truth images. On
the contrary, we train the network to recover the lost scene informa-
tion according to the existing information of the over-exposure images
and generate naturalness-preserved images. Experiments compared with
several state-of-the-art methods show the superior performance of the
proposed network. Besides, we also verify our hypothesis with ablation
studies. Our source code is available at https://github.com/0x437968/
overexposure-correction-dise.

https://github.com/0x437968/overexposure-correction-dise
https://github.com/0x437968/overexposure-correction-dise
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1 Introduction

In photography, exposure is one of the most important parameters that deter-
mine the subjective quality of the captured images. Unreasonable exposure can
lead to significant quality degradation. Over-exposure is one of the typical quality
degradation phenomenons. Due to the limited dynamic range of digital cameras,
relatively bright areas of the scene will be saturated. Therefore, it is important
to reasonably recover the saturated information and enhance the quality of over-
exposed images. In general, overexposure correction aims to generate alternative
contents for saturated regions according to the existing image information while
maintaining the global contrast.

Image inpainting also requires generating plausible pixels for corrupted holes
according to uncorrupted contents. Along with the rapid progress in deep learn-
ing in recent years, inpainting methods [6,7,5,8,9] achieve excellent development.
Many methods can generate realistic alternative results. However, it is unreason-
able to employ inpainting methods on the over-exposure correction task. There
are some important differences between these two tasks. Firstly the missing re-
gions of the images in inpainting are random masks but the overexposed regions
in over-exposure correction are correlated. Secondly, to generate reasonable re-
sults, the existing contents of the overexposed image are required to be adjusted
in the over-exposure correction task.

High Dynamic Range (HDR) images can convey much richer contrasts than
conventional Low Dynamic Range (LDR) images. Inverse tone mapping aim-
s to transform the LDR contents into HDR contents, the saturated region in
the LDR image has to be recovered in this process. Previous methods of inverse
tone mapping employ individual heuristics or optionally use manual intervention
to enhance LDR images. Considering the excellent inference ability of convolu-
tion neural network, recent works DrTMo[10], Hdrcnn[3], DRHT[2] utilize deep
convolutional neural networks to infer HDR results, then they can correct the
images exposure by tone mapping, conventional methods or deep learning[11].
Unfortunately, existing inverse tone mapping methods pay more attention to the
projection of existing contents but not the recovery of missing contents. The goal
of the over-exposure task emphasizes the recovery of the missing contents more
than adjusting the existing contents.

In this paper, we find that the reasonable correction result of an overexposed
image is not unique, i.e. they may vary in terms of exposure. Therefore, it is
unreasonable to force the network to predict identical results with ground-truth
images. The network can not focus on missing information reconstruction. It
struggles to predict identical results with ground-truth images. Hence, the over-
exposure correction method should merely recover that information which is
unrelated to camera exposure. To achieve this goal, we propose a novel method
for over-exposure correction via global exposure and scene information disen-
tanglement. We first train a disentanglement network to split the exposure and
scene information of images. Then we utilize the pre-trained disentanglement
network to constrain the recovery network. We train this network to generate
results with the same scene information with ground-truth images. Meanwhile,
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we use GAN[12] to constrain the results to have the same distribution with
ground-truth images. Experiments compared with the state-of-the-art methods
show the superior performance of our proposed methods. Ablation studies also
prove our hypothesis.

Our main contributions are as follows:

1) We tackle the over-exposure correction problem by disentangling global ex-
posure and scene information.

2) We show that the performance of the network can be largely improved by
reconstructing the scene information which is unrelated to the image expo-
sure.

3) Our methods achieve remarkable results compared with state-of-the-art meth-
ods.

2 Related Work

We discuss the works that are relevant to the over-exposure correction task in this
section, including over-exposure correction in Section2.1, inverse tone mapping
in Section2.2, image inpainting in Section2.3.

2.1 Over-exposure Correction

Although overexposed image correction is an important task for many kinds of
researches, there is not much previous work directly addressing this problem.
Some early works assume that the ratios between different color channels are
invariant[13] or gradual[14] in local image regions. However, both methods can
only handle pixels which have one or two channels overexposed and all over-
exposed pixels are left untouched. To deal with this problem. Guo et al. [15]
separate the input images into lightness and color. Then different smooth oper-
ators are performed to these components to correct the inputs. Although this
algorithm can generate some color information in overexposed regions, it can-
not recover the complicated texture. Considering the excellent performance of
the Retinex theory in the under-exposure correction task, SICE[16] proposes a
network to respectively recover the reflectance and illumination maps by using
the Retinex theory. Then they reconstruct the results by combining these two
components. Zhang et al.[1] propose a dual illumination estimation to simulta-
neously process under-exposure and over-exposure images. But the method can
not recover vivid textures while dealing with the images which are overexposed
in all RGB channels.

2.2 Inverse Tone Mapping

Inverse tone mapping is used to describe the methods that expand Low Dy-
namic Range (LDR) images for the generation of High Dynamic Range (H-
DR) images[17]. HDR images contain a broader range of physical information
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of scenes than LDR images. Therefore, generating HDR images from captured
LDR images is an ill-posed problem. It requires the algorithms to recover the
lost dynamic information from the over/under-exposed regions in LDR images.
Previous methods of inverse tone mapping employ individual heuristics or op-
tionally use manual intervention to enhance LDR images. Rapid progress in deep
learning inspired recent learning-based methods. DrTMo[10] and Hdrcnn[3] in-
troduce the learning-based approach by training the LDR and HDR image pairs
and infer a reasonable HDR image from an LDR input. DRHT[2] further uses an
auto-encoder network to map the generated HDR images back to LDR images.
However, existing inverse tone mapping methods always pay more attention to
the projection of existing contents but not the recovery of missing information.

2.3 Image Inpainting

Existing inpainting methods can be mainly divided into two groups: conventional
methods that use diffusion-based or patch-based methods and learning-based
methods that employ convolutional neural networks to infer pixels for the missing
regions. The conventional methods such as [18,19,20]. The synthesize pixels by
propagating the neighborhood region’s appearance to the target holes searching
and copying similar image patches from the uncorrupt region. However, the
diffusion-based methods can only deal with small holes in background inpainting
tasks. The patch-based methods can not generate reasonable results for images
with unique structures.

Recently, many learning-based methods[6,5,21,8,22,9] are proposed by for-
mulating inpainting as a conditional image generation problem. A significan-
t advantage of the deep-learning-based methods is that they can infer results
by extracting meaningful semantic information. Context Encoder[6] propose an
auto-encoder network for image inpainting. However, this method often gener-
ates results with visual artifacts. To solve this problem, Iizuka et al.[7] use both
local and global discriminators to improve the quality of the generated images.
In order to make better predictions, Yu et al.[5] propose contextual attention to
building a remote connection when generated contents are distant with existing
information. Liu et al.[21] believe the pixels in the masked holes of the inputs
introduce artifacts to the results. Therefore, they propose partial convolution to
force the network to use uncorrupted pixels only.

3 Proposed Method

Given an overexposed image, our goal is to generate a naturalness-preserved re-
sult with complete scene information. In order to encourage the network to learn
the scene information unrelated to image exposure, we first train a disentangle-
ment network to separate the image exposure and scene information. Then we
utilize the pre-trained disentanglement network to generate the scene informa-
tion. Our proposed model consists of two parts: 1) Disentanglement network. 2)
Recovery network. In the following subsections, we particularly introduce our
model.
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Fig. 2. Overview of the disentanglement network, the network includes scene infor-
mation encoderEs, exposure informaiton encoder Ee and decoder D. We set N = 3.

3.1 Disentanglement Network

Our disentanglement network can separate the scene information and the expo-
sure information of images. As shown in Fig.2, scene encoder Es extracts the
scene information of the inputs and the exposure encoder Ee extracts the im-
ages exposure information. In order to guarantee that the encoders can extract
meaningful features. We use decoder D to reconstruct the inputs.

This encoder Es should extract the scene information that is unrelated to im-
age exposure. To achieve this goal, we use N multi-exposure images x1, x2, ..., xN

which are captured with different exposure as the network inputs. Let s1, s2, ..., sN
represent the feature maps which are extracted by Es and e1, e2, ..., eN represent
the exposure information vectors of Es. The scene information in the same scene
should be identical, therefore we define the scene loss as follows:

LDs =

N∑

i=1

‖si − s‖1 (1)

where s represents the mean of s. This loss ensures that the image exposure will
not influence the scene feature maps.

In order to guarantee complete scene information in si, we further reconstruct
the inputs by decoder D. During the training, we randomly select a feature from
s1, s2, ..., sN as the input of decoder D. Meanwhile, we inject the N exposure
feature vectors into the picked scene feature via AdaIN[23]. Then we get N

results y1, y2, ..., yN that are in different exposure. We define the reconstruction
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loss as follows:

LDr =

N∑

i=1

‖yi − xi‖1 (2)

Meanwhile, we add a KL divergence loss to regularize the distribution of the
exposure feature vectors e1, e2, ..., eN to be close to normal distribution p(z) ∼
N(0, 1). The KL divergence loss is defined as follows

KL(q(ei)||p(z)) = −

∫
q(ei) log

p(z)

q(ei)
dz (3)

As shown in [24], minimizing the KL divergence is equivalent to minimizing the
following loss:

LKL =
1

2

N∑

i=1

(µ2
i + σ2

i − log(σ2
i )− 1) (4)

where µ is the mean of e, and σ is the standard of e. e is sampled as e = µ+z◦σ,
where p(z) ∼ N(0, 1), and ◦ represents element-wise multiplication.

Besides, to help the recovery of more vivid textures. We add the style loss of
the perceptual loss[25] between the outputs and ground-truth images:

LDstyle(x, y) =
∥∥Gφ(x)−Gφ(y)

∥∥2
F

(5)

where Gφ represents the output features’ Gram matrices of VGG-19 network[14]
which is pre-trained on ImageNet[26].

The full objective function of the disentanglement network is a weighted sum
of all the losses from (1) to (5)

LD = λsLDs + λrLDr + λKLLKL + λstyleLDstyle (6)

3.2 Recovery Network

In this section, we introduce the recovery network. As shown in Fig.3, we set the
overexposed image x as the input of generator G. Then we train the generator
G to recovery the scene information. We compute the Manhattan distance of the
scene feature maps by using pre-trained Es. Therefore, our scene information
reconstruction loss is defined as follows:

LRsr = ‖Es(ŷ)− Es(y)‖1 (7)

Meanwhile, we add the adversarial loss to mimic the distribution of true
images:

Ladv = Ey∼p(y)[logDe(y)] + Ex∼p(x)[log(1−De(G(x)))] (8)

where De tries to maximize the objective function to distinguish between our
recovered results and ground-truth images. On the contrary, G aims to minimize
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Fig. 3. Overview of the recovery network. We utilize the pre-trained scene information
encoder Es to constrain the recovery network.

the loss to make our recovered results look similar to real samples in ground-truth
images.

We also add the style loss of [25] to recover more vivid textures:

LRstyle(ŷ, y) =
∥∥Gφ(ŷ)−Gφ(y)

∥∥2
F

(9)

The full loss of the recovery network is defined as follows:

LR = γsrLRsr + γadvLadv + γstyleLRstyle (10)

3.3 Implement Details

Disentanglement network. For the architecture of the disentanglement net-
work, we follow similar structures as the one used[4]. We employ the convolu-
tional layer and the residual block[27] as the basic components of the network.
In order to generate multi-exposure images, we use the method[28] proposed by
Ying et al. to adjust the exposure of the image and guarantee that the exposure
changed images won’t overexposed. During the training, we use Adam solver to
update our encoders and decoder. The learning rate is fixed in 0.0001. In all the
experiments, we use 256×256 images with a batch size of 4 for training. For the
hyper-parameters, we set λs = 1000, λr = 50, λKL = 0.01, λstyle = 1000 and
N = 3.

Recovery network. For the recovery network, we employ the auto-encoder
architecture on the generator G. We use Adam solver to update our generator
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and discriminator. The learning rate of the generator is fixed in 0.0001 and the
learning rate of the discriminator is fixed in 0.00001. In all the experiments, we
use 256×256 images with a batch size of 4 for training. For the hyper-parameters,
we set γsr = 10000, γadv = 2, γstyle = 2000.

4 Experiments

In this section, we first discuss the experiments deploys. Then, we compare
our method against several state-of-the-art methods including Zhang et al.[1],
DRHT[2], Hdrcnn[3], Lu et al.[4], Yu et al.[5]. Finally, we analyze the ablation
study.

4.1 Experiments Deploys

Datasets. We implement our experiments on the place365 dataset[29]. Consid-
ering that the images containing sky, human face are very easily overexposed in
photography. We elaborately pick 5000 outdoor images and 2400 images of the
human portrait as our ground-truth images in the place365 dataset[29] and all
of the images are in the normal exposure. Then we use the method[28] proposed
by Ying et al. to adjust the exposure of images and obtain overexposed images
from the ground-truth images. For each image, the ratio of exposure between the
overexposed image and the ground-truth image is randomly selected in [1.8,2.4].
All images are resized to 256×256. For the outdoor dataset, we use 4000 images
for training and 1000 images for testing. In the portrait dataset, we use 2000
images for training and 400 images for testing.

Evaluation metrics. For the evaluation of experiments, considering that the
reasonable correction results of an overexposed image are not unique in the over-
exposure correction task, it is unreasonable to use metric which is sensitive about
image exposure such as PSNR. We first use Frchet Inception Distance(FID)[31]
and Kernel Inception Distance(KID)[32] to measure the performance. Consider-
ing the outperformance of deep features compared with classic metrics, we also
use LPIPS[33] to evaluate the performance. Besides, considering that the output
of the scene encoder Es can represent the scene information of the inputs. We
formulate Scene Information Identity(SII) as the scene information evaluation
metric:

SII(y, ŷ) = ‖Es(y)− Es(ŷ)‖1 (11)

4.2 Comparisons

We compare the proposed method with Hdrcnn[3], DRHT[2], Zhang et al.[1],
Yu et al.[5] and Lu et al.[4]. Both Hdrcnn[3] and DRHT[2] are the inverse tone
mapping methods that use an auto-encoder network to infer the HDR image from
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(a) Inputs (b) Zhang et al.[1] (c) DRHT[2] (d) Hdrcnn[3]

(e) Lu et al.[4] (f) Yu et al.[5] (g) Ours (h) Ground-truth

Fig. 4. Visual portrait comparisons of our method with Zhang et al.[1], DRHT[2],
Hdrcnn[3], Lu et al.[4] and Yu et al.[5]. The size of images on the bottom row is
512× 512 and the others are 256× 256.
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Table 1. Quantitative comparisons of our method with other methods. SII is defined
in Eq.11. The results show the superior performance of the proposed method.

Datasets Outdoor Portrait

Methods
Metrics

FID KID LPIPS SII FID KID LPIPS SII

Ours 4.1477 -6.1942 0.0210 1.1110 19.2002 -8.9204 0.0252 0.6594
Yu et al.[5] 10.8996 -5.6884 0.0398 3.5771 28.3579 -8.4790 0.0321 0.7399
Zhang et al.[1] 13.1616 -5.6805 0.1407 16.2549 41.3969 -7.8780 0.1252 4.3884
DRHT[2] 15.7146 -5.1977 0.1001 16.3488 47.3493 -7.4641 0.1430 7.2226
Hdrcnn[3] 14.9932 -5.3118 0.1737 13.7195 59.1835 -6.5646 0.2350 7.9029
Lu et al.[4] 17.8173 -5.1606 0.0826 5.1949 41.0575 -7.9727 0.0732 3.0559

an LDR input. Zhang et al.[1] is a Retinex-based conventional method which can
process both over-exposure and under-exposure by inverting the inputs. Yu et

al.[5] is an excellent inpainting method and Lu et al.[4] is a deblurring method.
For DRHT[2] and Hdrcnn[3]. we use the pre-trained model4 provided by

the authors to predict the overexposed images. For Zhang et al.[1], we test the
overexposed images on the code provided by the authors. We retrain [5] and [4]
on our datasets.

The quantitative results are shown in Table 1 and the visual results are
shown Fig.4 and Fig.5. For the visual results, we also add 512× 512 size results
in the bottom row of Fig.4 to show the applicability of the proposed method.
By comparing the quantitative results in Table 1, the proposed method achieves
the remarkable results in the experiments. As shown in Fig.5(b), Zhang et al.[1]
has the limitation in recovering missing information when all RGB channels
are overexposed. We can realize that the inverse tone mapping methods pay
more attention to the projection of existing contents via observing Fig.4(c) and
Fig.4(d). The results of Yu et al.[5] are relatively well in the mid-row of Fig.5(f).
That may is because of the coarse-to-fine architectures. But as shown in both
the mid and bottom rows of Fig.4(f), the results of [5] also exist unreasonable
artifacts and still have a big gap with our results. Some meaningful results are
shown in the bottom row of Fig.5. Our method recovers the missing contents on
the road and the textures of the overexposed cloud. Specifically, we also recover
the details at the end of double amber lines(i.e., red box in Fig.5(h)).

To further prove the generalization ability and applicability of the proposed
method, we also test our pre-trained model on the CelebA dataset[30] and the
SICE dataset[16]. Some results on the CelebA dataset[30] are shown in Fig.6
and the overexposed inputs are obtained in the same way that is mentioned in
Section4.1. The results on the SICE dataset[16] are shown in Fig.7 and the inputs
are from the real world. Considering that the large size of the original images
in the SICE dataset[16] can make the testing difficult, we resize the inputs to
768× 512.

4 HDR images are required in DRHT[2] and Hdrcnn[3], therefore we can not retrain
these two methods.
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(a) Inputs (b) Zhang et al.[1] (c) DRHT[2] (d) Hdrcnn[3]

(e) Lu et al.[4] (f) Yu et al.[5] (g) Ours (h) Ground-truth

Fig. 5. Visual outdoor comparisons of our method with Zhang et al.[1], DRHT[2],
Hdrcnn[3], Lu et al.[4] and Yu et al.[5].
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Fig. 6. Visual results on the CelebA dataset[30]. Images on the top row are the over-
exposed inputs. The bottom row images are our results.

(a)

(b)

Fig. 7. Visual results in the real world. For each subfigure, images on the top row are
the inputs which are from the SICE dataset[16] and are resized to 768 × 512. Images
on the bottom row are our results.

4.3 Ablation studies.

In this paper, we believe that the reasonable correction result of an overexposed
image is not unique. Therefore it is unreasonable to force the network to generate
identical results with ground-truth images. In the ablation studies, we first relace



Over-exposure Correction via Disentanglement 13

the scene information reconstruction loss with L1 distance between the generat-
ed results and the ground-truth images and maintain the others unchanged to
retrain the recovery network. Then we remove one of the Style, GAN, Scene loss
and maintain the others unchanged to retrain the recovery network in turn for
determining the role of each loss. Qualitative results are shown in Fig.8. We can
see that figures in Fig. 8(e) and 8(b) which are trained without the scene loss
exists severe artifacts, but the results in Fig.8(c), 8(d), 8(f) which are trained
with the scene loss are under a good condition. Besides, the comparisons be-
tween Fig. 8(c), 8(d), 8(f) also denote that Scene loss has a major contribution
to the proposed method. Quantitative results are shown in Table2. It also could
be seen that the comparisons between the results trained with scene loss and the
results trained without scene loss denote that the scene loss can largely improve
the performance of the recovery network.

(a) Inputs (b) No Scene (c) No Style (d) No GAN (e) L1 (f) Scene

Fig. 8. Visual results of the ablation studies. Figures in (b)-(d) respectively are the
ablation results without corresponding loss(e.g. results in (b) are trained with GAN
and Style loss).Figures in (e) are the results trained with GAN, Style, L1 loss and
results in (f) are trained with Style, GAN, Scene loss. The comparisons between the
different ablation results show the significant impacts of the scene loss.

4.4 Failure Cases

Despite the aforementioned success, our method contains limitations in recov-
ering the details of a large continuously overexposed region. Fig.9 shows two
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Table 2. Quantitative results of the ablation studies. SII is defined in Eq.11. The
results verify the significant impacts of Scene loss.

Datasets Outdoor Portrait

Loss
Metrics

FID KID LPIPS SII FID KID LPIPS SII

Style,GAN,Scene 4.1477 -6.1942 0.0210 1.1110 19.2002 -8.9204 0.0252 0.6594
Style,GAN,L1 8.8833 -5.8798 0.0719 1.8312 20.5921 -8.8673 0.0270 0.7792
Style,GAN 9.1331 -5.8819 0.0767 1.6240 19.8518 -8.8826 0.0262 0.7630
GAN,Scene 5.4939 -6.1175 0.0249 1.0205 18.2920 -8.9328 0.0222 0.6107
Style,Scene 4.6370 -6.1759 0.0250 1.6615 17.9326 -8.9596 0.0235 0.6914

examples. Although our method can recover the most textures of the overex-
posed region, there are limitations in recovering the center of the overexposed
region. This is because limited information is given in the input images.

(a) (b)

Fig. 9. Failure examples. For each subfigure, left is the input and right is the result.

5 Conclusion

In this paper, we find that the reasonable correction result of an overexposed
image is not unique. To tackle the over-exposure correction task, we propose a
novel method via disentangling the image exposure and the scene information.
In order to force the recovery network to focus on the scene information recovery,
we first train a network to disentangle the image exposure and scene informa-
tion, and then we utilize the pre-trained scene information encoder to constrain
the recovery network. Our method achieves remarkable results in comparisons
with other state-of-the-art methods. The ablation studies also verify that the
proposed method can largely improve the performance by forcing the network
to reconstruct the scene information.
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