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Abstract. Single image deraining is an urgent yet challenging task since
rain streaks severely degrade the image quality and hamper the practical
application. The investigation on rain removal has thus been attracting,
while the performances of existing deraining have limitations owing to
over smoothing effect, poor generalization capability and rain intensity
varies both in spatial locations and color channels. To address these is-
sues, we proposed a Multi-scale Attentive Residual Dense Network called
MARD-Net in end-to-end manner, to exactly extract the negative rain
streaks from rainy images while precisely preserving the image details.
The architecture of modified dense network can be used to exploit the
rain streaks details representation through feature reuse and propaga-
tion. Further, the Multi-scale Attentive Residual Block (MARB) is in-
volved in the dense network to guide the rain streaks feature extraction
and representation capability. Since contextual information is very crit-
ical for deraining, MARB first uses different convolution kernels along
with fusion to extract multi-scale rain features and employs feature at-
tention module to identify rain streaks regions and color channels, as well
as has the skip connections to aggregate features at multiple levels and
accelerate convergence. The proposed method is extensively evaluated on
several frequent-use synthetic and real-world datasets. The quantitative
and qualitative results show that the designed framework performs bet-
ter than the recent state-of-the-art deraining approaches on promoting
the rain removal performance and preserving image details under various
rain streaks cases.

1 Introduction

Images captured under outside conditions often affect by rain drops/streaks,
which alter the image color and obstruct or distort content [1–3]. The visibility
degradations and artifacts severely hinder the performance of computer vision
tasks, like target detection [4], object tracking [5] and image recognition [6].
Hence, rain removal has become an important preprocessing step and attracted
much attention lately in the pattern recognition and computer vision [7–11].
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In the recent years, various researches have been proposed for the single im-
age deraining, and existing methods can be roughly divided into two categories:
model-based and data-driven approaches [12]. The model-based methods can be
further divided into filter-based and prior-based ones. Considering the single de-
raining as a signal filtering task, filter-based methods employ the edge preserving
and physical properties filer to recover the rain-free images [7,9,10,13]. While the
prior-based methods consider the deraining as an optimization question and ap-
ply handcrafted image prior to regularize the solution process, including discrim-
inative sparse [9, 14] Gaussian mixture model (GMM) [10] and low-rank repre-
sentation [15]. Different from the model-based approaches, data-driven methods
formulate deraining as a procedure of learning a non-linear function and find
the proper parameters to map the rainy part into the background scene [16].
Motivated by the success of deep learning, the researchers model the mapping
function with the convolution neural networks (CNN) or the Generative Adver-
sarial Networks (GANs) [17]. The CNN methods directly get the deterministic
mapping function from the rainy image to the clear background [3, 18–21] and
the GANs produce the deraining image inspired by their abilities on synthesizing
visually appealing clean image [22].

Although effective in certain applications, the above methods suffer from sev-
eral limitations. The rationality of model-based strategies refers to the subjective
assumptions, and hence such learning schemes may not always adapt to diverse
rainy conditions. The deep learning techniques neglect the intrinsic knowledge
of rain, which make themselves easily trapped into the overfitting to training
process. Most of the deraining methods generally fail to restore the structures
and details, even yielding blurry background scenes. And it is difficult to get
the derained image for a real-world rainy image, when the background and rain
streaks merge with each other, especially in the heavy rain condition.

To address the mentioned issues, this paper conducts a Multi-scale Attentive
Residual Dense Network called MARD-Net by leveraging the strong propagable
capabilities of the dense network with advance residual blocks. The dense net-
work provides a powerful capability to connect to all subsequent layers, from
which the feature maps can be fully reused and smoothly transported to each
layer. Multi-Scale Attention Residual Block (MARB) is introduced to better uti-
lize multi-scale information and feature attention for improving the rain feature
representation capability. Combing the features of different scales and layers,
multi-scale manner is an efficient way to capture various rain streak compo-
nents especially in the heavy rainy conditions. Reference to bright channel prior
(BCP) [23] and the uneven distribution of rainy images, channel-wise and spatial
attention mechanisms are involved in the MARB, since it helps the network to
adjust the three-color channels respectively and identify the rainy region prop-
erly. We evaluate the proposed network on the public competitive benchmark
synthetic and real-world datasets and the results significantly outperform the
current outstanding methods on most of the deraining tasks.
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In summary, our major contributions are summarized:

– We propose an end to end MARD-Net to address the single image derain-
ing problem, which can effectively remove the rain streaks while well pre-
serve the image details. The modified dense network is applied to boost the
model performance via multi-level features reuse and maximum information
flow between layers. It can reduce the loss of information transmission and
vanishing-gradient, while fully utilizing the features of different layers to
restore the details.

– To our knowledge, the Multi-Scale Attention Residual Block (MARB) is
first constructed to improve the representation of rain streaks. The different
convolution kernels along with fusion are employed to get multi-scale fea-
tures for adapting the various rain cases. Then the feature attention module
is applied to better extract the feature by using color channel and spatial
information.

– Extensive experiments are carried out on six challenging datasets (4 synthetic
and 2 real-world datasets). Our proposed network outperforms the state-of-
the-art methods in visually and quantitatively comparisons. Furthermore,
ablation studies have been provided to verify the rationality and necessity
of important modules involved in our network.

2 Background and Related Work

An observed rainy image I can be generally modeled as a linear sum of a clean
background B and a rain component R, which can be expressed by the formula
as:

I = B +R (1)

Based on the Equation 1, deraining methods can be done either by removing
R from I to get B or by directly estimating B from I. To make the deraining
better be solved, various conventional methods adopted numerous prior models
about rain or background to constrain the solution space [16]. Fu et al. [24] con-
sidered the image rain removal as a signal decomposition issue and performed
the bilateral filter to decompose the low- frequency and high-frequency layers for
getting the derained result. The discriminative sparse coding [9] was proposed to
approximate the rain and background layers. To represent scales of rain and var-
ious orientations, Li et al. [10] employed the GMM based on patch priors for the
rainy image to remove the rain streaks. These traditional methods usually make
simple yet subjective hypotheses on the rain distribution and falling character,
which work well only in some certain cases.

In recent years, numbers of deep learning based single image deraining ap-
proaches were proposed through constructing various networks [16]. Fu et al. [18]
first designed the DerainNet for the image deraining, and further proposed Deep
Detail Network (DDN) [3], which directly reduced the mapping range and re-
moved the rain streak. Conditional GAN [25] was utilized to deal with the rain
removal problem. Later, Qian et al. [26] introduced the attention mechanism
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into the GAN network, and tried to learn more about rain regions and their sur-
rounding features. With the help of depth-guided attention mechanism, Hu [27]
developed an end to end Depth-attentional Features network (DAF-Net) to es-
timate the rain-free image that formulated the attention to learn the feature
and regressed a residual map. Zhang et al. [28] presented a multi-stream dense
network combined with residual classifier process. In [29], Gated Context Ag-
gregation Network (GCANet) was an end-to-end network, which try to restore
the rain image from the gridding artifacts by adopting the smoothed dilation
technique. The work of [20] offered a recurrent squeeze and excitation context
aggregation net (RESCAN) to tackle the overlap layer in the rainy image. To
handle with various rain scenes, Yang et al. [16] designed a multi-stage joint
rain detection and estimate network (JORDER E) and discussed the possible
aspects as architure and loss that effected on the deraining task. Lightweight
Pyramid Networks (LPNet) [30] pursued a light-weighted pyramid to remove
rain, so that the obtained network became simple and contained less parameters.
In [19], the PReNet performed a stage-wise operation that repeatedly unfolded
several Resblocks and a LSTM layer to effectively generate the rain-free images
progressively. The work of [31], Spatial attentive network (SPANet) developed a
spatial attention unit based on recurrent network and utilized a branch to cap-
ture the spatial details for removing rain in a local-to-global manner. However,
most existing deraining researches do not notice the underlying connection of
rain streaks across different scales and few attempts have been made to exploit
the feature attention of the rainy image.

3 Proposed Method

The goal of this paper is to remove the rain, while maximally keeping the original
structure and color in the image. We propose a Multi-scale Attentive Residual
Dense Network (MARD-Net), including the overall network architecture, multi-
scale attention residual block (MARB) and loss function.

3.1 Design of MARD-Net

We propose an end-to-end trainable MARD-Net that can take diverse rainy im-
ages as input and can well represent the rain steak feature through the MARB
module. The overall architecture of MARD-Net is illustrated in Figure 1. Based
on the DenseNet framework, the proposed method ensures the maximum infor-
mation flow through rain feature reuse, yielding condensed models that efficiently
reduce the parameter numbers and are easy to be trained. Due to the different
scales and shapes of rain streaks, it is an effective way that combining features
from different scales and feature attention module to capture various rain streak
components. In addition, skip connections are generally used in the residual
block as they can aggregate features at multiple scales and accelerate the train-
ing process. Further, the MARB can better capture the feature with different
scales and rain streak structure information, as discussed in the following parts.
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Fig. 1. The overall architecture of our proposed MARD-Net for image deraining.
MARB is shown in Fig.2. The goal of the MARD-Net is to estimate the clean image
from the corresponding rainy image. The input of each layer consists of all preced-
ing feature-maps and combines features by concatenating them. The blocks with same
color share the same parameters.

3.2 Multi-scale Attention Residual Block (MARB)

Combining features at different scales effectively, multi-scale features have been
widely employed to get a better information of the object and its surrounding
context. In order to better solve the rain removal problem, an attention mecha-
nism is introduced to strengthen the capability of extracting information, which
is beneficial to improve the network performance and accuracy [32,33]. Inspired
by these ideas, the MARB is applied to extract multi-scale features and guide
to learn rain information effectively, as shown in Figure 2.

The MARB can be described in detail mathematically. Referring to Figure 2,
the MARB is set to have an input feature of F0 , which first passes through the
different convolutional layer which sizes are 3× 3 and 5× 5 respectively, and its
output is expressed as:

F 3×3
1 = f3×3(F0; η

3×3
0 ) (2)

F 5×5
1 = f5×5(F0; η

5×5
0 ) (3)

where Fn×n
1 denotes the output of a convolution of size n×n, fn×n(·) presents

a convolution of size n×n, and ηn×n
0 means the hyperparameter of a convolution

of size n × n. The image features can be further extracted by the convolution
layer of size 3× 3 or 5× 5 respectively.

F 3×3
2 = f3×3((F

3×3
1 + F 5×5

1 ); η3×3
1 ) (4)

F 5×5
2 = f5×5((F

3×3
1 + F 5×5

1 ); η5×5
1 ) (5)

where Fn×n
2 denotes the output of a convolution layer of size n×n and ηn×n

1

means the hyperparameter of a convolution layer of size n × n. The activation
functions for these convolution layers use Leaky-ReLU with α = 0.2 as the
activation function in general.

To further improve the network representation capabilities, MARB intro-
duces the inter-layer multi-scale information fusion, which can integrate multi-
scale information with the features of different scales. This structure guarantees
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Fig. 2. (a) The architecture of our proposed Multi-Scale Attention Residual Block
(MARB) consists the multi-scale residual blocks and the feature attention module. The
feature module has two sequential sub-modules: channel-wise attention (CA) block (b)
and spatial attention (SA) block (c).

that the input information can be propagated through all parameter layers, so
that the MARB can learn the primary image features through different scales
and features. To accelerate the training procedure, global skip connection is in-
troduced among different MARB modules, which helps back-propagate gradient
to update parameters. This skip connection can also propagate lossless informa-
tion through the entire network directly, therefore it is useful for estimating the
final derained image.

Rain density distribution patterns vary dramatically across different color
channels, therefore the BCP prior [23], may be an effective way to get different
weighted information for channel features. In [34], the research also finds that
the channel-wise attention scheme with BCP can help the network better pre-
serve the pixel brightness in derained images than previous methods, which treat
different channels equally. Hence, the channel attention can capture the rain re-
gion and assist to extract important features. Meanwhile, the distributions of
rain streaks are almost unevenly and may vary across different spatial locations.
Therefore, the spatial attention may be also important to deal with rain region.
Therefore, the spatial attention may be also important to deal with rain region.
Multi-scale information fusion is achieved by using convolution layers of size
1 × 1 and 3 × 3, while channel-wise and spatial attention modules can also be
introduced to improve feature fusion. We can reformulate the final output as:

Fout = sa(ca((f3×3(f1×1(C(F 3×3
2 , F 5×5

2 ); η2); η3); δ0); δ1)) + F0 (6)

where Fout denotes the output of the MARB, sa(·) and ca(·) indicate the
spatial attention mechanism and channel attention mechanism, respectively, and
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{η2; η3; δ0; δ1} indicates the hyperparameters of the MARB output. This oper-
ation enables the network to better explore and reorganize features in different
scales.

3.3 Loss Function

Mean squared error (MSE) is widely used as the loss function to evaluate the
derained image and its corresponding ground truth. However, it usually leads
to the blurry and over-smoothed of high-frequency textures, which do harm to
remove the rain and restore the image content. To address the above drawbacks,
we combine the MSE with SSIM as the proposed loss function to balance between
image deraining and background structure preservation.

MSE Loss. Given an input rainy image Ii , the output rain-free image is
G(Ii) and the ground truth is Ji . Hence, a pixel-wise MSE loss can be defined
as follows:

LMSE =
1

HWC

H∑

x=1

W∑

y=1

C∑

z=1

‖G(Ii)− Ji‖
2

(7)

where H, W and C represent height, width, and number of channels respec-
tively.

SSIM Loss. SSIM is an important indicator to measure the structural sim-
ilarity between two images [35], with the equation as follows:

SSIM(G(I), J) =
2µG(I)µJ + C1

µ2
G(I) + µ2

J + C1
·
2σG(I)σJ + C2

σ2
G(I) + σ2

J + C2
(8)

where µx, σ2
x are the mean and the variance value of the image: x. The

covariance of two images is σxy, C1 and C2 are constants value used to maintain
equation stability. SSIM ranges from 0 to 1 and in the deraining issue the greater
value means that the derained image are more similar to the ground truth image,
so the SSIM loss can be defined as:

LSSIM = 1− SSIM(G(I), J) (9)

Total Loss. The total loss is defined by combing the MSE loss and the SSIM
loss as follows:

L = LMSE + λLSSIM (10)

where λ is the hyperparameter that can balance the weights between the
MSE loss and SSIM loss. With the proper setting, the hybrid loss can keep the
per-pixel similarity while preserving the global structures, which can help the
rain removal model to obtain additional realistic derained images.

4 Experiments

In this section, we conduct comprehensive experiments to demonstrate the ef-
fectiveness of the proposed MARD-Net for image draining. Compared with the
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current state-of-the-art algorithms, the qualitative and quantitative analysis are
carried out on the synthesized benchmark and real-world rainy datasets. In ad-
dition, ablation studies also perform to validate the effectiveness of our designed
components.

4.1 Datasets and Performance Metrics

Datasets. We carry out experiments on four synthetic benchmark datasets:
Rain100L [1], Rain100H [1], Rain12 [10] and Rain1400 [3], including rain streaks
with various sizes, shapes and directions. With only one type of rain streaks,
Rain100L contains 200 image pairs for training and the remaining 100 ones for
evaluation. Compared with Rain100L, Rain100H is a dataset with 5 types of
rain streak directions and consists of 1800 image pairs for training and 100 ones
for testing. By training on Rain100L, like [19], Rain 12 is utilized to be a testing
sample since it only includes 12 image pairs. With 14 types of streak orientations
and magnitudes, Rain 1400 has 14000 rain synthetic images from 1000 clean
images, where 12600 rainy images are selected as training data and the other
1400 ones are chosen for testing. Real-world Datasets are very important to
evaluate the performance of deraining and two real-world datasets are involved
for testing: the one with 185 real-world rainy images collected by [12], and the
other with 34 images released by [36].

Performance Metrics. As the ground truths available for synthetic data,
the rain removal method’s performance can be evaluated on Peak Signal-to-Noise
Ratio (PSNR in dB) and the Structural Similarity Index Measure (SSIM) [35].
The higher value of PSNR indicates better performance to remove rain streaks
from the rainy image. The greater SSIM score nearest to 1 means that the two
different images are more similar to each other. As no ground truth exits for real-
world datasets, we may present the visual comparisons and zoom local parts for
the real-world images.

4.2 Training Details

The detailed structure and parameter settings of the proposed model are given
in Figure 1 using Pytorch framework and the number of MARB is set to 8
to get a better result as discussed in the Ablation Studies part. Using Adam
optimization [37] in the training process, its parameters can be set as followed:
the learning rate is 1× 10−3 and batch size is 32. Considering the loss function,
the weight value of SSIM is set as λ = 0.2, empirically. We train the network for
100 epochs in total and reduce the learning rate by half every 25 epochs on a
workstation with a NVIDIA Tesla V100 GPU (16 G). All subsequent experiments
are performed with the same environment described in implementation details.
To encourage more comparisons from the community, we will publicly release
our codes on GitHub: https://github.com/cxtalk/MARD-Net.
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4.3 Evaluation on Synthetic Datasets

In this section, we reveal the effective performance of our method by con-
ducting a mass of experiments on frequent-used synthetic datasets: Rain100L,
Rain100H, Rain1400 and Rain12. The proposed MARD-Net method is compared
to five recent state deraining methods:GCANet [29], RESCAN [20], LPNet [30],
SPANet [31] and PReNet [19]. All the methods use the source codes and default
parameters specified published in the published literature. As the availability of
ground truth in synthetic data, the results are evaluated using PSNR and SSIM.
Table 1 shows the average evaluation criteria of each pairs of rain-free and de-
raining images with diverse and complicated rain types. From the table, the
proposed method obtained the highest value of PSNR and SSIM in all synthetic
datasets, which reflected the better robustness and generality of MARD-Net.
The most notably increasing score in Rain100H and Rain1400 noted that our
approach could properly remove the rain steaks and restore the image especially
in the heavy rain as well as in the various rainy conditions.

Table 1. Quantitative results evaluate in term of average PSNR (dB) and SSIM on
the synthesized benchmark datasets, including Rain100L, Rain100H, Rain1400 and
Rain12. The best results are highlighted in bold. It is worth noting that the PSNR and
SSIM are calculated in the RGB color space.

Datasets Rain100L Rain100H Rain1400 Rain12

Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Input 26.89 0.8382 13.55 0.3785 25.24 0.8097 30.13 0.8553
GCANet 31.65 0.9325 23.80 0.8114 27.84 0.8406 30.76 0.8819
RESCAN 36.12 0.9691 28.88 0.8660 29.88 0.9053 36.43 0.9519
LPNet 33.39 0.9579 23.39 0.8208 26.45 0.8326 34.83 0.9568
SPANet 35.33 0.9694 25.11 0.8332 28.57 0.8913 35.85 0.9572
PReNet 37.41 0.9783 29.45 0.8980 30.73 0.9184 36.66 0.9618
Ours 37.84 0.9814 30.19 0.9153 31.68 0.9215 36.88 0.9726

In addition to the results by quantitative evaluation, we also provide visual
observation derained images. Some corresponding pictures directly show visual
difference in rain removal images, as particularly seen in Figure 3 with crop and
zoom in two local patch regions. As displayed, the GCANet leaves many rain
streaks in the recovered images, especially in the heavy rain cases (Rain100H
and Rain1400). The main drawbacks of RESCAN in the comparison show color
degradation with different rain patterns (Rain1400) and there are still some
streaks left after deraining. LPNet fails to remove the rain-streaks completely in
the diverse rain pattern (Rain1400) and brings serious rain artifacts and blurred
region to the derained image. Clearly, PReNet and SPANet, have the ability
to remove most of rain streaks in different rain cases. However, by observing



10 X. Chen, Y.F. Huang, L. Xu et al.

zoomed color boxes, we find that they lose some detailed information and lead
to color degradation to a certain extent. In general, the proposed MARD-Net can
successfully remove majority of rain in various rain patterns even in the heavy
rain condition, and another benefit of our method is being good at preserving
of color and detailed structure information similar to the ground truths.

Fig. 3. Visual quality comparisons of all competing methods on synthetic datasets, in-
cluding Rain100L, Rain100H, Rain1400 and Rain12. Zooming in the figure can provide
a better look at the restoration quality.

4.4 Evaluations on Real Rainy Images

To evaluate the effectiveness for practical use, we conduct a further compar-
ison on the mentioned two real-world rainy datasets. Figure 4 demonstrates
two real-world samples since the above one with various spatial information in
the image space, while the other contains rich texture and content information.
All the methods employ the pre-trained model trained on the same synthetic
rainy datasets. Even though RESCAN, PReNet and SPANet achieve remark-
able rain removal performance on synthetic datasets, all competing methods
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leave some rain streaks to a certain extent in various spatial space and complex
content condition. Since objects far or near from the camera are mainly affected
differently by the rain, our method significantly removes the majority of rain
streaks by introducing multi-scale features and attention information. Due to
the overfitting-to training-samples process [38] and loss of the spatial informa-
tion, the competing methods fail to remove the rain steak with various spatial
conditions, as seen in the above picture. With complex content information and
texture details in the image below, the competing methods fail to remove the
rain streaks on the road. Through the zoomed color boxes, we can see the obvious
detail structure and information loss for derained results. Clearly, the proposed
model performs well on deraining and restoring the details and color information
with feature reuse and transferring in different scales and layers.

Fig. 4. Visual quality comparisons of all competing methods on real-world datasets.
Zooming in the figure can provide a better look at the restoration quality.

4.5 Ablation Studies

We conduct the ablation study to explore the effectiveness of the parameters
and configuration in our proposed network. All the studies are performed in the
same environment by using the Rain100L dataset.

Multi-scale Attentive Residual Block Numbers
To study the influences of different numbers, we perform the experiments

with different numbers of MARB to the proposed network. Specifically, MARB
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numbers N is set to N ∈ {2, 4, 6, 8, 10} and the performances are illustrated in
Table 2. As seen, increasing blocks can bring higher PSNR and SSIM values,
while the value improvement is limited after N = 8 with extra time-consuming.
Hence, 8 is chosen as our default setting to achieve the balance between effec-
tiveness and efficiency.

Table 2. Ablation study on multi-scale attentive residual block (MARB) numbers.
PSNR and SSIM results among different settings of MARD-Net on Rain100L dataset.

Block No. N = 2 N = 4 N = 6 N = 8(default) N = 10

PSNR 34.84 35.50 36.79 37.84 37.86
SSIM 0.9635 0.9718 0.9786 0.9814 0.9810

Channel-wise and spatial attention modules

To further verify the effectiveness of feature attention modules, we conduct
the studies with different variants of Multi-scale Residual Block. The baseline
module is constructed by removing the channel-wise and spatial attention. As
shown in Table 3, feature attention module is able to bring improvements in
both PSNR and SSIM. The best performance is achieved by using the channel-
wise and spatial attention both, with bringing a total gain of 1.89 dB over the
baseline that verifies helpful to the task of rain removal.

Table 3. Ablation study on feature attention modules. PSNR and SSIM results among
different decompositions on Rain100L dataset. The term “CA” and “SA” denote the
channel-wise attention block and spatial attention block, respectively. It shows that
the combination of all the designed components is the best.

Baseline CA SA SA+CA

PSNR 35.95 36.85 36.14 37.84

SSIM 0.9757 0.9785 0.9766 0.9814

Loss function

We further investigate the impact of using the MSE and SSIM loss functions.
In Table 4, the quantitative evaluations of different loss functions can be seen
under the same conditions. We note that PSNR is a function of MSE, and SSIM
focuses on structural similarity which is appropriate for preserving details. In
this case, the quantitative performance measure of MSE and SSIM should favor
the objective function that optimizes over this measure.
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Table 4. Ablation study on loss functions. The results of different losses on Rain100L
dataset.

MSE SSIM MSE+SSIM

PSNR 36.71 35.93 37.84

SSIM 0.9671 0.9798 0.9814

5 Conclusion

In this paper, we present a novel Multi-scale Attentive Residual Dense Network
named MARD-Net to handle the single image deraining problem. In MARD-Net,
dense network is applied to explore the potential of network through feature reuse
and fully information propagation. An innovative Multi-scale Attentive Residual
Block is first utilized to identify and represent the rain streak features. Different
convolution kernels along with progressive fusion are designed to explore the
multi-scale rain patterns features. In addition, feature attention module is intro-
duced to achieve the raining removal more adaptive in different color channels
and spatial distribution. Extensive experiments on both frequent-use synthetic
and real-world datasets demonstrate that the proposed MARD-Net achieves su-
perior performance to the recent state deraining methods. In the future, we will
further work on employing our network idea into semi/unsupervised scenarios
and some other low-vision tasks.
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