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Abstract. Image super-resolution has been widely employed in vari-
ous applications with boosted performance thanks to the deep learning
techniques. However, many deep learning-based models are highly vul-
nerable to adversarial attacks, which is also applied to super-resolution
models in recent studies. In this paper, we propose a defense method
that is formulated as an entropy regularization loss for model training,
which can be augmented to the original training loss of super-resolution
models. We show that various state-of-the-art super-resolution models
trained with our defense method are more robust against adversarial at-
tacks than their original versions. To the best of our knowledge, this is
the first attempt of adversarial defense for deep super-resolution models.

1 Introduction

Image super-resolution, which is a task to obtain an image having higher spa-
tial resolution than the given image, is one of the most actively researched im-
age enhancement techniques in recent days. Notably, development of the deep
learning technology brings significant improvement in the performance of super-
resolution over conventional image upsampling methods such as bicubic and
bilinear upscaling. Consequently, deep learning-based super-resolution has been
successfully applied to the real-world applications, including medical imaging,
remote sensing, biometric identification, and visual surveillance [1].

While the deep learning shows promising results in various research fields,
concerns about the vulnerability of deep learning-based algorithms against ma-
licious attacks have arisen. Many studies have shown that the adversarial at-
tacks, which add unnoticeable small perturbations to the given image, can fool
the target classification model to produce wrong results [2, 3]. Recently, such
vulnerability has also been observed beyond classification problems. In the deep
super-resolution models, the state-of-the-art deep models produce largely deteri-
orated outputs [4] or lead erroneous results when they are used as pre-processing
steps for other computer vision tasks [5]. Defense methods have been proposed
for deep classification models to ensure robustness against adversarial attacks
[2, 6–9], but not for super-resolution models.
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Fig. 1. Illustration of the proposed defense method against adversarial attacks on deep
image super-resolution models.

In this paper, we propose a novel defense method, which can be applied to
various deep image super-resolution models. Our method aims to reduce the
sensitivity of the target super-resolution model to adversarial perturbations by
adjusting the activation patterns of an intermediate layer. For this, our method
employs a probability density estimator, which is used to obtain the probabil-
ities of the intermediate feature values. Our method then tries to reduce the
entropy of the estimated probability distribution by minimizing an entropy reg-
ularization loss during model training. As a result, the intermediate features
do not change much when an adversarial perturbation is introduced in the in-
put image, and thus undesirable degradation of the super-resolved output image
can be prevented effectively. We conduct thorough experimental investigations
and ablation studies in order to evaluate the proposed method. In addition,
we examine the feasibility of utilizing our method together with the adversar-
ial training strategy. To the best of our knowledge, this is the first approach
to defend super-resolution models against adversarial attacks. The idea of our
method is illustrated in Fig. 1.

2 Related Work

2.1 Image super-resolution

Recently, many deep learning-based image super-resolution methods have been
proposed. One of the earliest approaches is the super-resolution convolutional
neural network (SRCNN) model [10], which consists of two convolutional layers.
After that, much deeper and more complex models are introduced to achieve
better performance. For example, Lim et al. [11] propose the enhanced deep
super-resolution (EDSR) model, which employs more than 30 convolutional lay-
ers. In addition, EDSR contains residual blocks that have skip connections for
better training procedures. Zhang et al. [12] propose the residual channel at-
tention network (RCAN) model, which adds a channel attention mechanism to
the residual blocks to handle the intermediate features efficiently. Li et al. [13]
develop the multi-scale residual network (MSRN) model that employs convolu-
tional layers having various kernel sizes to utilize image features in a multi-scale
manner.
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While many approaches including the aforementioned ones aim to achieve
high quantitative performance with large networks in terms of peak signal-to-
noise ratio (PSNR), some proposals focus on different objectives. For instance,
Ledig et al. [14] build a model named SRGAN, which employs a discrimina-
tor network of the generative adversarial network (GAN) [15] for their super-
resolution method named SRResNet to improve the perceptual quality of the
super-resolved outputs. Ahn et al. [16] propose the cascading residual network
(CARN) model, which employs cascading residual blocks to reduce the model
size without performance degradation. Some other recent approaches employ
quantitative score prediction [17], wavelet transform [18], and so on.

2.2 Adversarial attacks

Many researchers reveal the vulnerability of deep image classifications models
against various adversarial attacks such as optimization-based [19] and gradient
sign-based [2] methods. While most of the studies focus on attacking classifi-
cation models, the vulnerability of deep models for other tasks has been noted
recently. For example, Ganeshan et al. [20] propose the feature disruptive attack
(FDA) method, which attempts to perturb the intermediate features of the given
deep model. Choi et al. [4] develop an attack method for super-resolution mod-
els, which extends the iterative fast gradient sign method (I-FGSM) developed
for the classification task. They also extend the attack-agnostic vulnerability
measure for classification, named cross Lipschitz extreme value for network ro-
bustness (CLEVER) [21], to the super-resolution task.

2.3 Defense against adversarial attacks

Defense methods against adversarial attacks have been proposed for the classifi-
cation models. One of the well-known effective solutions is adversarial training,
which uses adversarial examples as training data [2, 7, 8]. Another approach is
to pre-process the input images to reduce the amount of perturbations, such as
JPEG compression [6] and random resizing [9]. Since super-resolution is one of
the image enhancement techniques, it is sometimes used as a defense method for
classification models [22]. However, no method has been proposed to defend the
super-resolution models themselves against adversarial attacks.

3 Proposed Method

Our defense method for a deep super-resolution model basically aims to make the
intermediate activations of the model be insensitive against adversarial pertur-
bations. For this, we build our method with the following two components. First,
we train the model in such a way that the entropy of the probability distribution
for the intermediate activation values is minimized, so that the distribution of
activations remains similar across different input images. Second, random noise
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is added to the intermediate activations during training so that the insensitivity
is further enhanced.

Consider a super-resolution model denoted by S(·), which outputs a super-
resolved high-resolution image XSR from a low-resolution input image XLR, i.e.,
XSR = S(XLR). The main objective of the super-resolution task is to minimize
the reconstruction loss function Lr, which calculates the quantitative difference
between the output image XSR and its corresponding ground-truth image XHR.
For this, pixel-wise L1 [11, 12, 16] or L2 [14] losses are typically used. Other losses
can also be appended as part of the reconstruction loss, e.g., adversarial loss [14]
and perceptual loss [17]. Our method defines an additional loss function, the
entropy regularization loss function Le, and uses it together with the original
reconstruction loss function for model training.

Let Φ ∈ R
W×H×D denote the features extracted from a selected intermediate

layer of S(·), where W , H, and D are the width, height, and channel dimensions,
respectively. Our defense method aims to regulate Φ by minimizing the entropy
value for each channel. This can be summarized as

Le = −
1

WHD

∑

d∈D

∑

w∈W

∑

h∈H

log2 pd
(
Φw,h,d

)
(1)

where pd(·) is the probability density function for the d-th channel and Φw,h,d

is the value of Φ at (w, h, d)3. We add this loss function to the original loss
function, i.e.,

L = Lr + λLe (2)

where λ is a hyperparameter that controls the amount of the contribution of the
entropy regularization.

To calculate Le, it is necessary to estimate the probability density function of
the features. Recently, methods to estimate cumulative distribution using neural
networks have been proposed [23–25]. Once the cumulative distribution function
cd(·) is obtained, the corresponding probability density function pd(·) can be
derived as pd(x) = ∂

∂xcd(x). Adopting the recent method in [23], we design
a neural network-based cumulative distribution estimation method to enable
end-to-end optimization of super-resolution models for minimizing the objective
function in (2). Suppose that cd(·) is obtained by a cascade of K functions, i.e.,

cd(·) = fd,K

(
fd,K−1

(
fd,K−2(...)

))
(3)

where fd,i takes an md,i-dimensional vector as input and outputs an md,i+1-
dimensional vector (i.e., Rmd,i → R

md,i+1). Note that md,1 = 1 (feature values)
and md,K+1 = 1 (probability values). Then,

pd(·) = f ′

d,K · f
′

d,K−1 · ... · f
′

d,1 (4)

3 Note that the entropy is expressed by the sum over the feature elements, not by the
sum over the feature values.
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where f ′

d,i is the derivative of fd,i. Since pd(·) outputs a probability value, both
cd(·) and pd(·) must be within [0, 1]. In addition, cd(·) must be monotonically
increasing. To meet these constraints, we design the functions fd,i as

fd,i(x) =

{
σ
(
Md,ix+ bd,i

)
if i = K

gd,i
(
Md,ix+ bd,i

)
otherwise

(5)

gd,i(x) = x+ ad,i ◦ tanh(x) (6)

where Md,i is a matrix, ad,i and bd,i are vectors, σ(·) is the sigmoid function,
tanh(·) is the hyperbolic tangent function, and ◦ denotes the element-wise mul-
tiplication. The sigmoid function in fd,K(·) forces the range of cd(x) to be within
[0, 1]. Then, the derivatives of the functions are given as

f ′

d,i(x) =

{
σ′
(
Md,ix+ bd,i

)
·Md,i if i = K

diag
(
g′d,i

(
Md,ix+ bd,i

))
·Md,i otherwise

(7)

g′d,i(x) = 1 + ad,i ◦ tanh
′(x). (8)

To make the range of pd(x) be within [0, 1], we replace Md,i and ad,i with

Md,i = softplus
(
M̂d,i

)
(9)

ad,i = tanh
(
âd,i

)
. (10)

This also ensures the monotonicity of cd(·). To summarize, K and md,i are the

hyperparameters and M̂d,i, âd,i, and bd,i are the parameters to be trained.
From the cumulative distribution cd(·) obtained by our neural network-based

estimator, we estimate the probability pd(·) by considering feature values within
Φw,h,d − (δ/2) and Φw,h,d + (δ/2) to be similar to Φw,h,d, i.e.,

pd
(
Φw,h,d

)
= cd

(
Φw,h,d +

δ

2

)
− cd

(
Φw,h,d −

δ

2

)
(11)

where δ determines the range of the similarity.
In addition, to further enhance the insensitivity of the feature values to per-

turbations by the attack, we apply random uniform noise to Φ i.e.,

Φ← Φ+ Γ (12)

where Γ is the uniform noise in a range of [−δ/2, δ/2]. Because Γ changes at
every training iteration, the super-resolution model is trained to consider similar
feature values as the same in order to generate outputs consistently. Note that
the random uniform noise is applied only during training.

4 Experiments

We conduct experiments with state-of-the-art deep super-resolution models to
evaluate the proposed method. This section provides the experimental settings,
including target models, evaluation methods, and evaluation conditions.
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4.1 Super-resolution models

Our method can be applied to various deep super-resolution models. We select
six representative models for our experiments, including EDSR [11], SRResNet
[14], SRGAN [14], RCAN [12], MSRN [13], and CARN [16]. All these models have
similar structures, i.e., the input low-resolution image is processed through con-
volutional layers, and upsampling is performed at the final stage, as illustrated
in Fig. 1. EDSR consists of several residual blocks, whose structure is widely
used in many other state-of-the-art super-resolution models. In this paper, we
employ the baseline version of EDSR. SRResNet employs batch normalization
and parametric ReLU [26]. SRGAN is an extended version of SRResNet, which
employs a discriminator network to improve the perceptual quality of the up-
scaled images. RCAN employs the so-called “residual in residual” structure and
a channel attention mechanism to utilize channel-wise features more thoroughly.
MSRN consists of convolutional layers having different kernel sizes from 1×1 to
5× 5. CARN is a lightweight super-resolution model in terms of the model size,
and it is reported that CARN is one of the most robust super-resolution models
against adversarial attacks due to its small model size [4].

According to the training procedures specified in the original papers, we train
EDSR, RCAN, MSRN, and CARN on the DIV2K dataset [27], and SRResNet
and SRGAN on a 350k subset of the ImageNet dataset [28]. The L1 loss function
with the pixel value range of [0, 255] is used for training the EDSR, RCAN,
MSRN, and CARN models. The L2 loss function with the pixel value range
of [−1, 1] is used for training the SRResNet and SRGAN models. We consider
super-resolution at a scaling factor of 4 in all experiments.

4.2 Attack methods

We employ two types of attack methods that are applicable to super-resolution:
feature-based attack and gradient-based attack.

For the feature-based attack, we employ the feature disruptive attack (FDA)
[20], which aims to reduce the variance of the activation at intermediate layers
of the target model. For a given intermediate feature Φ, the objective is to
maximize the following function:

log
(∣∣∣∣{Φwhd|Φwhd < C(w, h)}

∣∣∣∣
2

)
− log

(∣∣∣∣{Φwhd|Φwhd > C(w, h)}
∣∣∣∣
2

)
(13)

where C(w, h) is the mean values across the channel dimension. Since it does not
depend on the final output, this attack method can be applied to various deep
models in addition to classification models. The perturbations in the input image
are found iteratively while the L∞ norm of the perturbations is kept smaller than
a constant ǫ. We conduct our experiment with various values of ǫ. The number
of iterations (nbiter in [20]) is set to 50. The amount of the perturbations at each
iteration (ǫiter in [20]) is set to ǫ/nbiter.

For the gradient-based attack, we employ the iterative fast gradient sign
method (I-FGSM), which is first introduced for the classification task [8] and re-
cently extended for the super-resolution task [4]. It iteratively finds the attacked



Adversarially Robust Deep Image Super-Resolution 7

input X̃LR by

X̃
(t+1)
LR = X̃

(t)
LR +

α

T
· sgn

(
∇
∣∣∣∣S(X̃(t)

LR)− S(XLR)
∣∣∣∣
2

)
(14)

where α and T are the hyperparameters that controls the amount of the pertur-
bations and sgn(·) is the sign function. We set T = 50 and use various values of
α to evaluate our proposed method.

We also employ other gradient-based methods (see the supplementary mate-
rial), which show similar results as I-FGSM.

4.3 Evaluation conditions

Our probability density estimator is attached to the last layer right before the
upsampling part for each super-resolution model as shown in Fig. 1. For proba-
bility estimation, we set K = 4 and md,2 = md,3 = md,4 = 3. We set λ = 1 for
the EDSR, RCAN, MSRN, and CARN models and λ = 0.1 for the SRResNet
and SRGAN models4. The effect of the value of λ is also examined (Section 5.3).
We set δ = 1, and the effect of changing this value is also examined (Section 5.5).
For the attacks, we employ {ǫ, α} ∈ [1/255, 2/255, 4/255, 8/255, 16/255, 32/255]
for FDA and I-FGSM.

We evaluate the effectiveness of our defense method against the adversarial
attack methods primarily in terms of PSNR5. PSNR is one of the most widely
used metrics for evaluating quality of the super-resolved images. To conduct
comprehensive analysis of our proposed method, we measure the PSNR values
in two-fold: for low-resolution images and super-resolved images. The PSNR for
low-resolution images is measured between the original input XLR and the at-
tacked one X̃LR, which quantifies the amount of the added perturbations. The
PSNR for super-resolved images is measured between the original output XSR

and the output obtained from the attacked input X̃SR. If a super-resolution
model is more robust than another model, the attack method would have diffi-
culty to successfully attack the model, and thus attempt to add a larger amount
of perturbations. Therefore, the PSNR values of the low-resolution and high-
resolution images would become smaller and larger, respectively, than those for
the less robust model.

In addition, we also employ CLEVER [21], which is an attack-independent
vulnerability measure originally developed for classification models. It is also ex-
tended for super-resolution [4]. It draws Ns random perturbations having values
within [−αc, αc] and calculates

max
j

∣∣∣
∣∣∣∇

∣∣∣∣S(XLR +∆(j))− S(XLR)
∣∣∣∣
2

∣∣∣
∣∣∣
1

(15)

4 We use a smaller λ value for these models because of the different loss function and
range of the pixel values, as explained in Section 4.1.

5 We observed that the results in terms of structural similarity (SSIM) also show
similar tendency to those in terms of PSNR.
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Fig. 2. PSNR values of the super-resolved images for different models trained only
with the original reconstruction loss (gray colors) and with both the reconstruction and
entropy regularization losses (blue colors). A larger PSNR indicates better robustness.

where ∆(j) is the j-th random perturbation. A larger value of the CLEVER
index means higher vulnerability. We set Ns = 1024 and αc = 1/255 as in [4].

We employ three popular image datasets, which are Set5 [29], Set14 [30], and
BSD100 [31]. The results for BSD100 are reported in this paper. The results for
the other datasets are reported in the supplementary material.

5 Results

5.1 Model comparison

We first compare the performance of the super-resolution methods in terms of
PSNR for the FDA and I-FGSM attacks. Fig. 2 shows the PSNR values of
the super-resolved images for different amounts of perturbations. Overall, the
performance decreases when the amount of perturbations (i.e., ǫ and α) increases
since there is more room to conceal malicious perturbations in the input images.
Among the six super-resolution models trained without our defense method,
CARN shows the highest robustness, which can be observed as the highest PSNR
values except for the case of FDA with ǫ = 4/255. It is also observed that I-
FGSM is stronger than FDA, lowering the PSNR values more significantly.

The results in Fig. 2 show that our defense method is effective for various
deep super-resolution models and attack methods. For example, for FDA with
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EDSR

SRResNet

SRGAN

RCAN

MSRN

CARN

Fig. 3. Images obtained from the super-resolution models trained without (left panels)
and with (right panels) entropy regularization. FDA (ǫ = 8/255) is employed as the
attack method.

ǫ = 4/255, our method enhances the quality of the output images of EDSR from
31.65 dB to 41.03 dB. All of the models trained with our entropy regularization
achieve higher PSNR values than those trained without entropy regularization,
except for the case of CARN attacked by I-FGSM with α = 4/255.

Fig. 3 depicts example super-resolved images under the FDA attack. The left-
side and right-side images represent outputs obtained from the models trained
without and with our entropy regularization method, respectively. Without de-
fense, the models tend to output super-resolved images having undesirable tex-
tures, which come from the perturbations included in the input images. In con-
trast, our defense method reduces the quality degradation significantly.

We investigate the effect of our method on the intermediate features of the
super-resolution models. Fig. 4 shows the features (averaged along the chan-
nel dimension) and their distribution at the intermediate layer of the EDSR
model where the entropy regularization is applied (i.e., the layer before the
upsampling part). When the proposed defense method is not employed, the in-
termediate layer tends to output the features that are emphasized on the edges,
which usually contain high-frequency information. In addition, the distribution
of the features is more dispersed than that obtained from the model trained
with the entropy regularization, which can be observed in the histograms. When
the perturbations, which contain high-frequency components, are introduced in
the low-resolution input image by the attack, both the edge regions and the
perturbations are amplified, producing corrupted features. Accordingly, the dis-
tribution of the feature values is also affected; it is more dispersed than that for
the unattacked input.
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Fig. 4. Intermediate features, histograms of the intermediate feature values, and output
images of the EDSR models trained without and with entropy regularization. FDA with
ǫ = 8/255 is employed as the attack method.

On the other hand, the model trained with our defense method shows a dif-
ferent mechanism of finding information useful for upsampling from the given
input, which results in a different pattern of the intermediate features. Since the
activation of the intermediate layer is not heavily concentrated on the edge re-
gions, unlike the model trained without entropy regularization, the perturbations
are not significantly amplified. In addition, the distribution of the feature values
for the attacked input remains similar to that for the original input. Thanks to
the reduced sensitivity against adversarial attacks, a relatively small difference
between the features obtained from the original and attacked images is observed
in the defended model. Because of these effects, the model trained with the
entropy regularization is much more robust against the adversarial attack, as
shown in the rightmost images in the figure.

5.2 Ablation study

Our method consists of two components, i.e., probability estimation of inter-
mediate features for entropy regularization and random noise injection to the
features. We examine the effects of these two. Fig. 5 compares the performance
of the EDSR models trained with only one of the two components or both. In
Figs. 5(a) and 5(b), a lower low-resolution (LR) PSNR value means that the
adversarial attack adds a larger amount of perturbations to the given input, and
a higher super-resolved (SR) PSNR value means that the output image is more
similar to the original output. Thus, a model with its graph closer to the upper
left corner can be considered to have higher robustness. In Fig. 5(c), we plot the
CLEVER index with the SR PSNR value for each image attacked by I-FGSM
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Fig. 5. Performance comparison in terms of PSNR and CLEVER index values for
the EDSR models trained without any defense (Original), with probability estimation
(PE), with random noise (Noise), and both (PE+Noise). Six data points of each case
in (a) and (b) correspond to six different values of ǫ and α, respectively. Different data
points of each case in (c) correspond to different input images.

with α = 1/255. In this graph, a model having data points closer to the lower
right corner is considered to be more robust.

Overall, the models employing the probability estimation show better per-
formance in terms of both the PSNR values and CLEVER indices. Employing
the random uniform noise along with the probability estimation provides even
more improved performance than employing only the probability estimation.
However, employing only the random uniform noise does not improve robust-
ness. In this case, we observed that the range of the intermediate feature values
increases. This indicates that the model is trained to produce feature values that
have sufficiently large differences so that the differences exceed the magnitude
of the noise. These results support that estimating and reducing the entropy of
the intermediate features is beneficial to defend against adversarial attacks. In
addition, adding random noise does not directly improve the robustness but can
boost the effectiveness of the probability estimation.

5.3 Adjusting λ

As explained in Section 3, the hyperparameter λ in (2) adjusts the relative con-
tributions of the reconstruction loss and the entropy regularization loss. Hence,
we can expect that a larger λ value will improve the robustness against adver-
sarial attacks but possibly at the cost of reconstruction quality reduction. To
examine this, we train the EDSR models with different values of λ.

Fig. 6 shows the results. As expected, the models trained with larger λ values
show better performance. The PSNR values for the original low-resolution images
(without attack) are measured as 27.54, 27.53, 27.28, and 26.41 dB for λ = 0,
0.1, 1, and 10, respectively. Therefore, the tradeoff relationship exists between
the reconstruction loss and the entropy regularization loss, but the amount of
performance degradation for unattacked input images is marginal. This indicates
that our method efficiently improves the robustness against adversarial attacks
with preserving the original performance.
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EDSR models trained with different values of λ.
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Fig. 7. Performance comparison in terms of PSNR and CLEVER index values for the
EDSR models trained with different values of λ, where the entropy regularization loss
is applied to the first convolutional layer.

5.4 Target layer for entropy regularization

While we use the entropy regularizer for the last layer of the feature extraction
part, the same mechanism can also be applied to any other intermediate layers.
We test the case where the regularization is performed at the first layer. The
results are shown in Fig. 7 for comparison with Fig. 6.

It is observed that although the defense is slightly successful for small amounts
of perturbations (i.e., the region with large PSNR values for low-resolution im-
ages), the entropy regularization is much less effective for improving robustness
in comparison to the results in Fig. 6. There could be two reasons. First, the func-
tional complexity of only one convolutional layer is not sufficiently high to adjust
the features for entropy minimization, whereas several layers can co-operate to
adjust the features at the last layer. Second, even though the first layer reduces
the effect of the attack, small perturbations that still exist in the features can be
undesirably amplified through the subsequent layers. Therefore, employing our
defense method in the latter part of a model is more effective than using it in
the former part.
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Fig. 8. Performance comparison in terms of PSNR and CLEVER index values for the
EDSR models trained with different values of δ.

5.5 Adjusting δ

To examine the effect of δ, we train EDSR with different values of δ, where λ
is set to 1. Fig. 8 shows the results. It is observed that as δ gets smaller, the
robustness against the attacks is improved. Meanwhile, the PSNR values for the
original (unattacked) low-resolution images are 26.89, 27.13, 27.28, and 27.34
dB for δ = 0.01, 0.1, 1, and 10, respectively. As explained in Section 3, the
hyperparameter δ adjusts the similarity range in calculating the probabilities of
the features. A smaller value of δ improves the robustness against the attacks
by forcing the feature values to be more similar through entropy minimization,
but slightly reduces the reconstruction quality, similarly to a larger value of λ.

5.6 Combining with adversarial training

There is no prior work on defending super-resolution models against adversarial
attacks, and it is not straightforward to adopt most defense methods developed
particularly for classification tasks due to the different characteristics between
the two tasks. As explained in Section 2.3, there are two popular defense ap-
proaches in classification: pre-processing of input images and adversarial train-
ing. Unlike classification, however, pre-processing degrades the original perfor-
mance of the super-resolution methods because it inevitably introduces quality
degradation of the input low-resolution image. For example, when the random
resizing method [9] is applied to the input image, PSNR of the super-resolved
output image by EDSR is significantly reduced from 27.54 dB to 26.32 dB.

On the other hand, the adversarial training approach is applicable to the
super-resolution tasks by generating adversarial examples from the attack meth-
ods for super-resolution, e.g., FDA or I-FGSM. Therefore, we develop a sim-
ple adversarial training method and investigate whether our entropy regular-
ization method can collaborate with it to further improve the robustness of
super-resolution models. To generate adversarial training examples, we choose
I-FGSM in (14) as an attack method, where α and T are set to 8/255 and 1, re-
spectively. For each training iteration, an adversarial perturbation for each input
low-resolution image is calculated. Then, both the original low-resolution images
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Fig. 9. Performance comparison in terms of PSNR and CLEVER index values for the
EDSR models trained with entropy regularization (ER), adversarial training (Adv.)
and both (ER+Adv.).

and the attacked low-resolution images serve as inputs, where the corresponding
ground-truth high-resolution images remain the same.

We train the EDSR models with our entropy regularization method, the
aforementioned adversarial training, and both. Fig. 9 compares the performance
of the models. The entropy regularization and adversarial training show similar
performance against the FDA method. However, for the I-FGSM attack, the
entropy regularization shows better performance than the adversarial training.
Interestingly, the model trained with both defense methods achieves the best
performance for both attack methods. This proves that 1) our proposed method
itself is effective in defending the super-resolution models, and 2) our method
can collaborate with the adversarial training method to further improve the
robustness against adversarial attacks.

6 Conclusion

We proposed a defense method designed for deep super-resolution models to
defend against adversarial examples. Our method manipulates the intermediate
features of the given model by estimating their probability density and regu-
larizing their entropy value, where the random noise is also utilized to boost
effectiveness of the regularization. The experimental results showed that the
proposed method can significantly improve the robustness of the state-of-the-
art deep super-resolution models without significant degradation of the original
performance. We also showed the synergy when our method is combined with
adversarial training.
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