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Abstract. This paper addresses the problem of 3D face reconstruction
from a single image. While available solutions for addressing this prob-
lem do exist, to our knowledge, we propose the very first approach which
is robust, lightweight and detailed i.e. it can reconstruct fine facial de-
tails. Our method is extremely simple and consists of 3 key components:
(a) a lightweight non-parametric decoder based on Graph Convolutional
Networks (GCNs) trained in a supervised manner to reconstruct coarse

facial geometry from image-based ResNet features. (b) An extremely
lightweight (35K parameters) subnetwork – also based on GCNs – which
is trained in an unsupervised manner to refine the output of the first
network. (c) A novel feature-sampling mechanism and adaptation layer
which injects fine details from the ResNet features of the first network
into the second one. Overall, our method is the first one (to our knowl-
edge) to reconstruct detailed facial geometry relying solely on GCNs. We
exhaustively compare our method with 7 state-of-the-art methods on 3
datasets reporting state-of-the-art results for all of our experiments, both
qualitatively and quantitatively, with our approach being, at the same
time, significantly faster.

1 Introduction

3D face reconstruction is the problem of recovering the 3D geometry (3D shape
in terms of X,Y,Z coordinates) of a face from one or more 2D images. 3D face
reconstruction from a single image has recently witnessed great progress thanks
to the advent of end-to-end training of deep neural networks for supervised
learning. However, it is still considered a difficult open problem in face analysis
as existing solutions are far from being perfect.

In particular, a complete solution for 3D face reconstruction must possess at
least the following 3 features: (a) Being robust: it should work for arbitrary fa-
cial poses, illumination conditions, facial expressions, and occlusions. (b) Being
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efficient: it should reconstruct a large number of 3D vertices without using ex-
cessive computational resources. (c) Being detailed: it should capture fine facial
details (e.g. wrinkles). To our knowledge, there is no available solution having
all aforementioned features. For example, VRN [1] is robust but it is neither ef-
ficient nor detailed. PRNet [2] is both robust and efficient but it is not detailed.
CMD [3] is lightweight but not detailed. The seminal work of [4] and the very
recent DF2Net [5] produce detailed reconstructions but it is not robust. Our goal
in this paper is to make a step forward towards solving all three aforementioned
problems.

To address this challenge, we propose a method which effectively combines
the favourable properties of many of the methods mentioned above. In particular,
our framework – consisting of two connected subnetworks as shown in Fig. 1 –
innovates in the following 4 ways:

1. Our first subnetwork is a non-parametric method, like [1], which is trained to
perform direct regression of the 3D coordinates in a supervised manner and
works robustly for in-the-wild facial images in large poses, expressions and
arbitrary illuminations. Contrary to [1] though, we use Graph Convolutional
Networks (GCN) to perform regression in a very lightweight manner.

2. Our method also has a second subnetwork, like [4] and [5], which is trained
in an unsupervised manner – using a Shape-from-Shading (SfS) loss – to
refine the output of the first subnetwork by adding missing facial details.
Contrary to [4] and [5] though, we implemented this subnetwork in a ex-
tremely lightweight manner using a second GCN, the vertices of which are
in full correspondence with the vertices of our first subnetwork.

3. We further improve the ability of our method to reconstruct fine facial details
by introducing a novel feature-sampling mechanism and adaptation layer
which injects fine details from the mid-level features of the encoder of the
first subnetwork into the decoder of the second subnetwork one.

4. We extensively compare our method with 7 state-of-the-art methods on 3
datasets and report better results for all of our experiments, both quan-
titatively and quantitatively, with our approach being, at the same time,
significantly faster than most.

2 Related Work

Dense 3D face reconstruction from a single image is a heavily studied topic in
the area of face analysis. In the following section, we will briefly review related
works from the Deep Learning era.
Parametric (3DMM) methods. A large number of methods for 3D recon-
struction build upon 3DMorphable Models (3DMMs) [6, 7] which was the method
of choice for 3D face modelling prior to the advent of Deep Learning.

Early approaches focused on supervised learning for 3DMM parameter esti-
mation using ground truth 3D scans or synthesized data. 3DDFA [8] iteratively
applies a CNN to estimate the 3DMM parameters using the 2D image and a 3D
representation produced at the previous iteration as input. The authors in [9]
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fit a 3DMM into a 2D image using a very deep CNN, and describe a method
to construct a large dataset with 3D pseudo-groundtruth. A similar 3DMM fit-
ting approach was proposed in [10]. Parameter estimation in 3DMM space is,
in general, a difficult optimization problem for CNNs. As a result, these meth-
ods (a) fail to produce good results for difficult facial images with large poses,
expressions and occlusions while (b) in many cases the reconstructions fail to
capture the shape characteristics of the face properly. We avoid both obstacles
by using a non-parametric model for our first subnetwork which uses a GCN
to learn directly to regress the 3D coordinates of the facial geometry without
requiring to perform any 3DMM parameter estimation.

Beyond supervised learning, several methods also attempt to fit or even learn
a 3DMM from in-the-wild images in an unsupervised manner (i.e. without 3D
ground truth data) via image reconstruction. MOFA [11] combines a CNN en-
coder with an hand-crafted differentiable model-based decoder that analytically
implements image formation which is then used for learning from in-the-wild
images. This idea was further extended in [12] which proposed an improved
multi-level model that uses a 3DMM for regularization and a learned – in a
self-supervised manner – corrective space for out-of-space generalization which
goes beyond the predefined low-dimensional 3DMM face prior. A similar idea
was also proposed in [13] with a different network and loss design. The authors
in [14] propose to learn a non-linear 3DMM, where texture and shape recon-
struction is performed with neural network decoders (rather than linear opera-
tions as in 3DMM) learned directly from data. This work was extended in [15]
which proposes to learn coarse shape and albedo for ameliorating the effect of
strong regularisations as well as promoting high-fidelity facial details. The last
two methods do not use a linear model for shape and texture however. They
are trained in a semi-supervised fashion where 3DMM results for the 300W-LP
dataset [8] are used to constrain the learning.

All the aforementioned methods employ at some point a 3DMM (either ex-
plicitly or as regularisation), and, as such, inevitably the reconstruction result
does not capture well identity-related shape characteristics and is biased towards
the mean face. Furthermore, image reconstruction losses provide an indirect way
to learn a model which has not been shown effective for completely unconstrained
images in arbitrary poses. Our method bypasses these problems by using non-
parametric supervised learning to reconstruct coarse facial geometry (notably
without a 3DMM) and non-parametric unsupervised learning via image recon-
struction to recover the missing facial details.

Non parametric methods. There are also a few methods which avoid the use
and thus the limitations of parametric models for 3D face reconstruction. By
performing direct volumetric regression, VRN [1] is shown to work well for facial
images of arbitrary poses. Nonetheless, the method regresses a large volume
which is redundant, memory intensive and does not scale well with the number
of vertices. Our method avoids these problems by using a GCN to perform direct
regression of surface vertices. GCNs for 3D body reconstruction were used in [16].
But this method can capture only coarse geometry and cannot be applied for
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detailed face reconstruction. Moreover, we used a different GCN formulation
based on spiral convolutions. The semi-parametric method of [3] combines GCNs
with an unsupervised image reconstruction loss for model training. Owing to the
use of GCNs the method is lightweight but not able to capture fine details.
Shape-from-Shading (SfS) based methods. Shape-from-Shading (SfS) is a
classical technique for decomposing shape, reflectance and illumination from a
single image. SfS methods have been demonstrated to be capable of reconstruct-
ing facial details beyond the space of 3DMMs [17, 18, 4, 5, 19–25]. SfS is a highly
ill-posed problem and as such SfS methods require regularisation. For example,
in Pix2vertex [18], a smoothness constraint was applied on the predicted depth
map. The seminal work of [4] was the first one to incorporate an unsupervised
image reconstruction loss based on SfS principles for end-to-end detailed 3D face
reconstruction. It used a subnetwork trained in a supervised manner to firstly
estimate a coarse face (sometimes also called proxy face) using a 3DMM and
then another subnetwork trained in a unsupervised manner using SfS principles
to refine reconstruction. A notable follow-up work is the multi-stage DF2Net [5]
which predicts depth maps in a supervised manner and then refines the result
in two more SfS-based stages, where all stages are trained with progressively
more detailed datasets. Notably, our method is inspired by [4], but it is based
on non-parametric estimation. In addition, ours is based on GCNs, and thus is
simpler, faster, and more robust compared to both [4] and [5].
Graph Convolution Networks (GCNs) based methods. Graph Convolu-
tion Networks (GCNs) are a set of methods that try to define various convolution
operations on graphs. They include but are not limited to spectral methods [26–
28], local spatial methods [29, 30] and soft attention [31–33]. As 3D face mesh is
also a graph, applications of GCNs on 3D face modeling [34–37] are emerging.
The work of [35] was the first one to build a 3D-to-3D face autoencoder based
on spectral convolutions. More recently, the work of [34] employed the spiral
convolution network of [29] to build another 3D-to-3D face autoencoder. These
works focus on a 3D-to-3D setting. To our knowledge, we are the first to employ
spiral convolutions for 3D face reconstruction from a single 2D image. More im-
portantly, we are the first to show how to integrate GCNs with SfS-based losses
for recovering facial details in an unsupervised manner.

3 Method

3.1 Overview of our framework

The proposed framework is illustrated in Fig. 1, it consists of two connected sub-
networks: the first one is an encoder-decoder designed to reconstruct coarse 3D
facial geometry. It takes advantage of a simple and light-weight spiral convolution
decoder to directly regress the 3D coordinates of a face mesh with arbitrary pose
(i.e. in an non-parametric fashion). This mesh will be used to sample and provide
features for the second network. Our second network is another GCN that utilises
the normals of the coarse face and the per vertex RGB values sampled from the
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Fig. 1. Overview of our framework. It consists of two connected sub-networks: (1) a
coarse 3D facial mesh reconstruction network with a CNN encoder and a GCN decoder;
(2) a GCN-based mesh refinement network for recovering the fine facial details. We also
device a feature sampling and adaptation layer which injects fine details from the CNN
encoder to the refinement network.

input image to estimate per vertex shape displacements (i.e. again in a non-
parametric fashion) that are used to synthesise facial geometric details. We then
simply superimpose the predicted shape displacement on the coarse mesh to
obtain our final 3D face. We also propose a novel feature-sampling mechanism
and adaptation layer which injects fine details from the features of the first
network into the layers of the second one.

3.2 Coarse 3D face reconstruction with GCN

We design an encoder-decoder network trained to reconstruct the coarse 3D fa-
cial geometry from a single image in a fully supervised manner. Note that the
reconstructed face at this stage is coarse primarily because of the dataset em-
ployed to train the network (300W-LP [8]), and not because of some limitation of
our decoder. We emphasize that the network is trained to directly regress the 3D
coordinates and does not perform any parameter estimation. This is in contrary
to many existing non-linear 3DMMs fitting strategies [14, 38, 11, 39, 40], where
the decoder is trained to regress 3DMMs parameters. To our knowledge, we are
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the first to leverage a GCN, and in particular, based on spiral convolutions [29]
to directly regress a 3D facial mesh from in-the-wild 2D images .

As shown in the upper half of Fig. 1, given an input image I, we first employ
a CNN encoder (ResNet [41] or MobileNetV2 [42]) to encode this image into
a feature vector zim = E(I). We then employ a mesh decoder D built using
the spiral convolution operator of [29] described below. The feature vector zim
is firstly transformed into a mesh-like structure (each node represents a 128-d
feature) using a FC layer. Then, it is unpooled and convolved five times until
reaching the full resolution of the target mesh. Lastly, another spiral convolution
is performed to generate the coarse mesh.
Spiral convolution and mesh pooling. We define the face mesh as a graph
M = (V, E), in which V = {x1, . . . ,xn}, and E denote the sets of vertices
and edges, respectively. We further denote the vertex feature as f(x) ∈ RC .
We built our GCN using the spiral convolution of [29] due to its simplicity: to
perform a convolution-like operation over the graph, a local vertex ordering is
defined using the spiral operator proposed in [29]. Specifically, for each vertex
x ∈ V, the operator outputs a spiral S which is an ordered sequence of fixed
length of L neighbouring vertices as shown in Fig. 2. Since the order and length
is fixed, one can concatenate the features from all vertices in S into a vector
fS ∈ R(C×L)×1 and define the output of a set of Cout filters stored as rows in
matrix W ∈ RCout×(C×L) as fout = WfS . This is equivalent to applying a set of
filters on a local image window. Furthermore, since the vertices V of the facial
mesh are ordered, this process can be applied sequentially for all x ∈ V. This
defines a convolution over the graph. Finally, for mesh pooling and unpooling,
we follow the practice introduced in [35].

Fig. 2. An example of a spiral neighborhood around a vertex on the facial mesh.

Loss function. We use the L1 reconstruction error between the groundtruth
3D mesh Sgt ∈ Rn×3 and our predicted mesh Scoarse = D(E(I)):

Lcoarse =

N
∑

i=1

|D(E(I))− Sgt|, (1)

The method of [3] is semi-parametric as it tries to recover 22 parameters for pose
and lighting
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where N is the total number of training examples. Note that we do not define any
additional scale, pose nor expression parameters in our network. We also observe
that the spiral mesh decoder tends to produce smooth results, thus there is no
need to define an extra smoothness loss.

3.3 Unsupervised detailed reconstruction

Spiral mesh refinement network. As depicted in the lower half of Fig. 1, we
devise a mesh refinement network for synthesising fine details over the coarse
mesh. Again, our network is fully based on spiral convolution networks. There
are two inputs, the first one is the per vertex RGB values sampled from the
input image. Specifically, we project the coarse mesh back to the image space
and sample the corresponding RGB values using bilinear interpolation. Here,
orthographic projection is chosen for simplicity. The second input is the vertex
normals of the coarse mesh which provides a strong prior for the detailed 3D
shape of the target face. Note that we prefer vertex normals over xyz coordinates
because: (1) vertex normals are scale and translation invariant; (2) vertex nor-
mals have a fix range of value (i.e., [−1, 1]). Both properties lower the training
difficulty of our refinement network. These two inputs are concatenated and then
convolved and pooled 3 and 2 times respectively until reaching ∼ 1/16 of the
full mesh resolution. Following this, the feature mesh is unpooled and convolved
twice. During this process, we adapt and inject intermediate features from the 2D
image encoder to the refinement network (we will elaborate this module in the
next paragraph). Finally, after another spiral convolution is applied, we obtain
the facial details in the form of per vertex shape displacement values ∆S. We
apply the displacement over the coarse mesh to obtain the final reconstruction
result, Sfinal = Scoarse +∆S.
Image-level feature sampling and adaptation layer. One of the main con-
tributions of our paper is the utilization of fine CNN features from the image
encoder into our refinement GCN. More specifically, and as can be seen in Fig. 1,
in our framework the coarse and fine networks are bridged by injecting inter-
mediate features from the 2D image encoder into the spiral mesh refinement
network. Although this idea is simple, we found it is non-trivial to design an
appropriate module for this purpose, because the features from these two net-
works are coming from different domains (RGB and 3D mesh). We therefore
introduce a novel feature-sampling mechanism and adaptation layer to address
this problem which we describe here with a concrete example: Given an image
feature fim ∈ R

128×128×64 returned by the first convolution block, we first per-
form a 1x1 convolution to ensure it has the same number of channels as the
target feature fmesh ∈ R

13304×16 in the refinement network. Next, we sample
the feature using the predicted mesh from the coarse reconstruction network.
Specifically, we downsample the coarse mesh Scoarse ∈ R

53215×3 to obtain a new
mesh Snew ∈ R

13304×3 with identical number of vertices as fmesh, after which,
we project (and resize) Snew onto the 128×128 image plane to sample from fea-
ture tensor fim using bilinear interpolation. Nevertheless, the extracted feature
f̃im ∈ R

13304×16 cannot be used directly, as it comes from another domain, so we
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design an extra layer to adapt this feature to the target domain. Adpative In-
stance Normalisation (AdaIN) [43] is chosen for this purpose. Essentially, AdaIN
aligns the channel-wise mean and variance of the source features with those of
the target feature (this simple approach has been shown effective in the task of
style transfer). We normalise the extracted feature f̃im as:

AdaIN(f̃im, fmesh) = σ(fmesh)

(

f̃im − µ(f̃im)

σ(f̃im)

)

+ µ(fmesh), (2)

where µ(·) and σ(·) are the channel-wise mean and variance, respectively. Note
that we also tried to replace AdaIN with batch normalization [44], unfortunately,
our networks fail to produce sensible results with it. Finally, we add the two
features together and feed them into the next spiral convolution layer.
Loss function. As there does not exist detailed ground truth shape for images
in-the-wild, we train the refinement network in an unsupervised manner using
Shape-from-Shading (SfS) loss. SfS loss is defined as the L2 norm of the difference
between the original intensity image and the reflected irradiance Ĩ. According
to [45, 5], Ĩ can be computed as:

Ĩ(c∗,N,A) = A

9
∑

i=1

c∗iYi(N), (3)

where N is the unit normals of the predicted depth image and A is the albedo
map of the target image (estimated using SfSNet [46]), Yi(N) are the Spherical
Harmonics (SH) basis functions computed from the predicted unit normals N,
and c∗ are the second-order SH coefficients that can be precomputed using the
original image intensity I and depth Ngt image:

c∗ = argmin
c

‖A

9
∑

i=1

ciYi(Ngt)− I‖22. (4)

In practice, we calculate Ngt from the fitted coarse mesh. Different from [5,
18], our model predicts a 3D mesh rather than a depth image, therefore we need
to render our final mesh to obtain the unit normals in image space. To achieve
this, we first compute the vertex normals of our predicted mesh Sfinal, and then
we render the normals to the image using a differentiable renderer [47] to get
the normal image N. Our SfS refinement loss function can be written as:

Lrefine = ‖Ĩ(c∗,N,A)− I‖2. (5)

Our refinement loss accounts for the difference between the target and recon-
structed image using shape-from-shading, and drives the refinement network to
reconstruct fine geometric details.

3.4 Network architecture and training details

This section describes the training data and procedure. More details about the
network architectures used are provided in the supplementary material.
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Training data and pre-processing. We train the proposed networks using
only 300W-LP database [8] which contains over 60K large-pose facial images
synthesized from 300W database [48]. Although the ground truth 3D meshes of
300W-LP come from a conventional optimisation-based 3DMM fitting method,
they can be used to provide a reliable estimation of the coarse target face, which
is then refined by our unsupervised refinement network. Note that we randomly
leave out around 10% of the data for validation purposes, and the rest of the
data (around 55K images and meshes) are all used for training. For each image,
we compute the face bounding box using the ground truth 3D mesh, and then
use the bounding box to crop and resize the image to 256x256. During training,
we apply several data augmentation techniques that are proven useful in [2].
They include random scaling from 0.85 to 1.15, random in-plane rotation from
-45 to 45 degrees, and random 10% translation w.r.t image width and height.
Training procedure. Because the refinement network requires a reasonable
estimation of the coarse mesh, the training of our model consists of two stages.
Note that we always use the same training data. The first stage is to train the
coarse face reconstruction network only. For this, we use SGD with momen-
tum [49] with an initial learning rate of 0.05 and momentum value of 0.9. We
train the coarse network for 120 epochs, and for every two epochs, we decay the
learning rate by a ratio of 0.9. The second stage is to jointly train the coarse net-
works and refinement networks. We do not freeze any layers during this stage,
and as our pipeline is fully differentiable, the encoder and the decoder of the
coarse network can also adapt and improve with the extra SfS loss. During the
second stage training, both Lcoarse and Lrefine are used to drive the network
training. We found that no additional weight balance is needed between them.
The second stage is also trained with SGD with momentum equal to 0.9, but
the initial learning rate is 0.008. We train the whole network for 100 epochs.
Similarly, for every two epochs, we decay the learning rate by a ratio of 0.9. All
the models are trained using two 12GB NVidia GeForce RTX 2080 GPUs with
Tensorflow [50].

4 Experiments

4.1 Evaluation databases

We evaluated the accuracy of our method on the following databases.
Florence. Florence [51] is a widely used database to evaluate face reconstruction
quality. It contains 53 high-resolution recordings of different subjects, and the
subjects only show neutral expression in the controlled environment recording.
BU3DFE. BU3DFE [52] is the first large scale 3D facial expression database. It
contains a neutral face and 6 articulated expressions captured from 100 adults.
Since there are 4 different intensities per expression per subject, a total of 2,500
meshes are provided. These 3D faces have been cropped and aligned beforehand.
4DFAB. 4DFAB [53] is the largest dynamic 3D facial expression database. It
contains 1.8M 3D meshes captured from 180 individuals. The recordings capture
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rich posed and spontaneous expressions. We used a subset of 1,482 meshes that
display either neutral or spontaneous expressions from different subjects.
AFLW2000-3D. AFLW2000-3D [8] contains 68 3D landmarks of the first 2,000
examples from the AFLW database [54]. We used this database to evaluate our
method on the task of sparse 3D face alignment.

4.2 Evaluation protocol

For each database, we generated test data by rendering ground truth textured
mesh with different poses, i.e., [-20°, 0°, 20°] for pitch, and [-80°, -40°, 0°, 40°,
80°] for yaw angles. Orthographic projection was used to project the rotated
mesh. Each mesh produced 15 different facial renderings for testing. For each
rendering, we also cast arbitrary light from a random direction with a random
intensity to make it challenging. We selected the Normalised Mean Error(NME)
to measure the accuracy of 3D reconstruction. It is defined as:

NME(Spred,Sgt) =
1

n

∑

i∈Sgt

‖Si
pred − Si

gt‖
2

docc
, (6)

where Spred and Sgt are the predicted and ground truth 3D meshes correspond-
ingly, n is the number of vertices, and docc is the outer interoccular distance. To
provide a fair comparison for all the methods, we only use the visible vertices of
Sgt to calculate the errors. We denote this set of vertices as Sgt. Z-buffering is
employed to determine the visibility. Since there is no point-to-point correspon-
dence between Spred and Sgt, we apply Iterative Closest Points (ICP) [55, 56] to
align Spred to Sgt to retrieve the correspondence for each visible vertex in Sgt.
Note that we do not apply the full optimal transform estimated by ICP to the
predicted mesh. This is because it is important to test whether each method can
correctly predict the target’s global pose.

4.3 Ablation study

For our ablation study, we trained different variants of our method and tested
them on the Florence dataset [51]. The results are shown in Fig. 3 in the form
of cumulative error curves (CEDs) and NMEs. We start by training a variant of
our method that only contains the first GCN for coarse mesh reconstruction. We
then train a second variant by adding the second GCN for detailed reconstruction
(which we dubbed “SfS” in the figure), and, finally, we add the image-level fea-
ture sampling and adaptation layers for additional facial detail injection (“skip”
in the figure). The latter represents the full version of our method.

As illustrated in Fig. 3 (left), adding each new component enables the model
to achieve higher accuracy. In Fig. 3 (right), we also show examples of the mesh
reconstructed by the aforementioned variants and demonstrate that each com-
ponent in our method can indeed boost the model’s capability in reconstructing
fine details (notice the differences in wrinkles). Last but not least, as shown in
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Fig. 3, switching the image encoder backbone to MobleNet V2 resulted in a
small drop in accuracy but it can also drastically decrease the model size and
inference time, as shown in Tab. 2.

Fig. 3. Ablation study on the reconstruction performance of our proposed method,
performed on Florence database [51]. Left shows the CED curves and NMEs of the
variants. Right shows some examples they produced. From left to right, we show: the
input images and outputs given by the baseline GCN model with ResNet50 image
encoder, ResNet50+SfS, and ResNet50+SfS+Skip (the full model), respectively.

4.4 3D face alignment results

Our results on the AFLW2000-3D [8] dataset are shown in Tab. 1. Our approach,
when using ResNet50 as the image encoder, significantly outperformed all other
methods. Even after switching to the much lighter MobileNet-v2 as the encoder
backbone, our method still achieved very good accuracy which is only slightly
worse than that of PRNet [2], the next best-performing method.

Table 1. Face alignment results on the AFLW2000-3D dataset, we reported the average
mean error (%) normalised by the face bounding box.

Method N3DMM[38] 3DDFA[8] PRNet[2] CMD[3]
Ours

(MobileNetV2)
Ours

(ResNet50)

NME 4.12 3.79 3.62 3.98 3.65 3.39

4.5 3D face reconstruction results

Our results on Florence [51], BU3DFE [52], and 4DFAB [53] are shown (from
left to right) in Fig. 4. On each dataset, we show both the CED curves com-
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puted from all test examples (top) and the pose-specific NMEs (bottom). As
the figure shows, our method (with ResNet50) performed the best in all three
test datasets. When switching to MobileNet-v2, our method still outperformed
all other methods. The NME of our method is also consistently low across all
poses, demonstrating the robustness of our approach. This is in contrast to
Pix2Vertex [18] and DF2Net [5], which performed relatively well when the face
is at a frontal pose but significant worse for large-pose cases. For PRNet [2],
3DDFA [8], and VRN[1], although they achieved decent quantitative results (in
terms of CED and NMEs), they lack the ability to reconstruct fine facial details.

Fig. 4. 3D face reconstruction results on, from left to right Florence [51], BU3DFE [52],
and 4DFAB [53] datasets. In each column, the top row shows the CED curves and NMEs
of various methods, while the bottom row shows the pose-wise NMEs.

4.6 Qualitative evaluation

Fig. 5 shows qualitative reconstruction results produced by our method (with a
ResNet50 encoder) and other competitive methods. In particular, we compare
against Extreme3D, PRNet and DF2Net (comparisons with more methods are
provided in the supplementary material). The first two methods are among the
best performing in our quantitative evaluations while the latter is one of the
best methods for reconstructing fine details. From the figure, we observe that
our method is the best being both robust and able to capture fine facial details
at the same time.

4.7 Comparisons of inference speed and model size

We compare the inference speed and model size of our approach to previous
methods. The tests were conducted on a machine with an Intel Core i7-7820X
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CPU @3.6GHz, a GeForce GTX 1080 graphics card, and 96GB of main memory.
For all methods (for CMD [3], no available implementation exists, so we used the
result from their paper), we used the implementation provided by the original
authors. For more details see supplementary material. As most methods consist
of multiple stages involving more than one model, for a fair comparison, we
report the end-to-end inference time and total size of all models (i.e., weights
of networks, basis of 3DMMs, etc.) that are needed to estimate the face mesh
from an input facial image. As shown in Tab. 2, our approach is among the
fastest, taking only 10.8 ms / 6.2 ms (when using ResNet50 / MobileNet v2,
respectively) to reconstruct a 3D face. Our method also has the smallest model
size when using MobileNet-v2 as the image encoder.

Table 2. Inference speed and model size comparison.

Method
Inference speed (ms per sample)

Total model size (MB)
Main model(s) Post-processing

DF2Net[5] 40.4 222

Extreme3D[23] 230.9 14328.9 503

DFDN[19] 38762.7 1982

3DDFA[8, 57] 6.7 45

PRNet[2] 19.4 153

VRN[1] 16.4 220.2 1415

Pix2vertex[18] 40.0 248016.5 1663

CMD[3] 3.1 93

Ours (ResNet50) 10.8 209

Ours (MobileNetV2) 6.2 37

5 Conclusions

We presented a robust, lightweight and detailed 3D face reconstruction method.
Our framework consists of 3 key components: (a) a lightweight non-parametric
GCNs decoder to reconstruct coarse facial geometry from image encoder; (b) a
lightweight GCNs model to refine the output of the first network in an unsu-
pervised manner; (c) a novel feature-sampling mechanism and adaptation layer
which injects fine details from the image encoder into the refinement network. To
our knowledge, we are the first to reconstruct high-fidelity facial geometry relying
solely on GCNs. We compared our method with 7 state-of-the-art methods on
Florence, BU3DFE and 4DFAB datasets, and reported state-of-the-art results
for the experiments, both quantitatively and quantitatively. We also compared
the speed and model size of our method against other methods, and showed
that it can run faster than real-time, while at the same time, being extremely
lightweight (with MobileNet-V2 as backbone, our model size is 37MB).

For CMD [3], we just show the values reported in their paper as the authors did not
release their code and model.
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(1) Image (2) Extreme3D (3) DF2Net (4) PRNet (5) Ours

Fig. 5. Qualitative comparisons.



Faster, Better and More Detailed: 3D Face Reconstruction with GCNs 15

References

1. Jackson, A.S., Bulat, A., Argyriou, V., Tzimiropoulos, G.: Large pose 3d face recon-
struction from a single image via direct volumetric cnn regression. In: Proceedings
of the IEEE International Conference on Computer Vision. (2017) 1031–1039

2. Feng, Y., Wu, F., Shao, X., Wang, Y., Zhou, X.: Joint 3d face reconstruction
and dense alignment with position map regression network. In: Proceedings of the
European Conference on Computer Vision (ECCV). (2018) 534–551

3. Zhou, Y., Deng, J., Kotsia, I., Zafeiriou, S.: Dense 3d face decoding over 2500fps:
Joint texture & shape convolutional mesh decoders. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. (2019) 1097–1106

4. Richardson, E., Sela, M., Or-El, R., Kimmel, R.: Learning detailed face reconstruc-
tion from a single image. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. (2017) 1259–1268

5. Zeng, X., Peng, X., Qiao, Y.: Df2net: A dense-fine-finer network for detailed 3d face
reconstruction. In: Proceedings of the IEEE International Conference on Computer
Vision. (2019) 2315–2324

6. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3d faces. In: Pro-
ceedings of the 26th annual conference on Computer graphics and interactive tech-
niques. (1999) 187–194

7. Paysan, P., Knothe, R., Amberg, B., Romdhani, S., Vetter, T.: A 3D face model
for pose and illumination invariant face recognition. In: IEEE AVSS. (2009)

8. Zhu, X., Lei, Z., Li, S.Z., et al.: Face alignment in full pose range: A 3d total
solution. IEEE Transactions on Pattern Analysis and Machine Intelligence (2017)

9. Tuan Tran, A., Hassner, T., Masi, I., Medioni, G.: Regressing robust and discrim-
inative 3d morphable models with a very deep neural network. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. (2017) 5163–5172

10. Dou, P., Shah, S.K., Kakadiaris, I.A.: End-to-end 3d face reconstruction with deep
neural networks. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. (2017) 5908–5917

11. Tewari, A., Zollhofer, M., Kim, H., Garrido, P., Bernard, F., Perez, P., Theobalt, C.:
Mofa: Model-based deep convolutional face autoencoder for unsupervised monoc-
ular reconstruction. In: Proceedings of the IEEE International Conference on
Computer Vision Workshops. (2017) 1274–1283
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