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Abstract. Panoptic segmentation is a scene parsing task which unifies
semantic segmentation and instance segmentation into one single task.
However, the current state-of-the-art studies did not take too much con-
cern on inference time. In this work, we propose an Efficient Panop-
tic Segmentation Network (EPSNet) to tackle the panoptic segmenta-
tion tasks with fast inference speed. Basically, EPSNet generates masks
based on simple linear combination of prototype masks and mask co-
efficients. The light-weight network branches for instance segmentation
and semantic segmentation only need to predict mask coefficients and
produce masks with the shared prototypes predicted by prototype net-
work branch. Furthermore, to enhance the quality of shared prototypes,
we adopt a module called ”cross-layer attention fusion module”, which
aggregates the multi-scale features with attention mechanism helping
them capture the long-range dependencies between each other. To vali-
date the proposed work, we have conducted various experiments on the
challenging COCO panoptic dataset, which achieve highly promising per-
formance with significantly faster inference speed (51ms on GPU).

1 Introduction

Due to Convolutional Neural Networks (CNNs) and other advances in deep learn-
ing, computer vision systems have achieved considerable success especially on
computer vision tasks such as image recognition [1], semantic segmentation [2,
3], object detection [4, 5] and instance segmentation [6, 7]. In particular, seman-
tic segmentation aims to assign specific class label for each image pixel, whereas
instance segmentation predicts foreground object masks. However, the former is
not capable of separating objects of the same class, and the latter only focuses on
segmenting of things (i.e countable objects such as people, animals, and tools)
rather than stuff (i.e amorphous regions such as grass, sky, and road). To over-
come the respective shortcomings, combination of semantic segmentation and
instance segmentation leads to the so-called panoptic segmentation [8]. More
specifically, the goal of panoptic segmentation is to assign a semantic label and
an instance ID to every pixel in an image.
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Fig. 1. Speed-performance trade-off of
panoptic segmentation methods on
COCO. The inference time is mea-
sured end-to-end from input image to
panoptic segmentation output. Our ap-
proach achieves 19 fps and 38.6% PQ
on COCO val set.

Fig. 2. Overview of Efficient Panoptic Net-
work. EPSNet predicts prototypes and
mask coefficients for semantic and instance
segmentation. Both segmentation, obtained
by linear combination of prototypes and
mask coefficients, are fused using heuristic
merging.

Several methods [9–14] have been proposed for panoptic segmentation in the
literature. Detection-based approaches [9, 12–14] usually exploit an instance seg-
mentation network like Mask R-CNN [6] as the main stream and attach light-
weight semantic segmentation branch after the shared backbone. Then, they
combine those outputs by heuristic fusion [8] to generate the final panoptic
prediction. Despite such detection-based fashions achieving the state-of-the-art
results, they solely aim to improve the performance but may sacrifice the com-
putation load and speed. In fact, detection-based methods suffer from several
limitations. First, due to the two-stage detector, instance segmentation branch
costs the major computation time and drags down the inference speed. Second,
most detection-based approaches commonly employ the outputs of backbone,
like feature pyramid network [15], as shared features without further enhance-
ment, causing sub-optimality of features used by the following branches. Lastly,
the independent branches unfortunately lead to inconsistency when generating
final prediction.

To address the above problems, we propose a novel one-stage framework
called Efficient Panoptic Segmentation Network (EPSNet), as shown in Fig. 2.
It adopts parallel networks to generate prototype masks for the entire image and
predicts a set of coefficients for instance and semantic segmentation. Instance
and semantic segments can be easily generated by linearly combining the pro-
totypes with predicted coefficients from the branches. The proposed semantic
branch only needs to produce coefficients for each class instead of pixel-wise pre-
dictions. Moreover, the prototypes are shared by both branches, which save time
for producing large-size masks and help them solve their tasks simultaneously.
Further, we introduce an innovative fusion module called cross-layer attention
fusion module, which enhances the quality of shared features with attention
mechanism. Instead of directly using suboptimal features in FPN, we choose
certain layer as the target feature and other layers as source features and then
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apply an attention module on them to capture spatial dependencies for any two
positions of the feature maps. For each position in target feature, it is updated
via aggregating source features at all positions with weighted summation. To
verify the efficiency of EPSNet, we conduct experiments on COCO [16] dataset.
The experimental results manifest that our method achieves competitive perfor-
mances with much faster inference compared to current approaches, as shown in
Fig. 1.

2 Related Work

2.1 Panoptic Segmentation

Panoptic segmentation is originally proposed by [8]. In panoptic segmentation
tasks, each pixel in the image needs to be assigned a semantic label and an in-
stance ID. In [8], separate networks are used for semantic segmentation and in-
stance segmentation, respectively, and then the results are combined with heuris-
tic rules. The recent approaches of panoptic segmentation train semantic and in-
stance segmentation network in end-to-end fashion with shared backbone. These
methods can be categorized into two groups, namely, detection-based methods
and bottom-up methods.

Detection-based. Most detection-based methods exploit Mask R-CNN [6] as
their instance segmentation network and attach semantic segmentation branch
with FCN [17] after shared backbone. These approaches are also considered
as two-stage methods because of the additional stage to generate proposals.
For instances, JSIS [18] firstly trains instance and semantic segmentation net-
work jointly. TASCNet [19] ensures the consistency of stuff and thing prediction
through binary mask. OANet [12] uses spatial ranking module to deal with the
occlusion problem between the predicted instances. Panoptic FPN [14] endows
Mask R-CNN [6] with a semantic segmentation branch. AUNet [13] adds RPN
and thing segmentation mask attentions to stuff branch to provide object-level
and pixel- level attentions. UPSNet [9] introduces a parameter-free panoptic
head which solves the panoptic segmentation via pixel-wise classification. Adap-
tIS [10] adapts to the input point with a help of AdaIN layers [20] and produce
masks for different objects on the same image. Although detection-based meth-
ods achieve better performance, they are usually slow in inference because of
two-stage Mask R-CNN [6] in instance head. In addition, the inconsistency of
semantic and instance segmentation needs to be solved when the two are merged
into panoptic segmentation.

Bottom-up. Unlike the above approaches, some methods tackle panoptic seg-
mentation tasks by associating pixel-level predictions to each object instance
[21–24]. In these approaches, they first predict the foreground mask with seman-
tic segmentation, and then use several types of heatmaps to group foreground
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pixels into objects. DeeperLab [25] predicts instance keypoint as well as multi-
range offset heatmap and then groups them into class-agnostic instance segmen-
tation. In semantic segmentation head, they follow the design of DeepLab [3]. At
the end, panoptic segmentation is generated by merging class-agnostic instance
masks and semantic output. SSAP [26] groups pixels based on a pixel-pair affin-
ity pyramid with an efficient graph partition method. Despite the single-shot
architecture of bottom-up approaches, their post-processing step still needs ma-
jor computational time. Also, the performance of the bottom-up methods usually
is inferior to that of the detection-based methods.

Recently, the proposed methods obtain shared feature for semantic and in-
stance head. The quality of shared feature is highly essential for the following
network head to produce better results. Still, the proposed approaches do not
take this into consideration, and they usually make use of the output of shared
backbone as shared feature directly.

In this work, we aim to propose a panoptic segmentation network based on
one-stage detector to attain fast inference speed and competitive performance.
To increase the quality of shared feature, our proposed cross-layer attention
fusion, which is a lightweight network, provides the target feature map with
richer information in different feature pyramid layers using attention mechanism.

3 Efficient Panoptic Segmentation Network

3.1 Efficient Panoptic Segmentation Network

Our method consists of five major components including (1) shared backbone,
(2) protohead for generating prototypes, (3) instance segmentation head, (4)
semantic segmentation head, and (5) cross-layer attention fusion module.

Backbone. Our backbone exploits a deep residual network (ResNet) [1] with
a feature pyramid network (FPN) [15], which takes a standard network with
features at multiple spatial resolutions and adds a light top-down pathway with
lateral connections. It generates a pyramid feature with scales from 1/8 to 1/128
resolution (F3 to F7) as in Fig. 3 . For these features, F7 is fed to the semantic
head, and F3 to F5 are sent to instance head and protohead as inputs.

Protohead. Rather than producing masks with FCN [17], inspired by Yolact
[27], we choose to combine prototypes and mask coefficients with linear com-
bination to generate masks. Our network heads only need to deal with mask
coefficients and construct masks with shared prototypes. The goal of protohead
is to provide high-quality prototypes which contain semantic information and
details of high-resolution feature.

To generate higher resolution prototypes with more semantic values, we per-
form cross-layer attention fusion module to aggregate multi-scale features in
backbone into information-richer feature maps for protohead as inputs. Then,
we apply three convolutional blocks, 2× bilinear upsampling and 1× 1 convolu-
tion to produce output prototypes which are at 1/4 scale with k channels.
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Fig. 3. Architecture of EPSNet. We adopt ResNet-101 [1] with FPN [15] as our back-
bone and only exploit F3, F4, F5 for cross-layer attention fusion module. The prototypes
are shared by semantic and instance head. k denotes the number of prototypes. Na de-
notes the number of anchors. Nthing and Nstuff stands for the number of thing and stuff
classes, respectively. ⊗ means matrix multiplication.

Instance Segmentation Head. In most panoptic segmentation networks, they
adopt Mask R-CNN [6] as their instance segmentation branch. Yet, Mask R-
CNN [6] needs to generate proposals first and then classify and segment those
proposals in the second stage. Inspired by one-stage detector, Yolact [27], our
instance head directly predicts object detection results and mask coefficients to
make up the segmentation with prototypes without feature localization (e.g. ROI
Align [6]) and refinement.

The instance head aims to predict box regression, classification confidences
and mask coefficients. There are three branches in instance head. Regression
branch predicts 4 box regression values, classification branch predicts Nthing

class confidences, and mask branch predicts k mask coefficients. Thus, there are
totally 4+Nthing+k values for each anchor. We perform a convolutional block on
input features (F3 to F5) first and send them to each branch to predict respective
results. In mask branch, we choose tanh as the activation function, which allows
subtraction when linearly combining the coefficients.

In inference, we choose the mask coefficients whose corresponding bounding
boxes survive after NMS procedure. Then, we combine mask coefficients and pro-
totypes generated from protohead with linear combination followed by sigmoid

to produce instance masks and crop final mask with predicted bounding box.
During training, we crop mask with ground truth bounding box and divide mask
segmentation loss by the area of ground truth bounding box.
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Fig. 4. Design of proposed semantic head. We adopt F7 as input and apply two con-
volutional layers. The semantic coefficients are produced after average pooling, which
predicts k mask coefficients for each stuff classes. ⊗ denotes matrix multiplication.

Semantic Segmentation Head. Usually, semantic segmentation masks are
generated by decoder network [28, 29, 2, 17], which applies FCN [17] networks
and up-sampling layer on the features from backbone to make sure that the size
of semantic segmentation outputs is similar to the original input size. However,
due to the large feature maps, the computation speed is limited by image size.

To reduce the computation of large feature maps, we propose a novel semantic
segmentation head which only produces mask coefficients for each class, see Fig.
4. The semantic masks can be easily generated by combining the coefficients and
prototypes, and each semantic class only demands k mask coefficients. Therefore,
with smaller feature maps, the proposed light-weight semantic head can achieve
faster inference speed.

We adopt last layer F7 from backbone as the input of semantic head. Two
convolution blocks are performed. In the second convolution block, the output
channel is set to k×Nstuff and tanh is used as activation function. Because of the
channel size k×Nstuff, every position in the feature map can predict k coefficients
for each class to construct semantic segmentation. Accordingly, we perform av-
erage pooling to aggregate the mask coefficients from all positions to generate
final semantic coefficients. Further, prototypes from protohead and semantic co-
efficients are reshaped to 2d matrix and applied with linear combination followed
by softmax to produce semantic segmentation result. The operation is able to
be implemented by matrix multiplication which is defined as

S = softmax(P · Y ), (1)

where P ∈ R
N×k denotes prototypes , Y ∈ R

k×Nstuff stands for the reshaped
semantic coefficients, and S ∈ R

N×Nstuff is semantic segmentation result. Nstuff

represents the number of stuff classes including ’other’ class and N denotes the
number of locations in prototypes.

The feature maps in semantic head are much smaller than the large feature
maps in other approaches. Our semantic head provides faster semantic segmen-
tation generation and less computation cost.
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Fig. 5. The architecture of cross-layer at-
tention module. The layers F3, F4 and F5

in FPN are used. F3 is considered as target
feature, and all of them are set as source
features. ⊕ denotes element-wise addition.

Fig. 6. The architecture of cross
attention block. ⊗ denotes matrix
multiplication.

Cross-layer Attention Fusion. Since all of the semantic or instance masks are
derived from linear combination of mask coefficients and prototypes, the quality
of prototypes significantly influences the generated masks. Hence, we decide to
enrich the input features of protohead to help it produce preferable prototypes.

To enhance inputs of protohead, we propose a module called Cross-layer
Attention (CLA) Fusion Module. This fusion module aims to efficiently aggregate
the multi-scale feature maps in FPN layers. Certain layer within the module is
chosen to be the target feature map and extract values from source feature maps
with attention mechanism, as shown in Fig. 5. To provide high resolution details,
the layer F3, which is the highest resolution feature map in FPN, is selected as
target feature map, and we choose other layers (e.g. F3 to F5) as source features
to provide more semantic values for target.

Instead of directly merging multi-scale features with element-wise addition
or concatenation [2, 9, 30, 31], we combine them with a block called Cross Atten-
tion Block. Inspired by non-local [32] and self-attention [33–35], which are able
to capture long-range dependencies efficiently in feature map, the proposed cross
attention block follows their concepts and further finds the long-range relation-
ships from two different feature maps, as shown in Fig. 6. Each position in target
feature map is updated with the weighted sum of all positions in source feature,
where attention weight is calculated by similarities between the corresponding
positions.

For the target feature map T ∈ R
C×N and source feature map O ∈ R

C×N ′

,
we first transform these feature maps into two feature spaces θ(x) = Wθx and
φ(x) = Wφx and calculate the attention score s with dot product as shown below

si,j = θ(Ti)
Tφ(Oj), (2)

where si,j measures the attention score of position j in O and position i in T .
Here, C denotes the number of channels, and N denotes the number of locations
from feature maps. After that, we obtain the attention weight α by normalizing
attention score for each position j with softmax

αi,j =
exp(si,j)

∑N

j=1 exp(si,j)
, (3)
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where αi,j stands for the normalized impact of position j in source feature map
to position i in target feature map. Then, each position in output feature map
A ∈ R

C×N is produced by calculating weighted sum of source features across all
positions. The operation is shown as follows

Ai = v(
N∑

j=1

αi,jh(Oj)). (4)

Here, Ai denotes output feature on position i, and both v(x) = Wvx and h(x) =
Whx stand for embedding functions. The embedding functions θ, φ, h and v

are implemented by 1× 1 convolution, and their output channels are set to 128,
which is 1/2 of input channel to reduce computation cost. Finally, we apply cross
attention block on each layer including F5, F4 and F3 and consider F3 as target
feature map. The overall operation is defined as

Z = AF3,F5 +AF3,F4 +AF3,F3 + F3, (5)

where Z denotes the aggregated result from source and target features. Also,
we adopt residual connection that makes a new cross attention block easier to
insert without interfering the initial behaviors.

With the cross attention block, each position in the target feature is able to
obtain spatial dependencies over all positions in feature maps from other layers.
Moreover, we also select F3 as source feature map even F3 is target feature. In
this case, it is same as self-attention, which helps target feature capture long-
dependencies on its own feature map.

3.2 Training and Inference

During training, our EPSNet contains 4 loss functions in total, namely, clas-
sification loss Lc, box regression loss Lb, instance mask segmentation loss Lm

and semantic segmentation loss Ls. Because each loss function is in different
scales and normalized policies, different weights on different loss functions ac-
tually affect the final performance on instance and semantic branch. Thus,
we set several hyper-parameters on those loss functions, which is defined as
L = λcLc + λbLb + λmLm + λsLs.

In inference, since we won’t allow overlaps on each pixel in panoptic seg-
mentation, we resolve overlaps in instance segmentation with post-processing
proposed in [8]. After getting non-overlapping instance segmentation results, we
resolve possible overlaps between instance and semantic segmentation in favor
of instance. Further, the stuff regions which are predicted as ’other’ or under a
predefined threshold are removed.

4 Experiments

In this section, we conduct experiments on COCO [16] panoptic dataset. Exper-
imental results demonstrate that EPSNet achieves fast and competitive perfor-
mance on COCO dataset.
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4.1 Experimental Setup

Datasets. COCO [16] panoptic segmentation task consists of 80 thing classes
and 53 stuff classes. There are approximately 118K images on training set and
5K on validation set.

Metrics. We adopt the evaluation metric called panoptic quality (PQ), which
is introduced by [8]. Panoptic quality is defined as:

PQ =

∑

(p,g)∈TP IoU(p, g)

|TP|
︸ ︷︷ ︸

SQ

|TP|

|TP|+ 1
2 |FP|+

1
2 |FN|

︸ ︷︷ ︸

RQ

, (6)

which can be considered as the multiplication of semantic quality (SQ) and
recognition quality (RQ). Here, p and g are predicted and ground truth segments.
TP, FP and FN represent the set of true positives, false positives and false
negatives, respectively.

Implementation Details. We implement our method based on Pytorch [36]
with single GPU RTX 2080Ti. The models are trained with batch size 2. Owing
to the small batch size, we freeze the batch normalization layers within backbone
and add group normalization [37] layers in each head. The initial learning rate
and weight decay are set to 10−3 and 5 × 10−4. We train with SGD for 3200K
iterations and decay the learning rate by a factor of 10 at 1120k, 2400K, 2800k
and 3000k iterations and a momentum of 0.9. The loss weights λc, λb, λm and
λs are 1, 1.5, 6.125 and 2, respectively.

Our models are trained with ResNet-101 [1] backbone using FPN with Ima-
geNet [38] pre-trained weights. We adopt similar training strategies in backbone
and instance segmentation head as Yolact [27]. The number of prototypes k is set
to 32. Our instance head only predicts thing classes, and semantic head predicts
stuff classes viewing thing class as other. The cross attention blocks are shared
in cross-layer attention fusion module. The base image size is 550× 550. We do
not preserve aspect ratio in order to get consistent evaluation times per image.
We perform random flipping, random cropping and random scaling on images
for data augmentation. The image size is randomly scaled in range [550, 825] and
then randomly cropped into 550× 550.

4.2 Ablation Study

To verify the performance of training decisions and our cross-layer fusion atten-
tion module, we conduct the experiments with different settings in Table 1 on
COCO panoptic val set. The empty cells in the table indicate that the corre-
sponding component is not used.
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Table 1. Ablation study on COCO panoptic val set with panoptic quality (PQ),
semantic quality (SQ) and recognition quality (RQ). PQTh and PQSt indicate PQ on
thing and stuff classes. Data Aug denotes data augmentation. CLA Fusion stands for
cross-layer attention fusion.

Data Aug CLA Fusion Loss Balance PQ PQTh PQSt SQ RQ

35.4 40.5 27.7 77.2 43.5√
37.4 43.2 28.6 77.6 45.7√ √
38.4 43.0 31.4 77.7 47.6√ √ √
38.6 43.5 31.3 77.9 47.3

Table 2. Ablation study on number of prototypes.

Prototypes PQ PQTh PQSt Inf time (ms)

16 38.4 43.4 30.8 50.7

32 38.6 43.5 31.3 51.1

64 38.4 43.2 31.2 52.4

Data Augmentation. We compare the model without using data augmenta-
tion during training. The first and second rows in Table 1 show that the model
trained with data augmentation improves by 2% in PQ. It proves that data
augmentation plays important role during training.

Cross-layer Attention Fusion. For the model without using cross-layer fu-
sion module, it is replaced by another fusion module similar to Panoptic-FPN
[14]. We adopt convolution blocks for different layers in backbone and combine
them together. The layers F5, F4 and F3 are attached with 3, 2 and 1 convolu-
tion blocks respectively and 2× bilinear upsampling layers between each block.
Output features are obtained by combining them with element-wise addition. As
shown in second and third rows in Table 1, the model employing the cross-layer
attention fusion module yields 38.4% in PQ and 2.8% improvement in PQSt.

Loss Balance. In order to balance the loss values in similar order of magnitude,
we assign different weights for each loss during training. With loss balance, the
weights are same as experimental setting. Without loss balance, all weights are
set to 1. As shown in the third and fourth rows in Table 1, the model with loss
balance performs better especially on PQTh.

Prototypes. We further conduct experiments on the number of prototypes.
As shown in Table 2, the number of prototypes barely influence the overall
performance. However, it will affect the inference and post-processing time. We
choose 32 prototypes for the setting of EPSNet.

The ablation results show that our cross-layer attention fusion and training
strategies bring significant improvement on panoptic segmentation.
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Table 3. Performance comparison on
different design of semantic head. stan-
dard denotes EPSNet with other de-
sign choice on semantic head, which di-
rectly generates semantic segmentation
with convolutional layers. Note that,
the EPSNet here does not use CLA fu-
sion. M-adds denotes multiply-adds.

Method PQ PQTh PQSt M-Adds (M)

standard 37.2 42.9 28.5 33.8

coefficients 37.4 43.2 28.6 9.4

Table 4. Performance comparison of
using different options on semantic co-
efficients.

Method PQ PQSt

top-left 33.2 17.7

top-right 33.4 18.1

bottom-left 33.5 18.3

bottom-right 33.6 18.5

center 37.5 28.5

max pooling 37.6 28.8

average pooling 38.6 31.3

4.3 Analysis of Semantic Head

We further compare our semantic segmentation head to other design choice.
In most proposed panoptic segmentation networks, they adopt feature maps in
backbone and perform FCN [17] to obtain pixel-wise predictions. The semantic
head of compared model is constructed by apply 1 × 1 convolutional layer on
the the fused feature maps with the Panoptic-FPN fusion, whose size is same
as F3. Note that we only replace the semantic head in EPSNet without CLA
fusion. We count the multiply-adds to evaluate the computation cost of different
structures for semantic heads.

The experimental results in Table 3 show that the computation cost of the
proposed semantic head is about 0.3 times less than the standard semantic head,
although our semantic head is deeper. Unlike the standard semantic segmenta-
tion, because of the small input feature maps for computation, the proposed
semantic head using mask coefficients does not slow down inference speed and
outperforms the standard semantic head.

In semantic head, the coefficients k × Nstuff in each position is able to be
used to generate semantic segmentation before average pooling. To verify the
impact of coefficients from different position, we use the coefficients before aver-
age pooling from corner positions and center position to perform the semantic
segmentations. In Table 4, the comparison shows that the result using coefficients
from center position is superior than other positions. Moreover, we compare the
different options on pooling operation. The coefficients produced by average
pooling yield better performance than using max pooling, as shown in Table 4.

To sum up, the proposed semantic head predicts mask coefficients of each
class with faster inference speed and efficiently exploits shared prototypes with-
out dragging down panoptic segmentation performance.

4.4 Analysis of Cross-layer Attention Fusion Module

In this subsection, we investigate different strategies of using cross-layer attention
(CLA) fusion. We compare our EPSNet to the model using other fusion method
like Panoptic-FPN [14] with F3, F4 and F5 and another model only employing
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Input Image Ground Truth Normal Fusion CLA Fusion

Fig. 7. Visualization results of cross-layer attention fusion on COCO panoptic val set.
Normal fusion stands for the Panoptic-FPN [14] fusion with F3,F4 and F5.

Table 5. Performance comparison on different strategies for fusion module. The infer-
ence time is measured without considering post-processing.

Method PQ PQTh PQSt Inf time

Panoptic-FPN fusion [14] (F3, F4, F5) 37.4 43.2 28.6 23ms

CLA fusion (F3) 38.3 43.5 30.5 27ms

CLA fusion (F3, F4, F5) 38.6 43.5 31.3 29ms

F3 as source feature map with CLA fusion module. As shown in Table 5, the
model with CLA fusion outperforms the Panoptic-FPN fusion espescially on
PQSt. Also, more layers are adopted in CLA fusion can yield slight improvement
and inference time. The comparison of using cross-layer attention fusion can be
visualized as Fig. 7. The details of background are much better and clearer. CLA
fusion helps model generate higher quality segmentation especially for the stuff
classes. For instance, the segments of the table in the first row and the ground
in the second rows are much more complete.

To further understand what has been learned in CLA fusion module, we select
two query points in input image in the first and fourth columns and visualize
their corresponding sub-attention maps on other source features (F3 and F4) in
remaining columns. In Fig. 8, we observe that CLA fusion module can capture
long-range dependencies according to the similarity. For example, in first row,
the red point #1 on bus pays more attention on positions labeled as bus (second
and third columns). For the point # 2 on ground, it highlights most areas labeled
as ground(fifth and sixth columns).

4.5 Comparison with Other Methods on COCO

We compare our method on COCO val set with panoptic quality and inference
speed measured from input image to panoptic segmentation output including
post-processing time. Specifically, our model is only trained on COCO training
dataset with ResNet-101-FPN and tested using single-scale 550× 550 image. As
shown in Table 6, EPSNet outperforms every one-stage method and improves the
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Image
(point #1)

Sub-attention
map (F3)

Sub-attention
map (F4)

Image
(point #2)

Sub-attention
map (F3)

Sub-attention
map (F4)

Fig. 8. Visualization results of cross attention block on COCO panoptic val set. In each
row, we show the input images with different marked points in 1st and 4th columns and
two sub-attention maps on source features (F3 and F4) corresponding to the marked
point in 2nd, 3th, 5th and 6th columns.

performance over Real-time Panoptic Segmentation [39] with ResNet-50-FPN
backbone and large input size by 1.5% PQ. Also, our inference speed is much
faster than all existing panoptic segmentation methods. EPSNet only takes 51ms
for inference, which is 1.4× faster than DeeperLab with Light Wider MobileNet-
V2 [40] backbone and 3.1× faster than UPSNet [9]. Compared to the two-stage
methods, we bring better performance especially on PQSt, which outperforms
Panoptic-FPN [14] by 1.8%, indicating that our approach provides better results
on semantic segmentation. Despite the one-stage detector of EPSNet, with the
fusion module and efficient architecture, we not only achieve competitive result
for panoptic segmentation but also boost the inference speed.

In COCO test set, the inference setting is the same as COCO val set exper-
iment. As shown in Table 7, we outperform SSAP [26], which adopts horizontal
flipping and multi-scale input images for testing , by 2% PQ. Without any ad-
ditional tricks, we still achieve competitive result compared to other methods.

5 Conclusions

In this paper, we present a one-stage Efficient Panoptic Segmentation Network.
The masks are efficiently constructed by linear combination of prototypes gen-
erated by protohead and mask coefficients produced by instance and semantic
branches. The proposed cross-layer attention fusion module aggregates multi-
scale features in different layers with attention mechanism to enhance the quality
of shared prototypes. The experiments show that our method achieves compet-
itive performance on COCO panoptic dataset and outperforms other one-stage
approaches. Also, EPSNet is significantly faster than the existing panoptic seg-
mentation networks. In the future, We would like to explore a more effective way
to replace the heuristic merging algorithm.
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Table 6. Panoptic segmentation results on COCO val set. LW-MNV2 denotes Light
Wider MobileNet-V2.

Method Backbone Input Size PQ PQTh PQSt Inf time (ms)

Two Stage

JSIS [18] ResNet-50 400× 400 26.9 29.3 23.3 -
AUNet [13] ResNet-50-FPN - 39.6 49.1 25.2 -
Panoptic-FPN [14] ResNet-101-FPN - 40.3 47.5 29.5 -
AdaptIS [10] ResNeXt-101 - 42.3 49.2 31.8 -
UPSNet [9] ResNet-50-FPN 800× 1333 42.5 48.6 33.4 167

Single Stage

DeeperLab [25] LW-MNV2 641× 641 24.1 - - 73
DeeperLab [25] Xception-71 641× 641 33.8 - - 119
SSAP [26] ResNet-101 512× 512 36.5 - - -
Real-time PS [39] ResNet-50-FPN 800× 1333 37.1 41.0 31.3 63

Ours ResNet-101-FPN 550× 550 38.6 43.5 31.3 51

Table 7. Panoptic segmentation results on COCO test-dev set. Flip and MS stands
for horizontal flipping and multi-scale inputs during testing.

Method Backbone Flip MS PQ PQTh PQSt

Two Stage

JSIS [18] ResNet-50 27.2 29.6 23.4
Panoptic-FPN [14] ResNet-101-FPN 40.9 48.3 29.7
AdaptIS [10] ResNeXt-101 X 42.8 50.1 31.8
AUNet [13] ResNeXt-101-FPN X 46.5 55.8 32.5
UPSNet [9] ResNet-101-FPN X X 46.6 53.2 36.7

Single Stage

DeeperLab [25] Xception-71 34.3 37.5 29.6
SSAP [26] ResNet-101 X X 36.9 40.1 32.0

Ours ResNet-101-FPN 38.9 44.1 31.0
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