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Abstract. The adversarial training, which augments the training data
with adversarial examples, is one of the most effective methods to defend
adversarial attacks. However, its robustness degrades for complex mod-
els, and the producing of strong adversarial examples is a time-consuming
task. In this paper, we proposed methods to improve the robustness and
efficiency of the adversarial training. First, we utilized a re-constructor
to enforce the classifier to learn the important features under perturba-
tions. Second, we employed the enhanced FGSM to generate adversarial
examples effectively. It can detect overfitting and stop training earlier
without extra cost. Experiments are conducted on MNIST and CIFAR10
to validate the effectiveness of our methods. We also compared our algo-
rithm with the state-of-the-art defense methods. The results show that
our algorithm is 4-5 times faster than the previously fastest training
method. For CIFAR-10, our method can achieve above 46% robust ac-
curacy, which is better than most of other methods.

1 Introduction

Deep neural networks have demonstrated a strong capability to solve many chal-
lenging computer vision tasks, such as classification [1], object detection [2] and
image captioning [3]. These successful achievements not only shift the paradigm
of AI researches, but also enable many useful applications, such as self-driving
car [4] and medical image analysis [5].

However, the current neural network models for image classification are vul-
nerable to the adversarial attack, which means slight perturbations in the input
data can significantly degrade the accuracy of classification, even though those
perturbed images are indistinguishable from the original ones by human’s eyes.
Adversarial attacks can be a potential threat to real applications, such as the
cell-phone camera attack [6] and the road sign attack [7]. Hence, designing mod-
els that can have better resistance to adversarial attacks is one of the most
important tasks to make practical AI applications.

Adversarial attacks have many different forms. For white-box attacks, such
as L-BFGS [8], FGSM [9], and CW attack [10], attackers can access complete
information about the target networks, including the architecture, model pa-
rameters, or even the training data, from which the adversarial examples can
be generated. For black-box attacks, attackers have little knowledge about the
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target models, but they can still fool the target models, even with one pixel mod-
ification [11]. Moreover, the adversarial examples are transferable, which means
an adversarial example generated by one model can fool different models. As a
result, attackers can make use of this property to generate universal adversarial
examples [12].

In this paper, we focus on the defense of the white-box attacks with epsilon
bound on L∞ norm since major attacks of this type generate adversarial exam-
ples from the gradient of the loss function [9]. Many attempts of defenses try to
eliminate the gradient information during the training, however, the paper [13]
showed those types of defenses are unworkable. Another strategy is adversarial
training, which adds adversarial examples into training data. Despite its safety
and efficacy, adversarial training needs strong enough adversarial examples to
avoid the over-fitting to the perturbations. Nevertheless, searching powerful ad-
versarial examples is a time consuming task.

Many defense strategies have been proposed, such as gradient regularization
[14], TRADES [15] and feature denoising [16]. Fast training methods have been
proposed as well [17–19]. Besides, recent works have investigated how robust-
ness can achieve on large scale datasets [16, 20, 21]. We propose a new training
architecture to enhance the robustness of the adversarial training, and design a
new method for producing adversarial examples to accelerate the training speed.
The proposed training architecture concatenates a re-constructor to the classi-
fier, whose objective is to produce an identical image to the original clean image.
The purpose of such architecture is to force the classifier not only to output a
correct label for each input image, but also to project adversarial images onto a
manifold, on which the inter-class distance can be reduced. With such kind of
training model, even a weaker model can learn non-trivial classifiers with good
robustness against adversarial attacks.

Our adversarial images generator is called enhanced FGSM (Fast Gradient
Sign Method [9]), which can produce strong attacks without computing them
from iterative PGD. The signSGD algorithm and its variations have been used
for different applications in machine learning, such as distributed learning [22]
and the producing of adversarial examples for black-box attacks [23]. FGSM
can generate a good initial point for adversarial examples [17], but it suffers the
catastrophic overfitting, which can slow down the train process. With the mech-
anism to check the robust accuracy during training process, we can terminate
the training earlier and avoid the catastrophic overfitting.

We evaluated our method using MNIST and CIFAR10 datasets, and com-
pared our methods with the state-of-the-art defense algorithms proposed by [15,
18, 24]. The experimental results show that our methods are about 5 times and
4 times faster than AdvFree [18] for MNIST and CIFAR10 respectively. In ad-
dition, for MNIST, our method can achieve better accuracy under projection
gradient decent attacks compares to AdvFree. And for CIFAR10, our method
can achieve 46.06% robust accuracy. If the enhanced FGSM is combined with
TRADES, the robust accuracy of CIFAR10 can be 48.05%.

Our main contributions are summarized as follows:
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– We investigate the importance of inter-class distance.
– We propose a new training architecture with a lightweight attack, which

reduces heavy computing cost.
– We show that our model’s capacity is much smaller than competitor but

have similar or better accuracy.

The rest of this paper is organized as follows. Section 2 introduces the nec-
essary background about the adversarial attacks and defense methods. Section
3 presents our algorithms, and model architecture. Section 4 shows the experi-
mental results and the discussions. Conclusion and future work are given in the
last section.

2 Preliminary

This section introduces notations and describes mathematical background of
adversarial attacks and defenses.

Given an input image x, whose value is defined in the domain [0, 1]W×H×C ,
the classifier outputs one of the indices in a set of labels {c1, c2, . . . , ck}. The
classification process can be represented as a function,

F (x)i = softmax(Zo(x)), (1)

where F (x)i represents the probability of that image x is labeled with class i
and Zo(x) ∈ Rk is the output of the last layer of the network before the softmax
layer,

softmax(zi) =
ezi

∑k

j=1 e
zj
, (2)

that normalizes the output Zo(x) to a probability distribution over predicted
output classes. The network predicts that x belongs to label t by one of the
flowing two functions,

{

F (x) = argmaxF (x)i,

H(x) = argmaxZo(x)i.
(3)

The training of the classifier can be viewed as a minimization process of the
loss function L(x, y) over a given training dataset X, where x ∈ X and y is the
corresponding label for the image x.

2.1 Formulating Adversarial Attack

An adversarial example is an image with indistinguishable perturbation that
causes model to make incorrect prediction. An adversarial example is the solution
of the following optimization problem:

min ||δ||p, subject to F (x+ δ) 6= F (x). (4)
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We can define conditions in Equation (4) as a constraint set Ω,

Ω = {x|F (x)t − argmax
i 6=t

F (x)i ≤ 0}. (5)

In [9], authors first proposed a method, called Fast Gradient Sign Method
(FGSM), to generate adversarial examples xadv as follows,

xadv = P[0,1](x+ αsign(∇L(x, y))) (6)

where L(x, y) is the loss function, α is the step size, and P[0,1] is a projection func-

tion to ensure that xadv is a valid image. The major idea is to add perturbations
along the direction of sign(∇L(x, y)), such that image could be misclassified.

The attack can be a small perturbation on the original image. One way to
characterize this property is to constrain the size of perturbation to a small
range, say ǫ. To satisfy the ǫ constrain, the Projection Gradient Decent (PGD)
algorithm is usually applied to the generate valid perturbations. PGD runs for
T iterations. In each iteration i, it follows the Equation (6):

xPGD
i+1 = P[0,1](x

PGD
i + αsign(∇L(x, y))) (7)

and applies projection operator on xPGD
i+1 such that ‖xPGD

i+1 −x‖∞ < ǫ. If a random
start is allowed, noise from −ǫ to ǫ will be added in the beginning or at each
step.

For FGSM attack, α in (6) is set to ǫ, so xadv moves to the boundary imme-
diately; for PGD attack, xPGD

t+1 moves to the boundary by T steps, so α in (7)
is ǫ/T which is smaller than ǫ. Therefore, PGD is able to make more powerful
adversarial images.

2.2 Linear Approximation and DeepFool

FGSM and PGD discussed in Section 2.1 can find feasible solutions of the Equa-
tion (4), but the solutions may not be optimal. The geometric meanings of the
optimal δ in Equation (4) is the smallest step toward to the boundary of the
constraint set Ω.

In the paper of DeepFool [25], the authors argued that the optimization
problem can be linearized by Taylor expansion, by which a better solution with
smaller perturbation than that of FGSM and PGD can be found. In DeepFool,
the constraint set Ω is replaced with another equivalent set Ω̂,

Ω̂ = {x|Zo(x)t − argmax
i 6=t

Zo(x)i ≤ 0}. (8)

If Zo(x) is an affine function, problem (8) has a closed-form solution,

min
i 6=t

|Zo(x)t − Zo(x)i|

||∇Zo(x)t −∇Zo(x)i||q
, (9)

where p and q follow Holder’s Inequality’s constraint 1/p+ 1/q = 1. The detail
of the proof can be found in [25].
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By linearizing the lost function of a network, we can use the formula in (9)
as a solution to (8). The error term depends on how close the initial point is to
the decision boundary and the magnitude of the Hessian. Principally, the latter
is more important than the former. Nevertheless, the magnitude of the Hessian
is difficult to estimate even if function is Lipschitz continuity [26]. A practical
strategy is trying to regularize gradient which implicitly reduce the upper bound
[14].

2.3 Adversarial Training

The adversarial training, which injects adversarial examples into the training
dataset. The state-of-the-art method was proposed by Madry [24], in which they
showed that the adversarial training is to solve the following min-max problem:

min
θ

max
x′:D(x′,x)<ǫ

L(x′, y; θ) (10)

The maximization problem is to search the strongest adversarial examples; while
the minimization problem is to minimize the adversarial loss given by inner
attacks. They also argued that adversarial attacks generated by PGD is the
strongest first-order attack, which means if a model is robust enough against the
PGD attack, it will be defensive against any gradient-based attack. Therefore,
PGD attack is a best choice for the inner attack.

To reduce the heavy computation of adversarial training, Adversarial training
for Free (AdvFree) [18] calculates mini-batch’s one-step adversarial images with
step size ǫ immediately during backward phase, re-uses adversarial images in
the next forward phase, and repeats such loop m times. Compared with the
standard adversarial training, which requires m times forward and backward
phases to generate adversarial images, AdvFree needs no extra cost. However,
AdvFree is not exactly equal to PGD attack [24], because it chooses ǫ as step
size instead of ǫ

T
and moves to the boundary in one step. If ǫ is large, AdvFree

cannot compute an accurate adversarial images during iterations. On the other
hand, if AdvFree chooses a smaller step size, attacks at each step would not be
strong enough, except the last step. As a result, AdvFree takes longer time to
converge.

2.4 Gradient Masking

Since most attacks are based on the gradient information of target networks,
the gradient masking methods defend the attacks by making the gradient in-
determinable. However, the gradient masking methods are vulnerable to other
types of attacks other than the gradient based ones [13]. On the other hand, if
a model can defend the gradient based attacks without using gradient masking
methods, it can resist almost all kinds of attacks, as shown in [13]. Therefore, it
is important to ensure that no gradient masking is used explicitly or implicitly
in the design of the defending method.
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In [13], authors enumerated some rules to judge whether the gradients infor-
mation of a model is hidden or not. If a model satisfies one or more properties
listed below, it may use the gradient masking methods.

1. The random sampling method can find adversarial examples but gradient
based attacks cannot.

2. One-step PGD attacks have better performance than iterative PGD attacks.
3. Increasing the distortion bound does not decrease robust accuracy.
4. Unbounded PGD attacks do not reach 100% success.
5. Black-box attacks are better than white-box attacks.

We are going to scrutinize that the above phenomena do not occur on our trained
model.

3 Model and Algorithm

This section introduces the training architecture and the adversarial image gen-
erator.

3.1 Adversarial Image Generator

Our adversarial image generator is based on the FGSM method, because of its
computational advantages over the optimization based algorithms. However, it is
well-known that models trained by FGSM attacks can easily overfit to adversarial
images, especially for a large ǫ [6, 24]. This phenomenon is called catastrophic
over-fitting, where the model’s robust accuracy drops to 0% suddenly during
training phase.

The root cause of the overfitting problem is that the adversarial examples
generated by FGSM cannot fully represent the ǫ-ball attacks [24]. There are
two major problems of FGSM. First, the direction of FGSM xFGSM is obtained
from ∇xL(x), along which the loss function L(x) increases most. However, such
direction is not the solution to the problem (5), because it does not consider the
inter-class relation. Second, the step size of the FGSM is a fixed value, which
cannot represent the attacks of smaller sizes.

In this paper, we proposed a fast adversarial image generator, called enhanced
FGSM (eFGSM), which modifies FGSM to generate a better solution for problem
(5). eFGSM has two steps. First, we will use the direction generated by FGSM
as an initial point, because as shown in [17], FGSM still gives an approximate
solution to the problem (5).

xeFGSM = P[0,1](x+ P[−ǫ,ǫ](κ sign(Γ ))), (11)

where κ and Γ are the magnitude and the estimated attack respectively. Second,
a more accurate adversarial example xadv is computed with linear approximation
∆ and xeFGSM,

∆ = min
i 6=t

|Zo(xeFGSM)t − Zo(xeFGSM)i|

||∇Zo(xeFGSM)t −∇Zo(xeFGSM)i||1

xadv = P[0,1](x
eFGSM + sign(∇Zo(xeFGSM))∆).

(12)
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This is because the direction of linear approximation can solve the problem (5),
as shown in Section 2.2.

For each image, eFGSM generates a quick perturbation with the majority
vote version of FGSM [22]. Equation (11) is similar to the original FGSM, except
two modifications. First, Γ is calculated from the gradient direction obtained in
each epoch,

Γ j+1 = 0.95Γ j + sign(xadv − x). (13)

where the Γ j+1 at j + 1th epoch is a weighted accumulated sum of gradients.
Compared with the single gradient direction used in FGSM, Γ will stick on the
weighted gradient direction of each pixel and hence produce stronger attacks.
Second, κ is obtained from the Gaussian distribution with the mean equal to
sign(Γ )ǫ,

κ = N (sign(Γ )ǫ, σ2). (14)

And the variance σ is a hyperparameter to be decided. By doing so, the generated
adversarial examples can better represent the attacks than those generated by
FGSM.

The formulation of Γ can be considered as Bagging [27], which produces more
accurate decisions than those produced by a single targeted model, even though
each attack is weak and noisy. However, we need not generate multiple models
for each epoch. Instead, like the idea proposed in [18], we only compute the
gradient of the trained model during backward phase, and store the cumulative
signs of gradients, so that Γ can be updated in each epoch. The updated Γ
can be used to generate the adversarial images in the next epoch. Comparing to
AdvFree [18], our method is more flexible and converges faster.

The design of κ is a heuristic strategy. Comparing with Madry’s PGD with
random start, which selects a random point in ǫ-ball as initial point. Instead, Γ
gives us a hint of gradient information. To start from a random point without
losing much gradient information and keeping diversity, we suggest that κ is
generated by Gaussian distribution with mean equal to sign(Γ )ǫ.

3.2 Inter-Class Distance

We argue that network’s vulnerabilities come from one-hot encoding. In categor-
ical classification problems, labels are usually encoded as one-hot vectors, and
cross entropy loss encourages network to fit one-hot encoding labels. Thus, it
forces each class to be mutually orthogonal to each other. The disadvantage of
the one-hot encoding is ignoring the relationship among classes. For example,
image 0 and image 6 on MNIST have similar stroke, and there are ambiguous
images between those two classes. On the contrary, the difference between image
0 and 7 on MNIST is significant.

To solve this issue, the label smoothing technique was proposed [28], which
is a regularization technique avoiding classifier predicting a too confident result.
In [28], authors suggested that this skill helps networks’ pre-softmax layer to get
better representation.
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Equation (9) suggests inter-class distance should also be taken into consid-
eration in the design of a robust classifier. If |∆| is greater than ǫ, no feasible
adversarial examples exist for the ǫ-ball attack. In other words, the perturbation
reaches the boundary of ǫ-ball or physical constraint(x ∈ [0, 1]) before reaching
decision boundary. To enlarge ∆ as much as possible, we can either increase the
magnitude of numerator or decrease the magnitude of denominator of Equation
(9). In the L2 norm attack for an affine classifier, the denominator is

argmin
i 6=t

||Wt −Wi||2||∇Zo−1(x)||2 =

argmin
i 6=t

(|Wt|
2 + |Wi|

2 − 2|Wt||Wi|)||∇Zo−1(x)||2,
(15)

where W is the last layer’s weights and Zo−1 is the output of the second last
layer. If two classes are orthogonal, −2|Wt||Wi| will be 0 and ∆ will be minimum.
Moreover, this result can be extended to L∞ norm attack as well; for L1 norm
attack, denominator is ‖ · ‖∞, whose magnitude cannot be reduced efficiently.
Thus, defending against L1 norm attacks is still problematic [29].

Inter-class distance provides another benefits to check the occurrence of
catastrophic overfitting. We can roughly estimate the distance between xadv

and the decision boundaries during the training phase without extra cost. That
means we can quickly check the robust accuracy without the PGD-k attack. An
image x is considered as robust if the minimal distance is always greater than ǫ.
Catastrophic overfitting can be detected once robust accuracy at this epoch is
tremendously decreased. If such case happens, the training procedure should be
terminated immediately to avoid the catastrophic overfitting.

3.3 Training Model

In a seminal paper [24], authors had pointed out the characters of the defense
models for effective adversarial training. One of them is “weak models may fail

to learn non-trivial classifiers”. However, as mentioned in Section 3.2, no strong
evidences suggest that model’s capacity is related to robustness. The inter-class
distance should be the key point. To show that, we employ the idea of denoising
auto-encoder [30] to design the training architecture. A denoising auto-encoder
concatenates an encoder with a re-constructor, whose objective is to force the
encoder to project the noisy data back onto a lower dimension manifold where
the clean data reside. Because on the manifold, the noisy data are more clustered
to the clean data, a weak model can still learn non-trivial classifiers.

The proposed architecture is presented in Figure 1, which consists of two
networks: a classifier C and a re-constructor R. The network has three inputs: x̂
is an adversarial example, x is the original image, and y is the ground-truth label
with label smoothing. When receiving an input image x̂, the classifier outputs
a label ŷ, which is a vector showing the probability of each category for the
input image. The output ŷ is then fed into the re-constructor R, whose goal is to
produce an identical image to x. The loss function of the network contains two
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Fig. 1. The network architecture for training. y is ground-label with label smoothing,
x̂ is adversarial image generated by input image x and F is adversarial image generator
which collecting gradient infomation from x̂. For inference, only the classifier C is used.

terms: LG and LC , which are reconstruction loss and categorical loss respectively.
Loss function is formulated as follows:

min
θ

LR(x̂, x; θ) + λ · LC(x̂, y; θ). (16)

The goal is to find parameters θ that minimizes the risk of misclassification. The
categorical loss LC , which is also considered as sparse regularization, helps the
classifier to output the correct label for the input image x̂, even with noises.
The reconstruction loss LR enlarges the misclassified images’ penalty. Because
the latent code ŷ is totally different from y, the re-constructor R is not able to
generate the images which belong to the same class. On the other hand, it is
allowable to classifier predict wrong class but is adjacent to the the ground-truth
label. The reason is those classes share similar representations in hidden layers.

To refine the distribution of latent space, the label smoothing technique is
applied, which adds small perturbations in the ground-truth labels. Without
label smoothing, ŷ is almost a one-hot vector. It is because feeding a one-hot
vector into re-constructor is equivalent to solving a one-to-many mapping prob-
lem, which means one-hot vector represents the images of the same class with
arbitrary shapes or textures. This is not what we want.

The network R is used to improve inter-class distance. It is not used in the
inference time. The hyper-parameter λ balances the functions of those two terms.
We will justify its optimal value in the experiments.

3.4 Models for MNIST and CIFAR10

The specific model designs for MNIST and CIFAR10 are given below. For MNIST,
all classifiers use CNN architecture. Our classifier requires smaller filter size and
fewer unit of fully connected layer than others, which makes our model smaller
and faster. More specifically, the number of parameters in our model is only
0.2 million, while it is 0.76 millions in TRADES and 3.3 millions in Madry’s
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model. The architecture of re-constructor is a simple model with two dense lay-
ers and three transpose convolutional layers, whose number of parameters is 0.26
millions.

For CIFAR10, the architecture of the classifier is a variation of the wide
residual networks WRN22-5. Comparing to AdvFree, TRADES and Mardy’s
model, they use WRN34-10 [31] as the classifier model. Our WRN-22-5 model
has 6.7 millions parameters, and WRB34-10 model has near 46 millions. Our
re-constructor uses the upsamping version of WRN22-3 model, whose number
of parameters is 5.1 millions.

4 Experiments

This section presents three sets of experiments. The first set of experiments
compare the accuracy under attacks and the training performance of our model
with others. The second set of experiments perform ablation study on various
factors, including hyperparameter λ in Equation (16), label smoothing, and the
effectiveness of adversarial training and the re-constructor model. The third set
of experiments justify that our model does not belong to the gradient masking
methods, and therefore can resist most kinds of attacks.

4.1 Performance and Robustness

We evaluated our method on MNIST and CIFAR10 datasets. For both datasets,
we followed the instructions in [32] and reported robust accuracy with adaptive
PGD (PGD-ADP). For ablation tests, we used the standard PGD with cross-
entropy loss (PGDCE) and PGD with CW loss (PGDCW) against the defense
models [24]. For MNIST, we set ǫ = 0.3/1.0 on L∞ norm. Standard attacks
iterates 100 steps and the step size is 0.01. For CIFAR10, we set ǫ = 8.0/255
on L∞ norm. Attacks iterates 20 steps and the step size is 2.0/255. Adaptive
attacks iterate 100 steps and search the optimal step size at each step.

We also compared our model with other competitive models. For MNIST,
Madry’s model uses adversarial training with PGDCE-40 on training set; TRADES
sets β to 1; and AdvFree setsm to 15 and step size to 0.01. For CIFAR10, Madry’s
model uses adversarial training with PGDCE-10 on the training set; TRADES
sets β to 6; and AdvFree sets m to 8.

Table 1 summarizes the experimental results. The first column is the total
time for training; the second column is the elapsed time of each epoch; the

Table 1. Comparison of different models.

MNIST Ttrain[s] Tepoch[s] accnat. accadv.
Ours 268 6.7 99.01 92.37
Madry’s 69,993 77.0 97.26 88.45
TRADES 8,000 80.0 99.48 95.41
AdvFree 1,430 2.6 99.40 87.62

CIFAR10 Ttrain[s] Tepoch[s] accnat. accadv.
Ours 7,095 141.9 88.01 46.06
Madry’s 240,177 1351.0 87.25 44.04
TRADES 118,560 1526.0 84.92 52.76
AdvFree 29,120 183.0 86.07 43.80
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third column is accuracy of natural data, and the forth column is accuracy
under adversarial attacks. As can be seen, our model is the fastest model for
both datasets, although our training has a little extra computational cost for
re-constructor. The reason is our model is much smaller than others. Also, we
have the fastest rate of convergence. For CIFAR10, our model achieves 46.06%
robust accuracy, which is similar to Madry’s method. For MNIST, TRADES’s
natural and robust accuracy is slightly higher than our model. MNIST is a good
example for large ǫ. If AdvFree’s step size is increased, it would fail to converge.

4.2 Ablation Study

Hyperparameter λ This experiment verifies how the hyperparameter λ in
Equation (16) affects the robust accuracy of our model on MNIST and CIFAR10.
Table 2 lists the model accuracy for MNIST and CIFAR10 under different attacks
respectively. The result shows the best choice of λ for MNIST is near 0.1, and
the best λ for CIFAR10 is 0.05. If a smaller λ is chosen, the categorical loss
in Equation (16) will be neglected, which means the model is like to solve an
unsupervised clustering problem.

Label Smoothing This experiment investigates the influence of the label
smoothing for the model accuracy. Table 3 shows the results of the model trained
without using the label smoothing technique. Comparing to the results shown
in Table 2, one can find that the model’s robust accuracy increases significantly
with label smoothing technique.

Adversarial Training and Re-constructor This experiment compares the
effectiveness of two techniques used in our method: adversarial training with
enhanced FGSM attack and re-constructor model. For each dataset, we tried
three different combinations:

– AdvTrain: using adversarial training with enhanced FGSM attack only.
– REC: using re-constructor model only. The input images are unmodified.
– Combined: using both techniques.

The results, which are the model accuracy under different kinds of attacks, are
shown in Table 4 for MNIST and CIFAR10 respectively. AdvTrain successfully
generates good quality of adversarial images. The robust accuracy for PGDCE

Table 2. Influence of λ on the model accuracy (%). Left: MNIST. Right CIFAR10.

λ 1.0 0.5 0.1 0.01 0.001

Natural 99.22 99.13 99.02 96.72 53.19
PGD-ADP 91.24 91.54 92.37 86.66 26.08
PGDCE-100 96.75 96.49 96.55 92.10 36.08
PGDCW-100 96.58 96.47 96.33 91.27 30.50

λ 1.0 0.5 0.1 0.05 0.01

Natural 88.00 87.97 87.76 88.01 83.19
PGD-ADP 36.89 39.82 44.03 46.06 38.51
PGDCE-20 59.47 59.73 64.65 65.36 54.02
PGDCW-20 54.84 59.20 64.48 65.21 55.17
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Table 3. Accuracy (%) of the model trained without using label smoothing technique.
Left: MNIST. Right CIFAR10.

λ 1.0 0.5 0.1 0.01 0.001

Natural 99.31 99.31 99.17 98.46 70.91
PGD-ADP 87.70 88.33 90.63 89.31 54.58
PGDCE-20 94.60 94.58 95.68 95.15 62.72
PGDCW-20 94.79 94.68 95.72 94.81 59.22

λ 1.0 0.5 0.1 0.05 0.01

Natural 86.82 86.85 86.18 86.67 84.88
PGD-ADP 22.63 22.90 26.91 31.43 28.23
PGDCE-20 24.85 25.69 35.22 41.39 56.32
PGDCW-20 25.49 27.00 39.22 43.61 57.04

Table 4. Accuracy (%) of models trained by different techniques. Left: MNIST. Right:
CIFAR10

Techniques AdvTrain REC Combined

Natural 99.02 98.98 99.01
PGD-ADP 90.05 0.00 92.37
PGDCE-100 96.06 0.18 96.27
PGDCW-100 95.24 0.00 96.23

Techniques AdvTrain REC Combined

Natural 87.05 90.05 88.01
PGD-ADP 40.21 0.07 46.06
PGDCE-20 62.22 41.20 65.36
PGDCW-20 56.32 43.59 65.21

is similar to Madrey’s model for both dataset, but here is a gap between the
robust accuracy for PGDCE and robust accuracy for PGDCW. It implies that
AdvTrain may not to defense against arbitrary attacks.

The goal of re-constructor is to make the classifier converge faster and more
robust. Without any adversarial training data, the re-constructor is useless, be-
cause it does not help the original classifier to capture more features. Hence,
re-constructor model only method fails completely for MNIST. On the other
hand, the images in CIFAR10 have a large variation even for the objects in
the same class. Moreover, the image background are not unified. Thus, the re-
constructor alone can enhance the ability of classifier to learn better features.
The images augmented by sampled noise just enlarge the variation of training
data, whose function is not significant.

Early Stopping Estimation This experiment evaluates the robust accuracy
by Equation (9). For MNIST, we get 14.7% high risk data; for CIFAR10, we
get 43.12% high risk data. That means the distance between those data and the
decision boundary is less than ǫ. Comparing with Table 4, our method gives a
better bound than that of the standard PGD attacks.

TRADES With Enhanced FGSM The enhanced FGSM can be applied
not only to our model, but also others. We combined eFGSM with TRADES,
and evaluated its performance. The robust accuracy of such combination for CI-
FAR10 is 48.05%, which is less than that of TRADES (54.02%), but is slightly
better than that of our original method (46.07%). However, its average epoch
time is about 250s, which is much faster than that of TRADES (1526s). There-
fore, for fast training, eFGSM has its value to achieve good descent accuracy
with significant acceleration.
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Fig. 2. Robust accuracy decreases when PGD iteration increases. Left: ǫ = 0.3/1.0 on
MNIST. Right: ǫ = 8/255 on CIFAR10.
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Fig. 3. Robust accuracy decreases when ǫ increases. Left: MNIST. Right CIFAR10.

4.3 Justification of Gradient Masking Issues

This set of experiments checked whether our model shows some properties of
gradient masking with three experiments.

– Increase the number of iterations for PGD attack (checking property 2).
– Increase the size of ǫ (checking property 3 and 4).
– Attack the models using other methods (checking property 1 and 5).

The result of the first experiment is shown in Figure 2. As can be seen, the ac-
curacy converges when the number of iterations of PGD increases, which means
the attacks are stronger.

Figure 3 shows the robust accuracy for MNIST and CIFAR10 when the size
of ǫ increases. First, the accuracy are decreased monotonically as the size of ǫ
grows. Second, when ǫ is large enough, the accuracy drops to 0. For CIFAR10,
the degradation of our method is slower than that of others and the curve does
not reach to 0% when ǫ is larger than 200.
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Table 5. Robust accuracy for black-box PGDCE-20 attack on our model

Conv-4 ResNet-56 Madry’s

accuracy[%] 85.03 83.42 72.0

We want to emphasize that our method seems to perform better result than
others but this does not mean that our method is quite robust than others.
We selected standard PGD as attacker since we get quite suspicious result in
ablation study. This phenomenon is reasonable because the purpose of those
sets of experiments is verifying gradient masking issue. Once we strengthen the
power of PGD with several times with random restarts, robust accuracy will
be zero eventually. From the experimental results, we believe that obfuscating
gradient does not occur in our training method.

The last experiment uses the transferability of attacks on CIFAR10 to show
that other kinds of attacks are weaker than the PGD based method for our
model. We used the attacks generated for other three models: (1) a four layer
convolution neural network (Conv-4), (2) Resnet-56 [33], and (3) Madry’s adver-
sarial trained model. The accuracy for our model under the attacks transferred
from other models are shown in Table 5. As can be seem the values are between
the accuracy under PGD attacks (46.06%) and the natural accuracy (88.01%).
Attacks generated from Madry’s model are stronger than others because our
model is similar to Madry’s. These experiments confirmed that the gradient
masking does not occur in our model.

5 Conclusion

In this paper, we presented two methods to improve the robustness and the
performance of adversarial training. The first one is a training architecture,
which leverages a re-constructor to make the model learn the classifier on a
lower dimension manifold, on which the inter-class distance is shrunken, so the
trained model can be more robust and the model size can be reduced. The
second method is a fast way to generate the adversarial examples. We enhanced
FGSM so that it can generate more reprensentable attacks without solving the
optimization problems. Experimental results show that the models generated by
our methods for MNIST and CIFAR10 require less parameters and run faster
than other training methods.

In the future, we have several research directions to explore. First, we want
to try our methods on more complicated models and datasets, such as ImageNet.
Second, for the training architecture, how to build a suitable re-constructor to
help the training of more robust classifiers requires further investigation. Third,
for adversarial example generator, more computationally economic ways still
need to research. Last, we would like to extend our methods to other applications,
besides image classification, to resist different kinds of adversarial attacks.
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