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Abstract. Many computer vision applications need to recover structure from im-

perfect measurements of the real world. The task is often solved by robustly fitting

a geometric model onto noisy and outlier-contaminated data. However, recent

theoretical analyses indicate that many commonly used formulations of robust

fitting in computer vision are not amenable to tractable solution and approxima-

tion. In this paper, we explore the usage of quantum computers for robust fitting.

To do so, we examine and establish the practical usefulness of a robust fitting

formulation inspired by the analysis of monotone Boolean functions. We then

investigate a quantum algorithm to solve the formulation and analyse the compu-

tational speed-up possible over the classical algorithm. Our work thus proposes

one of the first quantum treatments of robust fitting for computer vision.

1 Introduction

Curve fitting is vital to many computer vision capabilities [1]. We focus on the spe-

cial case of “geometric” curve fitting [2], where the curves of interest derive from the

fundamental constraints that govern image formation and the physical motions of ob-

jects in the scene. Geometric curve fitting is conducted on visual data that is usually

contaminated by outliers, thus necessitating robust fitting.

To begin, let M be a geometric model parametrised by a vector x ∈ R
d. For now,

we will keep M generic; specific examples will be given later. Our aim is to fit M onto

N data points D = {pi}Ni=1, i.e., estimate x such that M describes D well. To this end,

we employ a residual function

ri(x) (1)

which gives the nonnegative error incurred on the i-th datum pi by the instance of M
that is defined by x. Ideally we would like to find an x such that ri(x) is small for all i.

However, if D contains outliers, there are no x where all ri(x) can be simultane-

ously small. To deal with outliers, computer vision practitioners often maximise the

consensus

Ψ(x) =

N
∑

i=1

I(ri(x) ≤ ǫ) (2)



2 T.-J. Chin et al.

of x, where ǫ is a given inlier threshold, and I is the indicator function that returns 1
if the input predicate is true and 0 otherwise. Intuitively, Ψ(x) counts the number of

points that agree with x up to threshold ǫ, which is a robust criterion since points that

disagree with x (the outliers) are ignored [3]. The maximiser x∗, called the maximum

consensus estimate, agrees with the most number of points.

To maximise consensus, computer vision practitioners often rely on randomised

sampling techniques, i.e., RANSAC [4] and its variants [5]. However, random sampling

cannot guarantee finding x∗ or even a satisfactory alternative. In fact, recent analysis [6]

indicates that there are no efficient algorithms that can find x∗ or bounded-error approx-

imations thereof. In the absence of algorithms with strong guarantees, practitioners can

only rely on random sampling methods [4,5] with supporting heuristics to increase the

chances of finding good solutions.

Robust fitting is in fact intractable in general. Beyond maximum consensus, the fun-

damental hardness of robust criteria which originated in the statistics community (e.g.,

least median squares, least trimmed squares) have also been established [7]. Analysis

on robust objectives (e.g., minimally trimmed squares) used in robotics [8] also point

to the intractability and inapproximability of robust fitting.

In this paper, we explore a robust fitting approach based on “influence” as a measure

of outlyingness recently introduced by Suter et al. [9]. Specifically, we will establish

– The practical usefulness of the technique;

– A probabilistically convergent classical algorithm; and

– A quantum algorithm to speed up the classical method, thus realising quantum

robust fitting.

1.1 Are all quantum computers the “same”?

Before delving into the details, it would be useful to paint a broad picture of quantum

computing due to the unfamiliarity of the general computer vision audience to the topic.

At the moment, there are no practical quantum computers, although there are several

competing technologies under intensive research to realise quantum computers. The

approaches can be broadly classified into “analog” and “digital” quantum computers.

In the former type, adiabatic quantum computers (AQC) is a notable example. In the

latter type, (universal) gate quantum computers (GQC) is the main subject of research,

in part due to its theoretically proven capability to factorise integers in polynomial time

(i.e., Shor’s algorithm). Our work here is developed under the GQC framework.

There has been recent work to solve computer vision problems using quantum com-

puters, in particular [10,11,12]. However, these have been developed under the AQC

framework, hence, the algorithms are unlikely to be transferrable easily to our setting.

Moreover, they were not aimed at robust fitting, which is our problem of interest.

2 Preliminaries

Henceforth, we will refer to a data point pi via its index i. Thus, the overall set of data

D is equivalent to {1, . . . , N} and subsets thereof are C ⊆ D = {1, . . . , N}.
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We restrict ourselves to residuals ri(x) that are quasiconvex [13] (note that this does

not reduce the hardness of maximum consensus [6]). Formally, if the set

{x ∈ R
d | ri(x) ≤ α} (3)

is convex for all α ≥ 0, then ri(x) is quasiconvex. It will be useful to consider the

minimax problem

g(C) = min
x∈Rd

max
i∈C

ri(x), (4)

where g(C) is the minimised maximum residual for the points in the subset C. If ri(x)
is quasiconvex then (4) is tractable in general [14], and g(C) is monotonic, viz.,

B ⊆ C ⊆ D =⇒ g(B) ≤ g(C) ≤ g(D). (5)

Chin et al. [15,6] exploited the above properties to develop a fixed parameter tractable

algorithm for maximum consensus, which scales exponentially with the outlier count.

A subset I ⊆ D is a consensus set if there exists x ∈ R
d such that ri(x) ≤ ǫ for all

i ∈ I. Intuitively, I contains points that can be fitted within error ǫ. In other words

g(I) ≤ ǫ (6)

if I is a consensus set. The set of all consensus sets is thus

F = {I ⊆ D | g(I) ≤ ǫ} . (7)

The consensus maximisation problem can be restated as

I∗ = argmax
I∈F

|I|, (8)

where I∗ is the maximum consensus set. The maximum consensus estimate x∗ is a

“witness” of I∗, i.e., ri(x
∗) ≤ ǫ for all i ∈ I∗, and |I∗| = Ψ(x∗).

3 Influence as an outlying measure

Define the binary vector

z = [z1, . . . , zN ] ∈ {0, 1}N (9)

whose role is to select subsets of D, where zi = 1 implies that pi is selected and zi = 0
means otherwise. Define zC as the binary vector which is all zero except at the positions

where i ∈ C. A special case is

ei = z{i}, (10)

i.e., the binary vector with all elements zero except the i-th one. Next, define

Cz = {i ∈ D | zi = 1}, (11)
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i.e., the set of indices where the binary variables are 1 in z.

Define feasibility test f : {0, 1}N 7→ {0, 1} where

f(z) =

{

0 if g(Cz) ≤ ǫ;

1 otherwise.
(12)

Intuitively, z is feasible (f(z) evaluates to 0) if z selects a consensus set of D. The

influence of a point pi is

αi = Pr [f(z⊕ ei) 6= f(z)]

=
1

2N
∣

∣{z ∈ {0, 1}N | f(z⊕ ei) 6= f(z)}
∣

∣ .
(13)

In words, αi is the probability of changing the feasibility of a subset z by insert-

ing/removing pi into/from z. Note that (13) considers all 2N instantiations of z.

The utility of αi as a measure of outlyingness was proposed in [9], as we further

illustrate with examples below. Computing αi will be discussed from Sec. 4 onwards.

Note that a basic requirement for αi to be useful is that an appropriate ǫ can be input

by the user. The prevalent usage of the consensus formulation (2) in computer vision [3]

indicates that this is usually not a practical obstacle.

3.1 Examples

Line fitting The model M is a line parametrised by x ∈ R
2, and each pi has the form

pi = (ai, bi). (14)

The residual function evaluates the “vertical” distance

ri(x) = |[ai, 1]x− bi| (15)

from the line to pi. The associated minimax problem (4) is a linear program [16], hence

g(C) can be evaluated efficiently.

Fig. 1(a) plots a data instance D with N = 100 points, while Fig. 1(b) plots the

sorted normalised influences of the points. A clear dichotomy between inliers and out-

liers can be observed in the influence.

Multiple view triangulation Given observations D of a 3D scene point M in N cal-

ibrated cameras, we wish to estimate the coordinates x ∈ R
3 of M. The i-th camera

matrix is Pi ∈ R
3×4, and each data point pi has the form

pi = [ui, vi]
T
. (16)

The residual function is the reprojection error

ri(x) =

∥

∥

∥

∥

pi −
P1:2

i x̃

P3
i x̃

∥

∥

∥

∥

2

, (17)
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(a) Points on a plane. (b)

(c) Feature correspondences across multi-
ple calibrated views.

(d)

(e) Two-view feature correspondences. (f)

Fig. 1. Data instancesD with outliers (left column) and their normalised in�uences (right col-
umn). Row 1 shows a line �tting instance withd = 2 andN = 100; Row 2 shows a triangulation
instance withd = 3 andN = 34 ; Row 3 shows a homography estimation instance withd = 8
andN = 20 . In each result, the normalised in�uences were thresholded at 0.3 to separate the
inliers (blue) and outliers (red).




















