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Abstract. Generative Adversarial Networks (GANs) have become a
powerful approach for generative image modeling. However, GANs are
notorious for their training instability, especially on large-scale, complex
datasets. While the recent work of BigGAN has significantly improved
the quality of image generation on ImageNet, it requires a huge model,
making it hard to deploy on resource-constrained devices. To reduce the
model size, we propose a black-box knowledge distillation framework for
compressing GANs, which highlights a stable and efficient training pro-
cess. Given BigGAN as the teacher network, we manage to train a much
smaller student network to mimic its functionality, achieving competitive
performance on Inception and FID scores with the generator having 16 x
fewer parameters.!

1 Introduction

Generative Adversarial Networks (GANs) [1] have achieved considerable success
in recent years. The framework consists of a generator, which aims to produce
a distribution similar to a target one, as well as a discriminator, which aims
to distinguish these two distributions. The generator and the discriminator are
trained in an alternative way, with the discriminator acting as an increasingly
scrupulous critic of the current generator. Conditional GANs (cGANs) [2] are
a type of GANs for generating samples based on some given conditional infor-
mation. Different from unconditional GANs, the discriminator of cGANs is now
asked to distinguish the two distributions given the conditional information.
Despite their success, GANs are also known to be hard to train, especially on
large-scale, complex datasets such as ImageNet. The recent work of BigGAN |[3],
a kind of cGANs, demonstrates the benefit of scaling. More precisely, by scaling
up both the model size and batch size, some of the training problems can be
mitigated, and high-quality images can be generated. However, this also leads to
high computational cost and memory footprint, even for inference in test time.
One may wonder if it is possible to compress such a large model into a much
smaller one. For classification tasks, several techniques have been developed for

! The source code and the trained model are publicly available at https://github.
com/terarachang/ACCV_TinyGAN.
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Fig.1: A comparison between images generated by BigGAN and the proposed
TinyGAN. Pictures in odd rows are produced by BigGAN, while those in even
rows are by TinyGAN given the same input.

compressing classifiers, including knowledge distillation [4], network pruning [5],
and quantization [6]. For compressing GANs, we find that the concept of knowl-
edge distillation (KD) becomes especially appealing. Based on a teacher-student
framework, it aims to impart knowledge encoded in a large, well-trained teacher
network to a small student network. For GANs, we find it appropriate to con-
sider the input-output relationship of the teacher generator as the knowledge
to be distilled. Note that the difficulties of training GANs from scratch may be
attributed mostly to the lack of supervision from paired training data. Not sure
about what the ideal functionality it should have, the generator turns to chase
a moving target provided by an evolving discriminator. On the other hand, hav-
ing a well-trained generator such as BigGAN as a teacher, we can use it simply
as a black box to generate its input-output pairs as training data, and train
a student network in a supervised way. Such a supervised learning is typically
much easier, with a much more stable and efficient training process. In contrast,
training classifiers are usually done in a supervised way already, and hence KD
on classifiers usually takes a white-box approach, requiring access to the internal
of the teacher networks.

Fig. 2: Illustration of the problem
formulation. z is the noise vector, Teacher Generator T — xp

and y is the class label. Our goal — (black box) %

is to mimic the functionality of 2% ¥
the teacher generator via black- T,  Student

X
box knowledge distillation. Generator S s
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Although KD has been successfully applied to classification tasks [7,4], it
is less studied for image generation. In our work, we leverage BigGAN trained
on ImageNet as our teacher network and design a compact, lightweight student
network to mimic the functionality of BigGAN. Given a noise vector and a class
label as input, we would like the student network to generate a similar, high-
quality image like that produced by BigGAN. In this paper, we focus on black-box
KD, defined as having access to only the input-output functionality of the teacher
network, instead of any internal knowledge such as its intermediate features
as needed in works such as [4,8]. We claim that this is a meaningful setting
for several aspects. First, it allows one to utilize a model without needing the
authority to access its model parameters, by simply collecting its input/output
pairs. Next, it allows us to discard the teacher network (both generator and
discriminator) in the training phase to save memory after collecting such pairs in
the preprocessing step. Furthermore, it allows us to adopt a different architecture
for the student network, which enables us to substantially reduce the model size
from that of BigGAN. Figure 2 is an illustration of our problem formulation,
and Figure 1 shows some sampled results.

We propose several training objectives for distilling BigGAN, including pizel-
level distillation, adversarial distillation, and feature-level distillation. Given the
same input, let 7 and xg be the images generated by the teacher and the stu-
dent networks respectively. The objective of pizel-level distillation is to minimize
the distance between x7 and zg, and here we use the pixel-wise L1 distance.
We further utilize a small discriminator to help align our generated distribution
to BigGAN’s, with the adversarial distillation having a similar objective as in
standard GAN training, but now taking BigGAN’s output distribution as the
target one. Finally, as pixel-level distance often leads to blurry images, we ap-
ply feature-level distillation to mitigate this problem. We achieve this without
needing additional parameters, by taking the intermediate features in the dis-
criminator and encouraging those derived from xg to match those from x7. In
addition to the distillation objectives, we also include the standard cGANs loss,
to push our generated distribution towards that of ImageNet as well. Our main
contributions are summarized as follows.

— We identify a unique and advantageous property of compressing GANs via
knowledge distillation, and initiate the study on the diverse ImageNet.

— We propose a black-box KD framework tailored for GANs, which requires
little permission for the teacher networks and highlights an efficient training
process.

— Our strategy greatly compresses BigGAN, while our model maintains com-
petitive performance.

We see our contributions as more conceptual than technical. While the task of
compressing classifiers has received much attention, to our knowledge, we are
the first to explore black-box KD for compressing GANs. Moreover, we identify
a unique property of KD on GANs, which enables us to apply rather simple
techniques to achieve a substantial compression ratio, and we believe that it is
possible to combine our approach with other compression techniques to further
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reduce the model size. Let us remark that the emphasis of our work is the real-
ization of a simple and efficient strategy to obtain a generator with both good
quality and a compact size. Whereas we do not rule out the possibility of train-
ing a small-sized, well-performed, and stable GANs from scratch, it is likely to
be challenging except for very skilled and experienced experts. In fact, in our at-
tempt to directly train a smaller GAN from scratch, we have encountered those
notorious training problems as expected, while we have never experienced any
issues of instability when taking our KD approach. Therefore, our work suggests
a possibly more reliable way to obtain a lightweight, high-quality generator: in-
stead of directly training one from scratch, one could first train a large generator
and then distill from it a small one.

2 Related Work

Generative Adversarial Networks. GANs have excelled in a variety of image
generation tasks [9-11]. Still, they are well known for problems such as training
instability and sensitivity to hyperparameter choices, requiring great efforts in
model tuning. Several works [12-16] have aimed to tackle such problems. No-
tably, the recent work of [17,18] proposed to constrain the Lipschitz constant
of the discriminator function by limiting the spectral norm of its weights, which
makes possible high quality class-conditional image generation over large-scale,
complex distributions.

BigGAN. BigGAN [3] further scales up GANs by training with considerable
model size and batch size on complex datasets. It basically follows previous
SOTA architectures [17-19], and proposes two variants, BigGAN and BigGAN-
deep, to incorporate the input noises and class labels. Utilizing the truncation
trick, i.e., training a model with z ~ N(0,I) but sampling z from a truncated
normal (with values falling outside two standard deviations being re-sampled) in
test time, BigGAN is able to trade off variety and fidelity. BigGAN demonstrates
that GANs benefit dramatically from scaling.

Knowledge Distillation on GANs. Perhaps the work most related to ours is [20],
which to our knowledge is the first to apply knowledge distillation on GANSs.
However, their experiments are conducted on MNIST, CIFAR-10, and CelebA,
which are relatively simple with much less image diversity compared to Ima-
geNet. Besides, there are several differences in the settings. First, they do not
experiment on conditional generation. Second, they explore teacher-student gen-
erators only on the DCGAN architectures, which might be less general and seems
easier for the student to mimic a teacher with a similar architecture. Finally, ac-
cessing to and updating the teacher discriminator are allowed in their work,
while we focus on black-box knowledge distillation, which is more memory effi-
cient during training as we do not need to keep the large teacher network. (Once
we synthesized the dataset from BigGAN’s generator during the preprocessing
phase, we do not need it anymore). To sum up, in this work, we study knowledge
distillation on GANSs in a more general framework and a harder setting.



Fig. 3: Examples generated by TinyGAN trained with pixel-level distillation loss
(Eq. 1) alone, shown in the second row. The first row shows corresponding images
produced by BigGAN given the same input.

3 Tiny Generative Adversarial Networks

We first describe how our proposed framework, TinyGAN, distills knowledge
from BigGAN. Then, we discuss how TinyGAN incorporates real images from
the ImageNet dataset, which further improves the performance.

3.1 BigGAN Distillation

We propose a black-box KD method specifically designed for GANs, which does
not need to access the parameters of the teacher network or share a similar
network structure. We use BigGAN as the teacher network and train our stu-
dent network, TinyGAN, with much fewer parameters to mimic its input-output
behavior. We will elaborate on several proposed objectives for knowledge distil-
lation in this subsection.

Pizel-Level Distillation Loss. To mimic the functionality of BigGAN, a naive
method is to minimize the pixel-level distance between the images generated by
BigGAN and TinyGAN given the same input. Formally, let

LKD_piX = Ezwp(z),ywq(y)[HT(z, y) - S(z, y)”l]a (1)

where T is the frozen teacher network (BigGAN’s generator), S is our student
network, z € R'?® is a latent variable drawn from the truncated normal distri-
bution p(z), and y is the class label sampled from some categorical distribution
q(y). However, we found that using such a pixel-level distance alone is not suffi-
cient for modeling complex datasets such as ImageNet, resulting in blurry images
as shown in Figure 3. Thus, we propose the following additional objectives to
mitigate this problem.

Adwversarial Distillation Loss. To sharpen the generated images, we incorporate a
discriminator to help make the images generated by TinyGAN indistinguishable
from those by BigGAN. We adopt an adversarial loss

Lxps = —E. 4[D(S(z,9),y)] (2)
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Fig. 4: Mlustration of the proposed pipeline and the distillation objectives.

for the generator, and the loss
Lkpp = E. y[max(0,1 = D(T'(z,9),y)) + max(0,1 + D(5(z,9),y))]  (3)

for the discriminator, where z is the noise vector, y is the class label, T'(z,y) is
the image generated by BigGAN, while S and D are respectively the generator
and discriminator of our TinyGAN, which are alternatively trained as in usual
GAN training. We trained our small-sized discriminator D from scratch, and
have experimentally found that projection discriminator with hinge adversarial
loss proposed by [17] works the best.

Feature-Level Distillation Loss. To further mitigate the problem of generating
blurry images using pixel-level distance, we propose a feature-level distillation
loss, which does not require any additional parameter. We believe that as the
discriminator needs to distinguish the source of images, it must learn some useful
features. Hence, we take the features computed at each convolutional layer in
the discriminator, and ask TinyGAN to generate images with similar features as
those from BigGAN. Formally, let

LKD,feat - Ez,y[zzazHDz(T(Zay)7y) - Dl(s(z’y)ay)”l]? (4)

where D; is the feature vector extracted from the ith-layer of our discrimina-
tor, and «; is the corresponding weight. We put more emphasis on higher-level
features and assign larger weights to them.
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This objective is similar to the feature matching loss proposed by [21], which
encourages the generator to generate images containing intermediate representa-
tions similar to those from the real images in order to fool the discriminator. We
have also tried to incorporate different kinds of feature-level loss, such as per-
ceptual loss from VGG network [22], but got worse results. Figure 4 illustrates
all the proposed distillation objectives.

3.2 Learning from Real Distribution

We also allow our model to learn from real images in ImageNet dataset, attempt-
ing to ameliorate the mode dropping problem of BigGAN we observed in some
classes. Specifically, we use the hinge version of the adversarial loss [23]

Laanp = Ep y[max(0,1 = D(z,y))] + E. y [max(0, 1+ D(5(z,9),9)),  (5)

where z is now the real image sampled from ImageNet. The generator loss
Lgan._s is the same as Ligp_s in Equation (2).

3.3 Full Objective

Finally, the objective to optimize our student generator and discriminator, S
and D, are written respectively as

Lg = LD feat + M LKD pix + A2Lkp.s + A3Lcan.g, and (6)

Lp = Lkpp + MLgan .- (7)

Empirically, we gradually decay the weight of the pixel-level distillation loss
A1 to zero, relying on the discriminator to provide useful guidance. Note that
pixel-level distillation loss is still an important term, since it provides stable
supervision in the early training phase while discriminator might still be quite
naive at that time.

4 Network Architecture

Now we describe the architectures of our generator and discriminator in detail.

4.1 Generator

We have tried different generator architectures and experimentally found that
ResNet [24] based generator with class-conditional BatchNorm [25,26] works
better. To keep a tight computation budget, our student generator does not
adopt attention-based [19] or progressive-growing mechanisms [27]. To substan-
tially reduce the model size, we mainly rely on using fewer channels and replacing
standard convolution by depthwise separable convolution. In addition, we adopt
a simpler way to introduce class conditions which also helps the reduction. Over-
all, our generator has 16x fewer parameters than BigGAN’s, while still capable
of generating satisfying images of 128 x 128 resolution.
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Shared Class Embedding. We provide class information to the generator with
class-conditional BatchNorm [25, 26]. To reduce computation and memory costs,
similar to BigGAN, we use shared class embedding for different layers, which is
linearly transformed to produce the BatchNorm affine parameters [28]. Different
from BigGAN, we design a simpler architecture to incorporate the class label.
Specifically, we only input the noise vector z to the first layer, and then for each
conditional BatchNorm layer, we linearly transform the class embedding F(y)
to the gains and biases. Figure 5 is the illustration of our generator architecture.

Depthwise Separable Convolution. To further reduce the model size, we replace
all the 3 x 3 standard convolutional layers in our generator with depthwise sepa-
rable convolution [29], which factorizes a standard convolution into a depthwise
convolution and a pointwise convolution, by first applying a single filter to each
input channel (depthwise), and then utilizing a 1 X 1 convolution to combine
the outputs (pointwise). Depthwise separable convolution uses % + ﬁ fewer
parameters than the standard one, where O is the number of output channels
and k is the kernel size. We denote TinyGAN using standard conv. layers as

TinyGAN-std, and the variant with depth-wise conv. layer as TinyGAN-dw.2

4.2 Discriminator

With the supervision from BigGAN, the difficulties of training is greatly reduced
and we found that a simple discriminator architecture already works well. Follow-
ing [18,17], we use spectral normalized discriminator and introduce the class
condition via projection. But instead of utilizing complicated residual blocks,
we found that simply stacking multiple convolutional layers with stride as DC-
GAN [30] works well enough, which greatly reduces the number of parameters.
In fact, our discriminator is 10x smaller than that of BigGAN’s.

5 Experiments

5.1 Datasets

ImageNet. The ImageNet ILSVRC 2012 dataset [31] consists of 1,000 image
classes, each having approximately 1,300 images. We compressed each image to
128x128 pixels, using the source code released by [17].

Images Generated by BigGAN. We view BigGAN, our teacher network, as a
black-box model and collect its input-output pairs to train our student network.
For each class, we randomly sample 3,000% noise vectors from the truncated
normal distribution and collect the corresponding output generated by BigGAN
using the official API.*

2 Note that all the figures in this paper are generated by the TinyGAN-dw variant.

3 We also tried 1000 instances per class, which already achieves good results; however,
no significant improvement was observed when we increased to 4000.

* https://tfhub.dev/deepmind/biggan-deep-128/1
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As we found TinyGAN unable to model some complicated objects well enough,
we only report in Table 1 the IS/FID/intra-FID scores measured on all animal
classes (398 classes in total). It shows that our approach can work well for a
large set of homogeneous classes, and we focus on animals as they may have
more downstream applications than other classes. Further discussion about ex-
periments on all 1000 classes can be found in the supplementary material.

5.2 Evaluation Metrics

Inception score (IS). IS [32] measures the KL-divergence between the conditional
class distribution p(y|z) and the marginal class distribution p(y). Formally,

IS = exp (E.[KL(p(y|z)llp(y))]). (8)

A higher Inception score suggests a better performance. Despite the limitations
of IS [33], we still adopt it as it is widely used in prior works.

Fréchet Inception Distance (FID). FID score [34] computes the 2-Wasserstein
distance between the two distributions r and g, and is given by

FID(r, g) = [|ptr — .Ug||2 + Tr(2 + Xy — 2(27“251)1/2)~ 9)

Here, p, and pg are the means of the final feature vectors extracted from the
inception model [35] with input from the real and generated samples respectively,
while Y. and Y, are the corresponding covariance matrices, and Tr is the trace.
We also compute the intra-FID score [17], which measures the average FID score
within each class.
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Unlike Inception score, FID is able to detect intra-class mode dropping. It
is considered a more consistent estimator [33], as a model that generates only a
single image per class can score a perfect IS but not a good FID. Here we follow
prior works and use TensorFlow toolkit to calculate IS and FID scores.

5.3 Baseline Models

SNGAN-Projection. Spectral Normalization GAN (SNGAN) [18] proposes spec-
tral normalization to stabilize the training of the discriminator. [17] further
proposes a projection-based discriminator, which incorporates the class labels
via inner product instead of concatenation. The combined model, denoted as
SNGAN-Projection, has shown significant improvements on ImageNet Dataset,
and we consider it as a strong baseline model. Statistics in Table 1 are reported
using the source code and the pretrained generator released by the authors.’

SAGAN. Self-Attention GAN (SAGAN) [19] is built atop SNGAN-projection,
and introduces a self-attention mechanism [36,37] into convolutional GANs, in
order to model long-range dependencies across image regions. As the authors
do not provide a pretrained model and we are unable to train it from scratch
due to limits of computation, its scores are left blank in Table 1, and we only
compare its model size and computation cost to our TinyGAN. For reference, the
IS/FID/intra-FID scores reported in the original paper, evaluated on all 1000
classes, are 52.52/18.7/83.7 respectively.

TinyGAN trained from scratch. To justify the effectiveness of knowledge distilla-
tion on GANS, we also experimented on training TinyGAN from scratch, without
the guidance of a teacher network. That is, we use an identical architecture of
TinyGAN, but trained it using only the adversarial loss Lgan (Eq. 5).

5.4 Training

The proposed TinyGAN are trained using Adam [38] with 8; = 0.0 and 82 = 0.9.
The learning rates of generator and discriminator are both set to 0.0002 with
linear decay. We perform one generator update after 10 discriminator updates.
With the stable guidance from the teacher network, no special tricks for training
GANSs are needed. While BigGAN notes that using a large batch size boosts the
performance, in our TinyGAN, we found that a smaller batch size (32 or 16)
works as well. Training takes about 3 days on a single NVIDIA 2080Ti GPU.

5.5 Results

We evaluate TinyGAN on all the 398 animal classes in the ImageNet dataset,
and the results are shown in Table 1. We compare the computation cost of

® https://github.com/pfnet-research/sngan_projection



TinyGAN 11

Model Ch. #Par. G Par. FLOPs IS 1 FID | intra-FID |
SNGAN-proj 64 720M 420M 910B 314+0.7  29.0 84.1
SAGAN 64 815M 420M 0.18B - - -
BigGAN-deep 128 85.0M 504M 832B 146.1+1.7 19.8 55.6
TinyGAN-std 32 126M 93M 229B 940+£12 21.6 70.6
TinyGAN-std 16 6.2M 29M 058B 6825+10 274 88.1
TinyGAN-dw 32 64M 31M 044B 79.19+16 242 79.1

Table 1: Inception Score (IS, higher is better) and Fréchet Inception Distance
(FID, lower is better). Ch. is the channel multiplier representing the number of
units in each layer. #Par. is total number of parameters. We highlight the gen-
erator’s parameters G Par. since the discriminator is not required for inference.
M denotes million and B is billion.

Fig. 7: A comparison between randomly sampled images generated by TinyGAN-
dw (left) and SNGAN-projection (right).

TinyGAN with the teacher network (BigGAN-deep) and two strong baseline
models discussed before.

Note that our proposed model uses much fewer parameters and floating-point
operations than all the other frameworks. We also study the trade-off between
model size and performance of different variants of TinyGAN in the last three
rows in Table 1. Experiments show that TinyGAN with standard conv. layers
(TinyGAN-std) achieves the best performance but uses more parameters. To
reduce the model size, we can either reduce the channel multiplier or adopt-
ing depth-wise separable conv. layers (TinyGAN-dw). The result shows that
aggressively reducing channels leads to a noticeable drop in performance. On
the other hand, it is much less significant in TinyGAN-dw, making it a suit-
able choice under a tight computation budget. Specifically, our generator of
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Model FID | intra-FID |
TinyGAN-dw 24.2 79.1
_LKD,feat 54.4 149.2
—Lgan 28.8 89.9
—Lkp_s, LxpD 60.5 157.0
Lxp _pix 107.9 216.0

Table 2: Ablation Study

TinyGAN-dw
o TinyGAN-std

(RN
0
:
)
5 10 15 20 25 30 35 o 50 100 150 200 250 300 350

epoch TinyGAN

Fig.8: FID scores during the training Fig.9: Comparing intra-FID scores of
phase of TinyGAN-dw (trained from TinyGAN and BigGAN. Each dot cor-
scratch v.s. trained with KD losses). responds to a class.

TinyGAN-std/TinyGAN-dw has ~ 18%/6% parameters and ~ 28% /5% FLOPs
when compared with the teacher network, and we also have similar reductions
from the other two baseline models.

Although there is a performance gap between our TinyGAN-dw and the
teacher network, we claim that it is tolerable considering its compact model
size, and its better performance over SNGAN-projection in all the metrics. We
further compare the image quality of TinyGAN-dw and SNGAN-projection in
Figure 7, where all images are randomly sampled within animal classes. We
found that while SNGAN-projection is able to produce sharper images with clear
details, perhaps due to its larger model complexity, our TinyGAN focuses on the
intended class itself and generates more realistic images with less distortion.®

Finally, let us stress that the main point of our work is not to claim how
small our network is, but to propose an easy way to train such one. Figure 8
shows the learning curve of TinyGAN-dw, demonstrating a smooth, stable and
efficient training process it has. In fact, with our knowledge distillation losses,
we have never experienced any training collapse, and most of our effort has been
spent on finding the right balance between model size and image quality. On the
other hand, we have also experimented on training TinyGAN from scratch, and

5 More randomly sampled images for comparisons between TinyGAN and SNGAN-
projection can be found in the supplementary material.
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fixed. Observe that semantics are maintained between two endpoints.

the blue line in Figure 8 shows a typical training failure we often encountered.
Although we do not rule out the possibility of training a small-size GAN from
scratch, based on the network architecture of either TinyGAN, BigGAN, or other
baselines, a successful training is likely to be hard without considerable efforts
for overcoming those well-known training problems.

5.6 Analysis

Ablation Study. We conduct ablation study to validate those objectives proposed
in Section 3.1. Table 2 shows the results of omitting Lxp_feat (Eq. 4), Lgan
(Eq. 5), and Lkp_s, Lkp p (Eq. 2,3) respectively, as well as that of using Lkp pix
(Eq. 1) alone without the discriminator.

The fifth row in Table 2 shows that adding a discriminator, which only costs
a few parameters, is very crucial for the performance. Because the discrimina-
tor is trained to discern real from fake images, it guides the generator to pro-
duce sharper and more realistic images. Similarly, feature-level distillation loss
LKD feat significantly improves the performance as the generator learns to match
the informative features extracted from the discriminator. In addition, omitting
adversarial distillation loss Lkp_s, Lxkp_.p and keeping the others is equivalent
to training a standard ¢cGANs (with the real distribution from ImageNet) while
incorporating supervision from the teacher via pixel-wise and feature-wise losses.
The notable drop in performance in the fourth row indicates the importance of
leveraging the discriminator to push the student’s output distribution to the
teacher’s.

In addition to the distillation objectives which provide stable supervision
from the teacher, including the standard adversarial loss Lgan further improves
the image quality. The ablation study demonstrates that all the proposed objec-
tives in Section 3 are useful for training our TinyGAN.
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Fig. 11: Samples of the 10 worst classes. The first row is generated by BigGAN
and the second row is by TinyGAN-dw.

Interpolation. To understand the generalization ability of our TinyGAN-dw,
we perform linear interpolations between random noise vectors z1, zo and class
labels Y1, Y2-

We first interpolate between the class embedding E(y;) and E(y2) with the
noise vectors fixed. In Figure 10, the second and third rows demonstrate that
TinyGAN can successfully perform category morphing. We then interpolate be-
tween the noise vectors z; and zp with fixed class labels. The last two rows
in Figure 10 show that TinyGAN can also smoothly manipulate some coarse
features such as poses and sizes of the animals.

Quality Analysis. Finally, to better understand the weakness of our TinyGAN,
we investigate on classes with high intra-FID scores. We first show the positive
correlation (Pearson’s correlation coefficient = 0.54,0.64) between teacher and
student networks (-dw, -std) in Figure 9, which reveals that TinyGAN’s failure
in a few classes can be attributed to the teacher network. We then focus on
the 10 worst classes with the highest FID scores, which are chambered nautilus,
Indian cobra, sea snake, triceratops, tick, ringneck snake, walking stick, trilobite,
crayfish, and American lobster. As the samples in Figure 11 show, most of them
have complicated or delicate appearances and bear little resemblance to most of
the others, making them hard to model with others by a small network.

6 Conclusion

Training GANSs from scratch has well-known problems, especially for complex
datasets such as ImageNet, and the recent work of BigGAN shows that scaling
up GANSs can mitigate some of the problems and produce high-quality images.
However, it requires huge computational resources not only for training but also
for testing, which may prevent its use in resource-limited devices. We propose
a novel black-box knowledge distillation method for GANs, which allows us to
learn a much smaller generator with competitive performance in an efficient and
stable way when given a well-trained large generator such as BigGAN.
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