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Abstract. Human motion prediction aims to predict future 3D skele-
tal sequences by giving a limited human motion as inputs. Two popular
methods, recurrent neural networks and feed-forward deep networks, are
able to predict rough motion trend, but motion details such as limb move-
ment may be lost. To predict more accurate future human motion, we
propose an Adversarial Refinement Network (ARNet) following a simple
yet effective coarse-to-fine mechanism with novel adversarial error aug-
mentation. Specifically, we take both the historical motion sequences and
coarse prediction as input of our cascaded refinement network to predict
refined human motion and strengthen the refinement network with ad-
versarial error augmentation. During training, we deliberately introduce
the error distribution by learning through the adversarial mechanism
among different subjects. In testing, our cascaded refinement network
alleviates the prediction error from the coarse predictor resulting in a
finer prediction robustly. This adversarial error augmentation provides
rich error cases as input to our refinement network, leading to better
generalization performance on the testing dataset. We conduct exten-
sive experiments on three standard benchmark datasets and show that
our proposed ARNet outperforms other state-of-the-art methods, espe-
cially on challenging aperiodic actions in both short-term and long-term
predictions.

1 Introduction

Given the observed human 3D skeletal sequences, the goal of human motion
prediction is to predict plausible and consecutive future human motion which
convey abundant clues about the person’s intention, emotion and identity.
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Effectively predicting the human motion plays an important role in wide vi-
sual computing applications such as human-machine interfaces [1], smart surveil-
lance [2], virtual reality [3], healthcare applications [4], autonomous driving [5]
and visual human-object tracking [6]. However, predicting plausible future hu-
man motion is a very challenging task due to the non-linear and highly spatial-
temporal dependencies of human body parts during movements [7].

Considering the time-series property of human motion sequence, recent deep
learning based methods formulated the human motion prediction task as a
sequence-to-sequence problem and achieved remarkable progresses by using chain-
structured Recurrent Neural Networks (RNNs) to capture the temporal depen-
dencies frame-by-frame among motion sequence. However, recent literature [8]
indicated that the chain-structured RNNs suffer from error accumulation in tem-
poral modeling and deficiency in spatial dynamic description, leading to prob-
lems such as imprecise pose and mean pose in motion prediction.

Feed-forward deep networks [9] are regarded as alternative solutions for
human motion prediction task by learning rich representation from all input
motion sequences at once. The holistic reasoning of the human motion sequences
leads to more consecutive and plausible predictions than chain-structured RNNs.

Unfortunately, current feed-forward deep networks adopt singe-stage archi-
tecture and tend to generate the predicted motion coarsely thus yielding unsat-
isfactory performance, especially for complex aperiodic actions (e.g., Direction
or Greeting in H3.6m dataset). The reason is that it is difficult to guide the net-
work to focus more on detailed information when directly predicting the future
human motion from limited input information.

To address the above issues, we propose a novel Adversarial Refinement Net-
work (ARNet) which resorts to a coarse-to-fine framework. We decompose the
human motion prediction problem into two stages: coarse motion prediction and
finer motion refinement. By joint reasoning of the input-output space of the
coarse predictor, we achieve to take both the historical motion sequences and
coarse future prediction as input not just one-sided information to polish the
challenging human motion prediction task. The coarse-to-fine design allows the
refinement module to concentrate on the complete motion trend brought by the
historical input and coarse prediction, which are ignored in previous feed-forward
deep networks used for human motion prediction.

Given different actions performed by diverse persons fed to the refinement
network in training and testing, the coarse prediction results tend to be influ-
enced by generalization error, which makes it difficult for the refinement net-
work to obtain the fine prediction robustly. We therefore enhance the refinement
network with adversarial error distribution augmentation. During training, we
deliberately introduce the error distribution by learning through the adversarial
mechanism among different subjects based on the coarse prediction. In testing,
our cascaded refinement network alleviates the prediction error from the coarse
predictor resulting in a finer prediction. Our adversarial component acts as reg-
ularization to let our network refine the coarse prediction well. Different from
the previous work [10] which casts the predictor as a generator and introduces
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discriminator to validate the prediction results, our adversarial training strategy
aims to generate error distribution which acts as implicit regularization for bet-
ter refinement instead of directly generating the skeleton data as prediction. The
error augmentation is achieved by a pair of adversarial learning based generator
and discriminator.

Consequently, the proposed ARNet achieves state-of-the-art results on several
standard human motion prediction benchmarks over diverse actions categories,
especially over the complicated aperiodic actions as shown in Figure 2.

Our contributions are summarized as follows:

– We propose a coarse-to-fine framework to decompose the difficult prediction
problem into coarse prediction task and refinement task for more accurate
human motion prediction.

– We design an adversarial learning strategy to produce reasonable error dis-
tribution rather than random noise to optimize the refinement network.

– The proposed method is comprehensively evaluated on multiple challenging
benchmark datasets and outperforms state-of-the-art methods especially on
complicated aperiodic actions.

2 Related Work

2.1 Human Motion Prediction

With the emergence of large scale open human motion capture (mocap) datasets,
exploring different deep learning architectures to improve human motion pre-
diction performance on diverse actions has become a new trend. Due to the
inherent temporal-series nature of motion sequence, the chain-structured Recur-
rent Neural Networks (RNNs) are natively suitable to process motion sequences.
The Encoder-Recurrent-Decoder (ERD) model [11] simultaneously learned the
representations and dynamics of human motion. The spatial-temporal graph is
later employed in [12] to construct the Structural-RNNs (SRNN) model for hu-
man motion prediction. The residual connections in RNN model (RRNN) [13]
helped the decoder model prior knowledge of input human motion. Tang et al.
[8] adopted the global attention and Modified Highway Unit (MHU) to explore
motion contexts for long-term dependencies modeling. However, these chain-
structured RNNs suffer from either frozen mean pose problems or unnatural
motion in predicted sequences because of the weakness of RNNs in both long-
term temporal memory and spatial structure description. Feed-forward deep net-
work as an emerging framework has shown the superiority over chain-structured
RNNs. Instead of processing input frame by frame like chain-structured RNNs,
feed-forward deep networks feed all the frames at once, which is a promising
alternative for feature extraction to guarantee the integrity and smoothness of
long-term temporal information in human motion prediction [8]. In this paper,
our ARNet is on the basis of feed-forward deep network.
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2.2 Prediction Refinement

Refinement approaches learn good feature representation from the coarse results
in output space and infer the precise location of joints in a further step by re-
covering from the previous error, which have achieved promisingly improvement
in human pose related work. Multi-stage refinement network [14] associated the
coarse pose estimation and refinement in one go to improve the accuracy of 3D
human pose estimation by jointly processing the belief maps of 2D joints and
projected 3D joints as the inputs to the next stage. Cascaded Pyramid Net-
work (CPN) [15] introduced refinement after the pyramid feature network for
sufficient context information mining to handle the occluded and invisible joints
estimation problems. Another trend of refinement mechanism performed coarse
pose estimation and refinement separately. PoseRefiner[16] refined the given pose
estimation by modelling hard pose cases. Posefix [17] proposed an independent
pose refinement network for arbitrary human pose estimator and refined the
predicted keypoints based on error statistics prior. Patch-based refinement [18]
utilised the retain fine details from body part patches to improve the accuracy
of 3D pose estimation. In contrast to the previous work, we further adopt the
benefits of refinement network to deal with the problems in 3D human motion
prediction via a creative coarse-to-fine manner.

2.3 Adversarial Learning

Inspired by the minimax mechanism of Generative Adversarial Networks (GANs)
[19], adversarial learning has been widely adopted to train neural networks [20–
22]. Several attempts have been proposed to perform data augmentation in the
way of adversarial learning, which mainly rely on the pixel manipulation through
image synthesis [23] or a serious of specific image operations [24]. The adversar-
ial learning based data augmentation shows powerful potential for model perfor-
mance improvement. In [25], the results of image recognition achieved promising
improvement due to the image synthesis data augmentation. In human motion
prediction, [10] adopted a predictor with two discriminators to keep the fidelity
and continuity of human motion predicted sequences by adversarial training. In
this work, we introduce an online data augmentation scheme in the motion space
to improve generalization and optimize the refinement network.

3 Methodology

3.1 Overall Framework

The overall framework of our ARNet is shown in Figure 1. The coarse-to-fine
module consists of a coarse predictor P and a refinement network R. In the
context of human motion prediction, given N frames of observed human motion
at once, the coarse predictor P aims to forecast the following T frames of human
motion. The input human motion sequences X = {x1, x2, ..., xn} are first fed
into the predictor P to obtain coarse future human motion Y = {y1, y2, ..., yn},
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Fig. 1. The overall framework of our ARNet. The proposed coarse-to-fine mod-
ule consists of coarse predictor and refinement network as shown in the top part. The
bottom part illustrates the dedicated adversarial error augmentation module which
consists of coarse predictor with a pair of error generator and discriminator. The ob-
served human motion sequence of Subject I and Subject II are separately fed to the
weight-shared coarse predictors to obtain corresponding coarse human motion predic-
tion. Then the generator in the adversarial error augmentation module adopts the
coarse prediction of Subject I as the conditional information to generate fake motion
error of Subject II in an adversarial manner. After that, the augmented error distribu-
tion and the real coarse prediction are both utilised to optimize the refinement network
for fine human motion prediction

where xi, yi ∈ R
K are K dimensional joint features represented as exponential

map of joint angle in each frame. Then in the adversarial error augmentation
module, we adopt a pair of generator and discriminator to produce fake motion
error calculated from the coarse prediction from a person (subject I) and the real
motion error from another person (subject II) as the conditional information for
the next stage fine prediction.

During training, we deliberately introduce the error distribution by learning
through the adversarial mechanism among different subjects based on the coarse
prediction. In testing, our cascaded refinement network alleviates the prediction
error from the coarse predictor resulting in a finer prediction.

3.2 Refinement Network

Given the input motion sequence, we adopt a Graph Convolutional Network
(GCN) [26, 27], a popular feed-forward deep network which is specialized in
dealing with the graph structured data, to initially model the spatial-temporal
dependencies among the human poses and obtain the coarse human motion pre-
diction. We construct a K nodes graph G = (V,E), where V = {vi|i = 1, ...,K}
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denotes the node set and E = {ei,j |i, j = 1, ...,K} denotes the edge set. The
main idea of Graph Convolutional Network is that, each d dimensional node
representations H l

v ∈ R
d is updated by feature aggregation of all its neighbors

defined by the weighted adjacency matrix Al ∈ R
K×K on the l-th Graph Convo-

lutional layer. Therefore, the spatial structure relationships between the nodes
could be fully encoded and the l-th Graph Convolution layer outputs a K × d

matrix H l+1 ∈ R
d:

H l+1 = σ(AlH lW l) (1)

where σ(·) denotes an activation function and W l ∈ R
d×d̂ denotes the trainable

weight matrix. The network architecture of our predictor is similar to [9], which
is the state-of-the-art feed-forward baseline on human motion prediction.

In order to improve the human motion prediction performance in a further
step, we construct a coarse-to-fine framework, which cascades N-stage refinement
network on top of the preliminary predictor, to process the complete future infor-
mation of the output from human motion predictor iteratively. Given the input
human motion sequences HI , we initially obtain the coarse human motion pre-
diction sequences HP = fp(HI) from the preliminary predictor and forward the
fusion of historical and future sequences as the inputs to the refinement network.
As a result, we output the final refined human motion prediction sequences by
error correction of initially coarse prediction HR = fr(HP +HI).

3.3 Adversarial Learning Enhanced Refinement Network

Considering that the human motion sequences collected by different actors in
datasets contain variations, especially for complicated aperiodic actions, various
error scenarios will occur. To improve the error-correction ability and robust-
ness of our refinement network, we additionally introduce an adversarial learning
mechanism to generate challenging error cases which are fed to the refinement
network together with the coarse prediction. We randomly choose 1 person’s ac-
tions sequences (Subject II) from the 6 subjects’ actions sequences in the training
dataset and feed it to the predictor in another branch to get the independent
coarse prediction sequences for every epoch as shown in Figure 1. Then the real
error is able to be computed from this person’s coarse prediction sequences and
the corresponding ground-truth. To augment this person’s error cases to the
other 5 people, we utilise a generator that produces fake human motion error to
fool the discriminator. The discriminator constantly tries to distinguish between
real error cases and fake error cases so as to transfer different persons’ error to
other subjects in the mocap dataset. This augmentation provides rich error cases
as input to our refinement network, leading to better generalization performance
on the testing dataset.

We train the networks following the standard GAN pipeline. During training,
the adversarial error generator generates error bias which will be added on the
coarse prediction and then fed to refinement network. The adversarial refine-
ment network effectively learns from the coarse prediction with adversarial error
augmentation. During testing, the coarse prediction without added error is fed
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directly to the adversarial refinement network and get finer prediction as final
results.

3.4 Training Loss

In this section, we describe the training loss functions for different modules. No-
tably, in order to achieve joint reasoning of the input-output space of the coarse
predictor, our ARNet defines the loss function in predictor and refinement net-
work separately to achieve simultaneous supervision. Following [9], we optimize
the coarse predictor network parameters with the mean-squared loss, which is
denoted as the prediction loss LP . Suppose K is the number of joints in each
frame, N is the number of input frames and T is the number of predicted frames,
then LP can be written as:

LP =
1

(N + T )K

N+T∑

n=1

K∑

k=1

||h
′

k,n − hk,n|| (2)

where hk,n and h
′

k,n respectively represent the ground-truth and predicted joint
k in frame n.

For the refinement network to produce the refined human motion sequences,
we also adopt the mean-squared loss to optimize the network parameters. The
mean-squared loss LR can be written as:

LR =
1

(N + T )K

N+T∑

n=1

K∑

k=1

||h
′′

k,n − hk,n|| (3)

where hk,n indicates the ground-truth joint in frame n, h
′′

k,n is the refined cor-
responding joint. Our refiner is trained by minimizing the loss function.

The goal of our refinement network is to refine the coarse human motion
prediction by utilizing the sequence-level refinement with the adversarial learning
based error distribution augmentation. We utilise the minimax mechanism of
adversarial loss to train the GAN:

LD = E[logD(δreal)] +E[log(1 −D(G(δfake)] (4)

LG = E[log(1 −D(G(δfake)] (5)

where LD denotes the discriminator loss, LG is the generator loss, and δ repre-
sents the error distribution.

In summary, we gather the predictor and refinement network together to train
the whole network in an end-to-end way. As we adopt the adversarial refinement
network behind the coarse predictor, the objective function consists of two parts:

L = LP + s ∗ LR (6)

where LP denotes the prediction loss, LR denotes the refinement loss, and the
number of refinement stage s used in our adversarial refinement network will be
shown in the ablation studies.
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4 Experiments

4.1 Datasets and Evaluation Metrics

H3.6m Dataset. Human 3.6 Million (H3.6m) dataset [28] is the largest and
most challenging mocap dataset which has 15 different daily actions performed
by 7 males and females, including not only simple periodic actions such as walk-
ing and eating, but also complex aperiodic actions such as discussion and pur-
chase. Following previous methods [29, 9], the proposed algorithm is trained on
subject 1,6,7,8,9,11 and tested on subject 5. There are 25 frames per second and
each frame consists of a skeleton of 32 joints. Except for removing the global
translations and rotations, some of the joints that do not move (i.e., joints that
do not bend) will be ignored as previous work [9].

CMU-Mocap Dataset. To be more convincing, we also conduct experiments
on the CMU-Mocap dataset [29]. In order to achieve fair comparisons, we em-
ploy the same experimental settings as [29, 9], including the pre-processing, data
representation and training/testing splits.

3DPW Dataset. Recently, the 3D Pose in the Wild dataset (3DPW) [30] is
released which contains around 51k frames with 3D annotations. The dataset is
challenging as the scenarios are composed of indoor and outdoor activities. We
follow [30, 9] to split the dataset for comparable experimental results.

Evaluation Metrics. In order to make fair and comprehensive comparisons
with previous work, we adopt the Mean Angle Error (MAE) between the pre-
dicted frames and the ground-truth frames in the angle space as the quantitative
evaluation and visualize the prediction as the qualitative evaluation, which are
the common evaluation metrics in human motion prediction [9].

4.2 Implementation Details

The proposed algorithm is implemented on Pytorch [31] and trained on a NVIDIA
Tesla V100 GPU. We adopted the Adam [32] optimizer to train our model for
about 50 epochs. The learning rate was set to 0.002 and the batch size was
256. To tackle the long-term temporal memory problems, we encode the com-
plete time series by using Discrete Cosine Transform (DCT) [33] and discard the
high-frequency jittering to maintain complete expression and smooth consistency
of temporal domain information [9] at one time.

4.3 Quantitative Comparisons

We conduct quantitative comparisons on three human mocap datasets including
H3.6m, 3DPW and CMU-Mocap between our ARNet and the state-of-the-art
baselines. For fair comparisons with previous work [34, 10, 29, 9, 13], we feed 10
frames as inputs to predict the future 10 frames (400ms) for short-term predic-
tion and the future 25 frames (1000ms) for long-term prediction.
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Table 1. Short-term (80ms,160ms,320ms,400ms) human motion prediction measured
in mean angle error (MAE) over 15 actions on H3.6m dataset

Walking Eating Smoking Discussion
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Zero-velocity [13] 0.39 0.68 0.99 1.15 0.27 0.48 0.73 0.86 0.26 0.48 0.97 0.95 0.31 0.67 0.94 1.04
Residual sup. [13] 0.28 0.49 0.72 0.81 0.23 0.39 0.62 0.76 0.33 0.61 1.05 1.15 0.31 0.68 1.01 1.09
convSeq2Seq [29] 0.33 0.54 0.68 0.73 0.22 0.36 0.58 0.71 0.26 0.49 0.96 0.92 0.32 0.67 0.94 1.01
Retrospec [34] 0.28 0.45 0.62 0.68 0.21 0.34 0.53 0.68 0.26 0.50 0.96 0.93 0.29 0.64 0.90 0.96
AGED [10] 0.22 0.36 0.55 0.67 0.17 0.28 0.51 0.64 0.27 0.43 0.82 0.84 0.27 0.56 0.76 0.83

LTraiJ [9] 0.18 0.31 0.49 0.56 0.16 0.29 0.50 0.62 0.22 0.41 0.86 0.80 0.20 0.51 0.77 0.85

ARNet (Ours) 0.18 0.31 0.49 0.55 0.16 0.28 0.49 0.61 0.22 0.42 0.86 0.81 0.20 0.51 0.81 0.89

Direction Greeting Phoning Posing
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Zero-velocity [13] 0.39 0.59 0.79 0.89 0.54 0.89 1.30 1.49 0.64 1.21 1.65 1.83 0.28 0.57 1.13 1.37
Residual sup. [13] 0.26 0.47 0.72 0.84 0.75 1.17 1.74 1.83 0.23 0.43 0.69 0.82 0.36 0.71 1.22 1.48
convSeq2Seq [29] 0.39 0.60 0.80 0.91 0.51 0.82 1.21 1.38 0.59 1.13 1.51 1.65 0.29 0.60 1.12 1.37
Retrospec [34] 0.40 0.61 0.77 0.86 0.52 0.86 1.26 1.43 0.59 1.11 1.47 1.59 0.26 0.54 1.14 1.41
AGED [10] 0.23 0.39 0.63 0.69 0.56 0.81 1.30 1.46 0.19 0.34 0.50 0.68 0.31 0.58 1.12 1.34
LTraiJ [9] 0.26 0.45 0.71 0.79 0.36 0.60 0.95 1.13 0.53 1.02 1.35 1.48 0.19 0.44 1.01 1.24

ARNet (Ours) 0.23 0.43 0.65 0.75 0.32 0.55 0.90 1.09 0.51 0.99 1.28 1.40 0.17 0.43 0.97 1.20

Purchases Sitting Sitting Down Taking Photo
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Zero-velocity [13] 0.62 0.88 1.19 1.27 0.40 1.63 1.02 1.18 0.39 0.74 1.07 1.19 0.25 0.51 0.79 0.92
Residual sup. [13] 0.51 0.97 1.07 1.16 0.41 1.05 1.49 1.63 0.39 0.81 1.40 1.62 0.24 0.51 0.90 1.05
convSeq2Seq [29] 0.63 0.91 1.19 1.29 0.39 0.61 1.02 1.18 0.41 0.78 1.16 1.31 0.23 0.49 0.88 1.06
Retrospec [34] 0.59 0.84 1.14 1.19 0.40 0.64 1.04 1.22 0.41 0.77 1.14 1.29 0.27 0.52 0.80 0.92
AGED [10] 0.46 0.78 1.01 1.07 0.41 0.76 1.05 1.19 0.33 0.62 0.98 1.10 0.23 0.48 0.81 0.95
LTraiJ [9] 0.43 0.65 1.05 1.13 0.29 0.45 0.80 0.97 0.30 0.61 0.90 1.00 0.14 0.34 0.58 0.70

ARNet (Ours) 0.36 0.60 1.00 1.11 0.27 0.44 0.80 0.97 0.29 0.61 0.87 0.97 0.13 0.33 0.55 0.67

Waiting Walking Dog Walking Together Average
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Zero-velocity [13] 0.34 0.67 1.22 1.47 0.60 0.98 1.36 1.50 0.33 0.66 0.94 0.99 0.40 0.78 1.07 1.21
Residual sup. [13] 0.28 0.53 1.02 1.14 0.56 0.91 1.26 1.40 0.31 0.58 0.87 0.91 0.36 0.67 1.02 1.15
convSeq2Seq [29] 0.30 0.62 1.09 1.30 0.59 1.00 1.32 1.44 0.27 0.52 0.71 0.74 0.38 0.68 1.01 1.13
Retrospec [34] 0.33 0.65 1.12 1.30 0.53 0.87 1.16 1.33 0.28 0.52 0.68 0.71 0.37 0.66 0.98 1.10
AGED [10] 0.24 0.50 1.02 1.13 0.50 0.81 1.15 1.27 0.23 0.41 0.56 0.62 0.31 0.54 0.85 0.97
LTraiJ [9] 0.23 0.50 0.91 1.14 0.46 0.79 1.12 1.29 0.15 0.34 0.52 0.57 0.27 0.51 0.83 0.95

ARNet (Ours) 0.22 0.48 0.90 1.13 0.45 0.78 1.11 1.27 0.13 0.33 0.53 0.58 0.25 0.49 0.80 0.92

Short-term Prediction on H3.6m. H3.6m is the most challenging dataset for
human motion prediction. Table 1 shows the quantitative comparisons for short-
term human motion prediction between our ARNet and a series of baselines
including Zero-velocity [13], RRNN[13], convSeq2Seq[29], Retrospec[34], AGED
[10] and LTraiJ [9] on H3.6m dataset. We computed the mean angle error (MAE)
on 15 actions by measuring the euclidean distance between the ground-truth and
prediction at 80ms, 160ms, 320ms, 400ms for short-term evaluation. The results
in bold show that our method outperforms both of the state-of-the-art chain-
structured baseline AGED and the feed-forward baseline LTraiJ.

Compared with the state-of-the-art feed-forward baseline LTraiJ [9], in Ta-
ble 1, the proposed ARNet clearly outperforms the feed-forward baseline LTraiJ
on average for short-term human motion prediction. Different from LTraiJ which
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Fig. 2. Visual comparisons for short-term human motion prediction on

H3.6m dataset. We compare our proposed ARNet with the state-of-the-art feed-
forward baseline LTraiJ [9] which is the best performing method for short-term predic-
tion (400ms). The left few frames represent the input human motion sequence. From
top to bottom, we show the final predictions obtained by the feed-forward baseline
LTraiJ represented as green-purple skeletons and our proposed ARNet represented as
red-blue skeletons respectively on two challenging aperiod actions (e.g.,Direction and
Greeting). Marked in red circles, our predictions better match the ground-truth shown
as the gray dotted skeletons

adopts the single-stage predictor without refinement network, our ARNet obtains
better performance especially on aperiodic actions (e.g. Directions, Greeting,
Phoning and so on). It is difficult to model this type of actions which involved
multiple small movements and high acceleration during human motion especially
at the end of human limbs. In addition, due to the stable change of periodic be-
havior, the traditional feed-forward deep network can also achieve competitive
results on periodic actions (such as walking, eating and smoking), but we note
that our ARNet further improves the accuracy of prediction. The results validate
that the coarse-to-fine design enables our ARNet to correct the error joints in
human motion prediction and outperform the existing feed-forward baseline on
almost all actions.

Compared with the state-of-the-art chain-structured baseline AGED [10],
which utilises chain-structured RNNs as the predictor with two different discrim-
inators, our ARNet still outperforms it on almost all action categories for short-
term human motion prediction within 400ms as shown in Table 1. The results
show the superiority of our ARNet over the best performing chain-structured
methods for short-term human motion prediction tasks.

Long-term Prediction on H3.6m. Additionlly, we also quantitatively evalu-
ate the long-term prediction performance of our proposed ARNet at 560ms and
1000ms as shown in Table 2. The results measured in MAE demonstrate that
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Table 2. Long-term (560ms, 1000ms) human motion prediction on H3.6m dataset

Walking Eating Smoking Discussion Average
milliseconds 560 1000 560 1000 560 1000 560 1000 560 1000

Zero-velocity [13] 1.35 1.32 1.04 1.38 1.02 1.69 1.41 1.96 1.21 1.59
Residual sup. [13] 0.93 1.03 0.95 1.08 1.25 1.50 1.43 1.69 1.14 1.33
AGED [10] 0.78 0.91 0.86 0.93 1.06 1.21 1.25 1.30 0.99 1.09

Retrospec [34] NA 0.79 NA 1.16 NA 1.71 NA 1.72 NA 1.35
LTraiJ [9] 0.65 0.67 0.76 1.12 0.87 1.57 1.33 1.70 0.90 1.27

ARNet (Ours) 0.65 0.69 0.72 1.07 0.86 1.51 1.25 1.68 0.88 1.24

our method still outperforms the state-of-art feed-forward baseline LTraiJ [9]
in long-term human motion prediction on almost action categories as shown in
bold. Nevertheless, the MAE of the chain-structured AGED [10] is lower than
ours in 1000 milliseconds. We will further examine the results by visualizing the
motion sequences obtained by our proposed ARNet and the chain-structured
baseline AGED in the later section to provide a qualitative comparison.

3DPW & CMU-Mocap. We also conduct experiments on other two human
mocap datasets to prove the robustness of our method. Table 3 shows that
our method consistently achieves promising improvements compared with other
baselines on 3DPW dataset which contains indoor and outdoor activities for
both short-term and long-term human motion predictions. As for CMU-Mocap
dataset, the results in Table 4 illustrate that our method has better performance
on almost action types and outperforms the state-of-the-art methods on average.

Table 3. Short-term and long-term human motion predictions on 3DPW dataset

milliseconds 200 400 600 800 1000

Residual sup. [13] 1.85 2.37 2.46 2.51 2.53
convSeq2Seq [29] 1.24 1.85 2.13 2.23 2.26
LTraiJ [9] 0.64 0.95 1.12 1.22 1.27

ARNet (Ours) 0.62 0.95 1.11 1.20 1.25

4.4 Qualitative Visualizations

Short-term Prediction on H3.6m. To evaluate our method qualitatively, we
firstly visualize the representative comparisons on Directions and Greeting which
belong to challenging aperiodic actions in H3.6m dataset as shown in Figure 2.
Given 10 observed frames for each action as motion seeds, which are represented
as green-purple skeletons at the left part, we compare our ARNet represented
as red-blue skeletons with the best quantitatively performing feed-forward base-
line LTraiJ [9] shown as green-purple skeletons for short-term prediction (400
million seconds) as illustrated in Table 1. The dotted rectangles mark that our



12 X.Chao et al.

Table 4. Short-term and long-term human motion predictions on CMU-Mocap dataset

Basketball Basketball Signal Directing Traffic
milliseconds 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

Residual sup. [13] 0.50 0.80 1.27 1.45 1.78 0.41 0.76 1.32 1.54 2.15 0.33 0.59 0.93 1.10 2.05
convSeq2Seq [29] 0.37 0.62 1.07 1.18 1.95 0.32 0.59 1.04 1.24 1.96 0.25 0.56 0.89 1.00 2.04
LTraiJ [9] 0.33 0.52 0.89 1.06 1.71 0.11 0.20 0.41 0.53 1.00 0.15 0.32 0.52 0.60 2.00

ARNet (Ours) 0.31 0.48 0.87 1.08 1.71 0.10 0.17 0.35 0.48 1.06 0.13 0.28 0.47 0.58 1.80

Jumping Running Soccer
milliseconds 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

Residual sup. [13] 0.33 0.50 0.66 0.75 1.00 0.29 0.51 0.88 0.99 1.72 0.56 0.88 1.77 2.02 2.4
convSeq2Seq [29] 0.28 0.41 0.52 0.57 0.67 0.26 0.44 0.75 0.87 1.56 0.39 0.6 1.36 1.56 2.01
LTraiJ [9] 0.33 0.55 0.73 0.74 0.95 0.18 0.29 0.61 0.71 1.40 0.31 0.49 1.23 1.39 1.80

ARNet (Ours) 0.30 0.50 0.60 0.61 0.72 0.16 0.26 0.57 0.67 1.22 0.29 0.47 1.21 1.38 1.70

Walking Washwindow Average
milliseconds 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

Residual sup. [13] 0.35 0.47 0.60 0.65 0.88 0.30 0.46 0.72 0.91 1.36 0.38 0.62 1.02 1.18 1.67
convSeq2Seq [29] 0.35 0.44 0.45 0.50 0.78 0.30 0.47 0.80 1.01 1.39 0.32 0.52 0.86 0.99 1.55
LTraiJ [9] 0.33 0.45 0.49 0.53 0.61 0.22 0.33 0.57 0.75 1.20 0.25 0.39 0.68 0.79 1.33

ARNet (Ours) 0.32 0.41 0.39 0.41 0.56 0.20 0.27 0.51 0.69 1.07 0.23 0.37 0.65 0.77 1.29

predictions better match the ground-truth which is represented as gray dot-
ted skeletons. The qualitative comparison further demonstrates that our ARNet
possesses the ideal error-correction ability to generate high-quality prediction,
especially for the joints at the end of body which contain multiple small move-
ments on aperiodic actions.

Long-term Prediction on H3.6m. Figure 3 visualizes the comparisons be-
tween chain-structured baselines RRNN [13] and AGED [13] on Phoning, which
belongs to aperiodic actions in H3.6m dataset for long-term prediction (4 sec-
onds). As marked by the red rectangles, our proposed ARNet is still able to pre-
dict the motion dynamics when the RRNN converges to mean pose. Meanwhile,
the AGED drifts away on the foot joints compared with the ground-truth. The
visualised results demonstrate that our ARNet outperforms the chain-structured
baselines in long-term prediction.

5 Ablation Studies

5.1 Different Components in Our ARNet

In order to verify the effectiveness of the different components in our model,
we perform comprehensive ablation studies as shown in Table 5. Specifically,
we compare our ARNet with three baselines: the 1-stage CoarseNet, the 2-stage
CoarseNet without future information as refinement and the 2-stage RefineNet
with future information and traditional training strategy. The 1-stage CoarseNet
denotes that there only exists single coarse predictor module without other com-
ponents in the whole framework. We utilize the LTraiJ network [9] as our coarse
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Fig. 3. Visual comparisons for long-term human motion prediction on H3.6m

dataset. From top to bottom,we show the corresponding ground-truth shown in grey
skeletons, the final predictions obtained by RRNN [13] , AGED [10] and our approach
on Phoning which belongs to the aperiodic action. The left gray skeletons represent
the input motion sequences. Marked in red rectangles, the baseline RRNN converges
to mean pose and the baseline AGED drifts away on the foot joints compared with the
ground-truth. Our ARNet generates more accurate long-term human motion prediction
relatively. Best viewed in color with zoom

Table 5. Ablation study for refined model design and adversarial training strategy. We
compared the results measured in MAE of our model with the 1-stage CoarseNet, the
2-stage CoarseNet without future information as refinement and the 2-stage RefineNet
with traditional training strategy on H3.6m dataset

Direction Posing Greeting
milliseconds 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

1-stage CoarseNet 0.26 0.45 0.71 0.79 0.88 1.29 0.19 0.44 1.01 1.24 1.44 1.64 0.36 0.60 0.95 1.13 1.51 1.70
2-stage CoarseNet 0.25 0.45 0.67 0.78 0.88 1.30 0.19 0.46 1.01 1.26 1.42 1.68 0.34 0.60 0.94 1.11 1.66 1.92
2-stage RefineNet 0.25 0.44 0.67 0.77 0.86 1.27 0.19 0.43 0.99 1.23 1.42 1.63 0.34 0.58 0.92 1.10 1.49 1.63
ARNet 0.23 0.43 0.65 0.75 0.85 1.23 0.17 0.43 0.97 1.20 1.41 1.60 0.31 0.55 0.90 1.08 1.46 1.56

Greeting Phoning Average(on 15 actions)
milliseconds 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

1-stage CoarseNet 0.36 0.60 0.95 1.13 1.51 1.70 0.53 1.02 1.35 1.48 1.45 1.68 0.27 0.51 0.83 0.95 1.18 1.59
2-stage CoarseNet 0.34 0.60 0.94 1.11 1.66 1.92 0.53 1.02 1.34 1.48 1.58 1.98 0.27 0.52 0.83 0.95 1.20 1.61
2-stage RefineNet 0.34 0.58 0.94 1.10 1.48 1.64 0.52 1.01 1.33 1.46 1.42 1.65 0.27 0.50 0.82 0.94 1.17 1.58
ARNet 0.31 0.55 0.90 1.08 1.46 1.56 0.50 0.99 1.28 1.40 1.41 1.60 0.25 0.49 0.80 0.92 1.16 1.57

predictor. Due to the coarse-to-fine 2-stage structure of our ARNet, the infer-
ence time of our ARNet is 56.2ms, which is slightly longer than the 45.4ms of
1-stage CoarseNets on GPU V100. Moreover, another baseline is the 2-stage
CoarseNet without future information refinement, which increase the number
of layers by simply cascading two 1-stage CoarseNets, utilise the same train-
ing strategy as the single coarse predictor by back-propagating the gradient all
the way to the beginning. Although the parameters of our ARNet is same as
the 2-stage CoarseNet which is twice that of 1-stage CoarseNets, the results
show that stacking multi-layers with traditional training strategy fails to im-
prove the performance in a further step and even achieved worse prediction due
to over-fitting occurred in stacked feed-forward deep network. Then, the 2-stage
RefineNet without adversarial error augmentation leads to improvement over
the previous two baselines. Our adversarial refinement network shows the su-
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perior performance compared with single-stage model, 2-stage model without
refinement and refinement network without adversarial training strategy.

5.2 Multi-stage Analysis

We also evaluate the impact of number of stages adopted in our adversarial re-
finement model by calculating the MAE over 15 actions. The foregoing results in
the Table 6 indicate that the 2-stage refined model design, in general, utilising
the output space of previous stage, is simple enough to learn the rich representa-
tion and achieves superior results in most cases. The reason is that concatenating
more than 2 stages refinement module faces up over-fitting problems and fails
to further improve the human motion prediction performance. Taking the effi-
ciency and simplicity into account, we employ the 2-stage adversarial refinement
network as the final model design.

Table 6. Ablation study of adversarial refinement network with different number of
stages. We compared the results measured in MAE on H3.6m dataset

Direction Posing Greeting
milliseconds 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

2-stage 0.23 0.43 0.65 0.75 0.85 1.23 0.17 0.43 0.97 1.20 1.41 1.60 0.31 0.55 0.90 1.08 1.46 1.56

3-stage 0.25 0.46 0.64 0.75 0.84 1.50 0.18 0.44 1.00 1.25 1.71 2.64 0.32 0.54 0.89 1.12 1.52 1.75
4-stage 0.25 0.46 0.68 0.77 1.02 1.70 0.19 0.46 1.05 1.28 1.86 3.03 0.33 0.56 0.93 1.15 1.56 1.82

Greeting Phoning Average(on 15 actions)
milliseconds 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

2-stage 0.31 0.55 0.90 1.08 1.46 1.56 0.50 0.99 1.28 1.40 1.41 1.60 0.25 0.49 0.80 0.92 1.16 1.57

3-stage 0.32 0.54 0.89 1.12 1.52 1.75 0.52 1.02 1.36 1.45 1.49 1.80 0.25 0.49 0.83 0.95 1.17 1.58
4-stage 0.33 0.56 0.93 1.15 1.56 1.82 0.52 0.99 1.33 1.48 1.49 1.76 0.27 0.50 0.83 0.95 1.17 1.58

6 Conclusions

In this paper, we introduce an Adversarial Refinement Network (ARNet) to
forecast more accurate human motion sequence in a coarse-to-fine manner. We
adopt a refinement network behind the single-stage coarse predictor to generate
finer human motion. Meanwhile, we utilise an adversarial learning strategy to
enhance the generalization ability of the refinement network. Experimental re-
sults on the challenging benchmark H3.6m, CMU-Mocap and 3DPW datasets
show that our proposed ARNet outperforms the state-of-the-art approaches in
both short-term and long-term predictions especially on the complex aperiodic
actions. Our adversarial refinement network shows promising potential for feed-
forward deep network to deal with rich representation in a further step on other
areas.
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