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Abstract. We propose a method for semantic segmentation in the un-
supervised domain adaptation (UDA) setting. We particularly examine
the domain gap between spatial-class distributions and propose to align
the local distributions of the segmentation predictions. Despite its sim-
plicity, the proposed method achieves state-of-the-art results in UDA
segmentation benchmarks.

1 Introduction

Unsupervised domain adaptation (UDA) consists of modifying a model trained
on a labeled dataset, called the “source” so it can function on data from a
different “target” domain, for which no annotations are available [1,2,3,4,5,6].
More in general, we want to train a model to operate on input data from both the
source and target domains, despite the absence of annotated data for the latter.
For instance, one may have a synthetic dataset, where annotation comes for free,
but wish for the resulting model to work well on real data, where the manual
annotation is scarce or absent. UDA setting is even more vital for semantic
segmentation tasks where annotation and quality control per a single image
requires more than 1.5 hours on average [7].

In this work, we focus on the UDA segmentation task where the goal is to
estimate the segmentation map y ∈ {0, 1}K×H×W for a given RGB image where
K is the number of classes. For the source samples, we have access to ground-
truth labels ys ∈ Y which are used to minimize cross-entropy loss3,
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where f is the segmentation network and P s is the distribution of source do-
main samples and corresponding labels, ℓCE(f(x)ij ; yij) := −〈yij , log f(x)ij〉 is
calculated using the one-hot ground-truth vector yij ∈ {0, 1}K and class label
estimates f(x)ij ∈ R

K from the output of a deep neural network with input x.
Next, we discuss the proposed methods for leveraging unlabeled target data and

3 We denote label and prediction corresponding to a pixel coordinates of (i, j) with
yij ∈ {0, 1}K and f(x)ij ∈ R

K respectively.
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Fig. 1: Spatial-class distribution shift correlates with the receptive field
on the segmentation maps. Validation errors for a binary classifier trained to
distinguish binary domain labels from segmentation maps are given for GTA5
→ Cityscapes (left) and SYNTHIA → Cityscapes (right). If the domain gap
between segmentation maps are large, then error decays faster. We repeat this
experiment for different receptive fields. When the binary classifier is trained
on the entire segmentation maps (blue curve), errors decay quickly, whereas, for
smaller patch sizes, learning slows down. For patch sizes smaller than 128, predic-
tions of the classifiers are close to luck (50%). Errors for SYNTHIA are slightly
lower due to the larger spatial-class shift between SYNTHIA and Cityscapes.
This experiment verifies that even when the spatial class distribution shift is
large between the global segmentation maps, local segmentation maps are still
almost indistinguishable.

Fig. 2: Samples from the datasets. Spatial-class distributions vary from
source to target domains for the UDA segmentation benchmarks; namely, SYN-
THIA → Cityscapes and GTA5 → Cityscapes. SYNTHIA images are generated
with random camera views, unlike Cityscapes which only have dashcam views.
On the other hand, in GTA5, there are unrealistic scenarios e.g. ego-vehicle
driving on the sidewalk.
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our contribution in relation to this vast literature (Section 2). In the following
section, we describe the proposed method (Section 3). Finally, we put it to the
test on UDA segmentation benchmarks (Section 4).

2 Related Work

Fig. 3: The network structure of the proposed approach. Our binary domain
discriminator (blue) acts on the random patches of predictions (g(f(x))) and
not on the global segmentation maps (f(x)).

In the following, we present some of the previous works on the UDA segmen-
tation tasks excluding the ones focusing on different tasks for the sake of space.
AdvEnt [8] is the baseline method. It is observed that in the source-only train-
ing, entropy is mostly low for the source predictions and only high at the edges,
while the entropy is mostly high on the predictions of the target images. Hence,
they proposed to align the “weighted self-information” to minimize the entropy
of target predictions while aligning them to source predictions. We improved this
work in an orthogonal direction by performing a random-patch alignment. [9,10]
proposed heuristics to have class-conditional alignments. [11] follows a curricu-
lum learning approach: where they sequentially learn pseudo-labels for the entire
image, superpixels, and finally the dense predictions.

[12] proposed to use a fully convolutional network (PatchGAN) for image
translation which is later employed in several UDA works [13]. However, unlike
PatchGAN that divides the image into a fixed collection of patches, we randomize
the location of patches. Therefore, the distributions we align using the domain
discriminator have supports defined by the values of these prediction patches.
While the cardinality of the patch set exponentially increases with the size of the
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image for the proposed method, PatchGAN always uses a small subset of this
set. Hence, the aligned distributions for the proposed method and PatchGAN
are significantly different.

Work of [14] looks similar to ours as they partition images into 3 by 3 re-
gions before alignment. But actually, it has the exact opposite motivation and
outcome as they only align the corresponding patches while we choose our par-
titions completely randomly. This saddle difference has great importance. Our
motivation for aligning “random” patches is that the spatial-class distribution
across domains can vary a lot wheres for them the motivation is to leverage the
hypothesis that corresponding patches have similar spatial distributions. But, in
reality, as camera views are random in SYNTHIA, corresponding patches should
not be aligned to those of Cityscapes. [19,18] updates network parameters using

Table 1: Comparison to SOA on SYNTHIA → Cityscapes. All models are
trained on the labeled source training data (SYNTHIA) and unlabeled target
training data (Cityscapes) and performances on Cityscapes validation split are
reported. A+E [8] refers to the ensemble of two networks: one trained with the
adversarial loss and the other is with entropy minimization. In the literature, two
different mIoU scores are reported for this task: one is for 16 common classes
between two domains (mIoU) and the other is for the 13 classes (mIoU-13)
excluding wall, fence, pole. Our method outperforms all the previous methods in
both metrics.

Method Road SW Build Wall* Fence* Pole* TL TS Veg. Sky PR Rider Car Bus Motor Bike mIoU mIoU-13

Source 14.9 11.4 58.7 1.9 0.0 24.1 1.2 6.0 68.8 76.0 54.3 7.1 34.2 15.0 0.8 0.0 23.4 26.8
MCD [15] 84.8 43.6 79.0 3.9 0.2 29.1 7.2 5.5 83.8 83.1 51.0 11.7 79.9 27.2 6.2 0.0 37.3 43.5

Source 55.6 23.8 74.6 - - - 6.1 12.1 74.8 79.0 55.3 19.1 39.6 23.3 13.7 25.0 - 38.6
AdaptSegNet [13] 84.3 42.7 77.5 - - - 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 - 46.7

CLAN [16] 81.3 37.0 80.1 - - - 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 - 47.8

MinEnt [8] 73.5 29.2 77.1 7.7 0.2 27.0 7.1 11.4 76.7 82.1 57.2 21.3 69.4 29.2 12.9 27.9 38.1 44.2
AdvEnt [8] 87.0 44.1 79.7 9.6 0.6 24.3 4.8 7.2 80.1 83.6 56.4 23.7 72.7 32.6 12.8 33.7 40.8 47.6
A+E [8] 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 41.2 48.0

Source 64.3 21.3 73.1 2.4 1.1 31.4 7.0 27.7 63.1 67.6 42.2 19.9 73.1 15.3 10.5 38.9 34.9 40.3
CBST [17] 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 78.3 60.6 28.3 81.6 23.5 18.8 39.8 42.6 48.9
MRL2 [18] 63.4 27.1 76.4 14.2 1.4 35.2 23.6 29.4 78.5 77.8 61.4 29.5 82.2 22.8 18.9 42.3 42.8 48.7

MRENT [18] 69.6 32.6 75.8 12.2 1.8 35.3 23.3 29.5 77.7 78.9 60.0 28.5 81.5 25.9 19.6 41.8 43.4 49.6
MRKLD [18] 67.7 32.2 73.9 10.7 1.6 37.4 22.2 31.2 80.8 80.5 60.8 29.1 82.8 25.0 19.4 45.3 43.8 50.1
LRENT [18] 65.6 30.3 74.6 13.8 1.5 35.8 23.1 29.1 77.0 77.5 60.1 28.5 82.2 22.6 20.1 41.9 42.7 48.7

Ours 90.6 51.34 81.96 11.77 0.32 29.51 11.72 12.38 82.69 84.7 58.57 24.73 81.94 36.37 17.11 41.75 44.84 51.99

the pseudo-labels for which the network is confident. They incorporate spatial
priors into the proposed CBST framework, leading to CBST with spatial priors
(CBST-SP) by counting the class frequencies in the source domain, followed by
smoothing with a Gaussian kernel to approximate the frequency of each class
at a spatial location in the image space. Then, they simply modulate the net-
work output with this spatial prior. Again, this idea contradicts the fact that
the spatial distributions of segmentation maps differ across domains.

[20] combined previous works of curriculum [11] and self training [19]. In-
stead of super-pixels, they use patches of sizes 4 and 8. The key idea is to
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alternatively update labels and network weights. They apply average pooling
on the predictions and pseudo labels and minimize a classification loss between
them. Our approach fundamentally differs from this as we align the predictions
on the source and the target images whereas they align the predictions of the
pre-trained network (providing pseudo-labels) and the main network both on
the target images. Hence, unlike us, their algorithm may not align the local-
prediction distributions across domains, which is the main motivation of this
work.

The proposed method is orthogonal to most of the methods from this rich
and multi-faceted context and can be improved by incorporating some of these
ideas.

3 Proposed Method

As can be seen in Fig 2, spatial-class distribution can greatly differ from source
to target domains, due to scene structure, camera view changes, etc. This con-
tradicts with the idea of aligning the segmentation network outputs globally via
minimax losses.

Before describing the proposed method, we conducted a motivational exper-
iment to verify and quantify this hypothesis. For this purpose, we train a binary
domain classifier on the ground-truth segmentation maps to measure the iden-
tifiability of the domain label from segmentation maps. See Fig. 1 where the
left panel is for GTA5-Cityscapes and the right one is for SYNTHIA-Cityscapes.
When the task is to distinguish the global segmentation maps, classifiers can
easily detect the domain (blue curves). As we decrease the receptive field on
the segmentation maps, by cropping smaller patch sizes, it is getting harder for
the classifier to find the correct domain label. For very small patch sizes, the
performance of the classifier is close to chance (50%). Details on the training is
given in the Section 4.1.

This experiment quantifies and verifies two almost obvious claims: First, the
global segmentation maps can have different distributions across domains (i.e.
spatial-class distribution shift) hence one should not align the global segmenta-
tion predictions at the training time. Second, even if the spatial-class distribu-
tion is very large (e.g. SYNTHIA → Cityscapes), the local segmentation maps
can have similar distributions across domains. Assuming this as a fact for any
cross-domain task -which we only verify for UDA segmentation benchmarks-,
one should align random patches of predictions at the training time, for network
predictions on different domains to abide by this phenomenon.

3.1 Loss Functions

A natural choice for aligning the cropped prediction distributions for the source
and the target domains is to optimize a domain adversarial loss on the extracted
patches from the segmentation predictions:

Ladv(P
s
x , P

t
x; f, d) := Exs

∼P s

x
,xt

∼P t

x
ℓCE

(

ψ(xs), [0, 1]
)

+ ℓCE

(

ψ(xt), [1, 0]
)

(2)
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where ψ(x) := d(g(f(x)), g randomly extracts a patch of size i < H and j < W

from the segmentation prediction f(x), and ℓCE is cross entropy loss. P s
x , P

t
x

are marginal distributions of the source and the target domains. d : x 7→ R
2 is

binary domain discriminator (see Fig. 3).
As in the previous work of [8], instead of applying domain adversarial loss on

the segmentation maps y ∈ {0, 1}K×H×W directly, we found aligning the “self-
information maps”, y = h(y) ∈ R

K×H×W where ykij = h(ykij) := −ykij log ykij
more effective.4 Hence, the final objective function becomes,

Ladvent(P
s
x , P

t
x; f, d) := Exs

∼P s

x
,xt

∼P t

x
ℓCE

(

ψ(xs), [0, 1]
)

+ ℓCE

(

ψ(xt), [1, 0]
)

(3)

where ψ(x) := d(g(h(f(x))). Then, the overall optimization problem solved by
the segmentation network f is,

min
f

max
d

Lce(P
s; f)− λLadvent(P

s
x , P

t
x; f, d). (4)

Since there is no closed form solution, the objective function is optimized by
the segmentation network f and the domain discriminator d in an alternating
fashion using SGD.

4 Empirical Evaluation

4.1 Implementation Details

Datasets. To evaluate the performance of the proposed method, we put it to
test on the standard UDA segmentation benchmarks: GTA5 → Cityscapes and
SYNTHIA → Cityscapes and compare against SOA and baseline methods.

GTA5 dataset consists of 24966 images with a resolution of 1914 × 1052 and
collected from the video game based on the city of Los Angeles. The resolution
of the images in the target set Cityscapes is 2048 × 1024. The number of target
training images is 2975. Methods are tested on the 500 samples of the validation
split of Cityscapes. For GTA5 → Cityscapes, 19 common classes are used. These
are the same classes as the ones used in Cityscapes benchmark [7] where rare
classes are excluded from the evaluation.

SYNTHIA [21] is generated by rendering a virtual city created with the
Unity development platform. RANDCITYSCAPES subset of SYNTHIA is used
as the source training set. This subset consists of 9400 frames of the city taken

4 Note that this is not exactly entropy of the predictions as the ykij terms are not
summed over the class dimension k. But, the source sample predictions have low
entropy as cross-entropy is minimized on them. Adversarial alignment results in
aligned ykij distributions and thus, results in low entropy for the target predictions as
well. As in [8], we found this weighted-scheme more effective because this adversarial
loss promotes both the low entropy target predictions and aligned prediction maps
across domains.
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from a virtual array of cameras moving randomly. We choose the 16 over-
lapping classes between SYNTHIA and Cityscapes following the earlier works
[17,19,9,11]. Classes that do not exist in this setting, compared to GTA5 setting
are terrain, truck, train. There is another setting only considering 13 classes ex-
cluding the classes wall, fence and pole [13,10]. Mean scores corresponding to
these 13 classes are reported as mIoU-13.

Table 2: Comparison to SOA on GTA5 → Cityscapes. Same as Table 1
except for GTA5 → Cityscapes. Here, the results are reported on 19 common
classes (mIoU). The proposed method outperforms 3 of 4 scores that previous
SOA [18] reported and it is only 0.12% less than the best method (MRKLD)
of [18] which selectively samples for hard classes. The proposed method can be
combined with MRKLD, but we choose to report naked results to show the
effectiveness of the proposed random-patch alignment.

Method Road SW Build Wall Fence Pole TL TS Veg. Terrain Sky PR Rider Car Truck Bus Train Motor Bike mIoU

Source 42.7 26.3 51.7 5.5 6.8 13.8 23.6 6.9 75.5 11.5 36.8 49.3 0.9 46.7 3.4 5.0 0.0 5.0 1.4 21.7
CyCADA [22] 79.1 33.1 77.9 23.4 17.3 32.1 33.3 31.8 81.5 26.7 69.0 62.8 14.7 74.5 20.9 25.6 6.9 18.8 20.4 39.5

Source 36.4 14.2 67.4 16.4 12.0 20.1 8.7 0.7 69.8 13.3 56.9 37.0 0.4 53.6 10.6 3.2 0.2 0.9 0.0 22.2
MCD [15] 90.3 31.0 78.5 19.7 17.3 28.6 30.9 16.1 83.7 30.0 69.1 58.5 19.6 81.5 23.8 30.0 5.7 25.7 14.3 39.7

Source 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6
AdaptSegNet [13] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4

CLAN [16] 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2

MinEnt [8] 84.4 18.7 80.6 23.8 23.2 28.4 36.9 23.4 83.2 25.2 79.4 59.0 29.9 78.5 33.7 29.6 1.7 29.9 33.6 42.3
MinEnt + ER [8] 84.2 25.2 77.0 17.0 23.3 24.2 33.3 26.4 80.7 32.1 78.7 57.5 30.0 77.0 37.9 44.3 1.8 31.4 36.9 43.1

AdvEnt [8] 89.9 36.5 81.6 29.2 25.2 28.5 32.3 22.4 83.9 34.0 77.1 57.4 27.9 83.7 29.4 39.1 1.5 28.4 23.3 43.8
A+E [8] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5

Source - - - - - - - - - - - - - - - - - - - 29.2
FCAN [23] - - - - - - - - - - - - - - - - - - - 46.6

Source 71.3 19.2 69.1 18.4 10.0 35.7 27.3 6.8 79.6 24.8 72.1 57.6 19.5 55.5 15.5 15.1 11.7 21.1 12.0 33.8
CBST [17] 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9
MRL2 [18] 91.9 55.2 80.9 32.1 21.5 36.7 30.0 19.0 84.8 34.9 80.1 56.1 23.8 83.9 28.0 29.4 20.5 24.0 40.3 46.0

MRENT [18] 91.8 53.4 80.6 32.6 20.8 34.3 29.7 21.0 84.0 34.1 80.6 53.9 24.6 82.8 30.8 34.9 16.6 26.4 42.6 46.1
MRKLD [18] 91.0 55.4 80.0 33.7 21.4 37.3 32.9 24.5 85.0 34.1 80.8 57.7 24.6 84.1 27.8 30.1 26.9 26.0 42.3 47.1

LRENT [18] 91.8 53.5 80.5 32.7 21.0 34.0 29.0 20.3 83.9 34.2 80.9 53.1 23.9 82.7 30.2 35.6 16.3 25.9 42.8 45.9

Ours 89.72 32.54 82.19 31.27 25.12 30.11 38.0 24.64 84.68 41.36 76.59 60.25 29.2 86.27 39.05 51.43 1.37 29.07 39.73 46.98

Training details. We used ResNet101-based DeepLabv2 [24] without CRF
post-processing [25] to have a fair comparison with SOA methods [17,18]. We
compare our method with the ones reporting in the same setting where they do
not exploit more advanced segmentation networks like DeepLabv3+ [26,27], thus
we exclude [28,20] from the comparison. This is necessary to make fair compar-
ison possible as DeepLabv3+ includes a decoder replacing bilinear interpolation
with atrous convolutions. This results in better recovering of the object bound-
aries. Intersection Over Union (IoU) has been the standard evaluation metric for
semantic segmentation task: (IoU) = TP

TP+FN+FP
where TP, FN and FP corre-

spond to true positive, false negative and false positive respectively. Then, mean
IoU (mIoU) is calculated by averaging IoU of all the classes. Pixel accuracy,

TP+TN
TP+TN+FN+FP

also considers TN (pixels correctly identified as not belonging
to the class). This is not a good metric if some classes are seen in a few pixels
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Table 3: Ablations on SYNTHIA → Cityscapes. We compare the perfor-
mance of the proposed method to the following baselines. (1) The source-only
model is only trained on the labeled source examples minimizing the cross-
entropy loss. (2) In AP-CI (Align Predictions of Cropped Images), RGB images
are cropped instead of prediction maps. (3) AGP-GI (Align Global Predictions
of Global Images) refers to minimizing the same adversarial loss (Eqn. 3) on
the global segmentation maps. The proposed method, ALP-GI (Align Local Pre-
dictions of Global Images) outperforms all baselines with 15.13%, 31.59% and
4.69% (in mIoU) compared to Source-only, AP-CI (Align Predictions of Cropped
Images) and AGP-GI (Align Global Predictions of Global Images) respectively.
The last row shows the relative increase compared to the source-only baseline.

Method Road SW Build Wall* Fence* Pole* TL TS Veg. Sky PR Rider Car Bus Motor Bike mIoU mIoU-13

Source-only 57.18 26.41 72.05 6.29 0.15 25.56 8.87 11.12 74.06 80.6 53.69 12.39 49.46 5.25 7.66 20.39 31.95 36.86

AP-CI 33.12 21.75 58.02 0.21 0.0 10.82 0.0 0.37 53.43 42.52 24.12 0.58 24.16 1.22 0.01 1.24 16.97 20.04

AGP-GI 83.42 38.16 77.33 4.34 0.17 25.5 6.2 6.82 77.81 83.97 55.29 18.76 79.13 40.55 15.86 31.62 40.31 47.3

ALP-GI 90.6 51.34 81.96 11.77 0.32 29.51 11.72 12.38 82.69 84.7 58.57 24.73 81.94 36.37 17.11 41.75 44.84 51.99

Relative 33.42 24.93 9.91 5.48 0.17 3.95 2.85 1.26 8.63 4.1 4.88 12.34 32.48 31.12 9.45 21.36 12.89 15.13

only. A trivial solution would be to never estimate such classes. So, we also do
not report on this metric. Batch size is set to be one due to memory constraints.

Table 4: Ablations on GTA5 → Cityscapes. Same as Table 3 except for
GTA5 → Cityscapes. The proposed method, ALP-GI (Align Local Predictions
of Global Images) outperforms all baselines with 9.22%, 26.36% and 6.42% (in
mIoU) compared to Source-only, AP-CI (Align Predictions of Cropped Images)
and AGP-GI (Align Global Predictions of Global Images) respectively. The last
row shows the relative increase compared to the source-only baseline.

Method Road SW Build Wall Fence Pole TL TS Veg. Terrain Sky PR Rider Car Truck Bus Train Motor Bike mIoU

Source-only 75.46 24.6 65.09 11.91 10.58 28.19 27.45 14.64 79.71 32.04 70.56 52.26 20.1 71.91 28.7 48.5 1.42 16.89 37.36 37.76

AP-CI 44.41 14.72 58.47 12.14 1.0 16.64 1.28 1.67 70.77 12.19 65.4 41.38 0.16 27.9 9.43 13.93 0.0 0.25 0.0 20.62

AGP-GI 86.62 10.48 81.79 27.41 17.29 25.19 29.36 14.85 84.27 34.7 78.16 57.3 28.3 83.65 31.93 35.52 0.15 22.59 21.05 40.56

ALP-GI 89.72 32.54 82.19 31.27 25.12 30.11 38.0 24.64 84.68 41.36 76.59 60.25 29.2 86.27 39.05 51.43 1.37 29.07 39.73 46.98

Relative 14.26 7.94 17.1 19.36 14.54 1.92 10.55 10 4.97 9.32 6.03 7.99 9.1 14.36 10.35 2.93 -0.05 12.18 2.37 9.22

Hence, batch norm parameters are updated with momentum but current batch
statistics are not used during training. Image width and height are resized to
(760, 1280) for SYNTHIA, (720, 1280) for GTA5 and (512, 1024) for Cityscapes
during training. The weight for the adversarial loss (λ) given in Eqn. 3 is set
to be 0.001. The number of training iterations is 150000. The learning rate for
segmentation network and domain discriminator are 2.5×10−4 and 10−4 respec-
tively. SGD and Adam are used for optimizing segmentation and discriminator
networks respectively.
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Training details for the experiment in Fig 1. The implementation details
for the motivational experiment are as follows. We report validation errors after
each 100 training iterations. We randomly choose 500 samples from the source
domains for validation and did not use them during training. Cityscapes have
already the validation split of size 500 samples. In total, 1000 samples is used to
calculate the validation errors. Errors are averaged over three runs. Deviations
over different runs are shaded but in some regions, they are too small to be
visible. Standard classifier, ResNet18 [29] is used as a binary classifier. Label
maps are resized to (512, 1024) before and after cropping, to have the same size
segmentation maps for both domains. SGD with momentum 0.9, weight decay
10−4, and fixed learning rate of 10−3 is used.

4.2 Quantitative Evaluation

In Tables 1,2, we compare the proposed method against SOA methods. The
proposed method especially shines on SYNTHIA → Cityscapes as for this task,
spatial-class distribution shift is larger (See Fig. 1, 2).

Our method surpasses all the previous SOA methods in both metrics of
SYNTHIA → Cityscapes. Previous SOA [18] applies mining on rarely predicted
classes and manages to get relatively high scores even in the very challenging
classes. For instance, our method could only achieve 1.37% in train class of GTA5
setting, while previous SOA [18] could perform 26.9%. Similarly, for fence class
of SYNTHIA setting, we perform poorly. Domain shift for segmentation maps
and RGB images of these classes is too large for achieving robust performance
in these classes.

Other methods we compare are as follows. FCAN [23] which proposed to
combine the image alignment and translation losses. FCAN does not report class-
wise performance and only report on GTA5. [13] applied domain adversarial
loss both at the hidden layers and the network outputs. [15] encourages the
consistency of different classifiers by having one encoder and two classifiers.
Both classifiers are trained on the labeled source samples. The distance between
predictions of two classifiers on the same target sample is minimized by the
encoder and maximized by classifiers. [16] leverages the consistency between two
classifiers in a different way. If two classifiers agree on the prediction, they keep
the adversarial loss weight for that prediction small. In both tasks, we outperform
all these methods which are orthogonal to ours and it could be combined with
them but here we report the naked results to highlight the role of random-patch
alignment.

The closest apple-to-apple comparison to our method is with [8] AdvEnt
which applies the same loss without random cropping on the predictions. The
proposed method improves baseline AdvEnt method [8] from 47.6% to 51.99%
in SYNTHIA → Cityscapes and 43.8% to 46.98% in GTA5 → Cityscapes. More-
over, note that A+E reported in [8] is an ensemble of two networks trained with
different losses, so it is not directly comparable to our method. Nonetheless, the
relative accuracy improvements to their reported numbers are 3.15% for GTA5
and 8.12% for SYNTHIA. More controlled ablations are discussed next.
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Fig. 4: Qualitative results for SYNTHIA → Cityscapes. Visuals of
Cityscapes test set predictions are presented along with the corresponding RGB
images. From top to bottom: (1) RGB image, (2) source-only prediction, (3)
global alignment prediction, (4) our prediction and (5) ground truth segmenta-
tion. The proposed method especially performs well on the more common classes
like road or sidewalks whereas it misses some of the small and rare objects like
traffic signs.

In Tables 3,4, we compare the proposed method Align Local Predictions of
Global Images (ALP-GI) against the following baselines: (1) Source-only, (2)
Align Predictions of Cropped Images (AP-CI) and (3) Align Global Predictions
of Global Images (AGP-GI).

Source-only baselines are only trained on the labeled source samples mini-
mizing the cross-entropy loss. Our method improves source-only baselines with
15.13% and 9.22% for SYNTHIA → Cityscapes and GTA5 → Cityscapes re-
spectively. Since the network and other training details are the same for all
the methods, the improvement verifies the effectiveness of the proposed loss in
leveraging the unlabeled target samples.

Similarly, the proposed method improves AGP-GI (Align Global Predictions
of Global Images) baselines with 4.69% and 6.42% for SYNTHIA → Cityscapes
and GTA5 → Cityscapes respectively. The improvement compared to AGP-GI
verifies the significance of the random-patch alignment. Note that the results
reported here for AGP-GI are slightly lower than those reported in [8]. The dif-
ference from AdvEnt-only (ours is 47.3, theirs is 47.6) is due to implementation
differences. Moreover, they report the best results by ensembling two differ-
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ent networks (A+E) whereas we report a single network’s predictions for each
method for having a controlled-experimental setting.

Fig. 5: Qualitative results for GTA5 → Cityscapes. Same as Fig. 4 except
for GTA5 → Cityscapes. Again, network can correctly capture objects belonging
to classes road, car while missing tiny objects (e.g. traffic light, traffic sign) or
classes with large domain gap (e.g. fence).

Another way to align the prediction patches is simply to feed the cropped
images to the network. But, the problem with this approach is that the network
cannot leverage the scene information (i.e. larger context) when inferring the
semantic segmentation map for small crop sizes. That is why in the proposed
method, we minimize the cross-entropy loss on the entire images, and for the
adversarial loss, we randomly extract the patches of the predictions and not of
the RGB images. For completeness, we also evaluate this choice and report AP-
CI (Align Predictions of Cropped Images) in Tables 3,4 where we compare the
proposed method to simply cropping the RGB images with the same crop sizes.
This baseline gives terrible results for the patch size of 256 as such a small
receptive field makes it hard for the network to correctly capture the scene.
As a result, the performance of this baseline is even lower than the source-
only baseline which does not leverage any target sample. The proposed method
surpasses this baseline with 31.59% and 26.36% for SYNTHIA → Cityscapes
and GTA5 → Cityscapes respectively.



12 S. Cicek et al.

Fig. 6: Entropy of predictions. The entropy of the predictions on the source
samples (columns 1,3) and the target test samples (columns 2,4) are given. From
top to bottom: RGB image, the entropy of the source-only trained model and
the entropy of the proposed method. Left two columns are for models trained
on SYNTHIA → Cityscapes and right two columns are for GTA5 → Cityscapes.
Color transitions from purple to yellow as the value of entropy increases. En-
tropy values are low on the source images for both the source-only and the
proposed models (column 1,3) except edges due to the cross-entropy loss. For
the target test samples (column 2,4), the entropy of predictions are small for the
proposed method thanks to the adversarial loss while source-only models have
high uncertainty on the target images.

For SYNTHIA→ Cityscapes, our method outperforms the source-only model
for all the classes as can be seen in the last row Table 3. But, the improvements
are especially significant for the classes road, sidewalk, car, bus where accura-
cies (IoU) increased from 57.18, 26.41, 49.46, 5.25 to 90.6, 51.34, 81.94, 36.37
respectively. These are more common classes and the shapes of these objects
do not significantly differ from one domain to other as in fence class. Hence,
the proposed random-patch alignment method can leverage the object shapes
learned from the source data. For GTA5 → Cityscapes, the proposed method
improves the source-only baseline in all classes except train, which is a chal-
lenging class for this task as objects belonging to train class in GTA5 are far
away from the ego-vehicle and they are hardly perceivable. The advantage of the
proposed method is most apparent in the classes building and wall where IoU
scores increased from 65.09 and 11.91 to 82.19 and 31.27 respectively.

4.3 Qualitative Evaluation

In Fig. 4 and 5, we present several qualitative results for SYNTHIA→ Cityscapes
and GTA5 → Cityscapes. In each figure, predictions of the source-only, global
alignment, and the proposed methods along with corresponding RGB images
and ground-truth segmentation maps are given. Black regions in the ground-
truth maps belong to other class which are not evaluated at the test time.



Spatial Class Distribution Shift in Unsupervised Domain Adaptation 13

Thanks to the proposed random-patch alignment regularization, the network
learns the shape of the objects like car, traffic signs, and corrects the mistakes
of the global alignment method. Even though the proposed method is quite
successful in capturing the common classes road, sidewalks accurately, sometimes
it can miss tiny and rare objects (e.g. belonging to class fence). In Fig. 6, we

Fig. 7: Confusion matrices. Log-scaled confusion matrices for SYNTHIA →
Cityscapes (left) and GTA5 → Cityscapes (right) are given. Confusion matrices
are calculated by averaging over all the target test set. The value of the ma-
trix at row i and column j is equal to the number of observations that should
be classified as i and predicted to be j. As the value increases, color changes
from purple to yellow. Networks are confused between sidewalk and road classes
in both tasks. The classes building and vegetation are attracting classes that
networks tend to misclassify objects belonging to other classes as one of two.

give the entropy of predictions for the source-only baseline and the proposed
method for both tasks along with the corresponding RGB images. As expected,
entropy values of the predictions on the target test set (column 2,4) are less for
the proposed method thanks to the adversarial loss. Entropies have high values
mostly on the edges. For source images (column 1,3), both models have small
uncertainty as both minimize cross-entropy loss on them. In Fig. 7, we give log-
confusion matrices on the target test set predictions of the proposed method
for both tasks. As can be observed, some classes are more likely to be confused
(e.g. sidewalks and road). Furthermore, the false-positive ratio is high for some
classes like building and vegetation (i.e. network is tempted to predict objects
belonging to other classes as one of the two). In Fig. 8a, we plot the performance
on the target test set as a function of patch size. We get the best results when
aligning the prediction crops of size 256 for both tasks. Based on the experiment
in Fig. 1, for this size of segmentation maps, a strong discriminator can have
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(a) Performance as a function of the patch
size.

(b) The proposed method learns the shape
of the objects from the labeled source do-
main.

Fig. 8: (a) mIoU on the target test samples are given for models trained to align
different patch size predictions. The left panel is for SYNTHIA → Cityscapes
and the right one is for GTA5 → Cityscapes. Both models achieve the best
results when aligning the predictions of size 256. For smaller and larger patch
sizes, the performance of the model decays. (b) Blue regions denoted with the
red rectangles are estimated as a car. Such a car shape does not exist in any of
the source segmentation patches, hence unless we perform the proposed adver-
sarial loss, a discriminator can easily tell apart domains only by looking at the
segmentation maps. So, this prediction will be corrected with the proposed loss.
On the other hand, we do not promote global segmentation map alignment un-
like previous works as the global segmentation distributions are not necessarily
the same across domains.

predictions that are better than luck. However, still, the discriminator cannot
reduce validation error below 20% (green curve) unlike the global alignment case
(blue curve) where the validation error quickly drops to 0%. Moreover, aligning
the predictions with this crop size is sufficient to have aligned predictions for
smaller path sizes. In Fig. 8b, we present an illustrative example of how the
proposed adversarial loss helps to learn the shapes of the objects from the labeled
source domain and results in improved predictions compared to the source-only
predictions.

5 Conclusion

We proposed a simple yet, effective solution to the spatial-class distribution
shift problem and proved its effectiveness by performing at the state-of-the-art
in UDA segmentation benchmarks. We further verified its success in the more
controlled settings with the ablation studies. The method performs the best
for UDA tasks with large spatial-class shifts (e.g. SYNTHIA Cityscapes). The
proposed method adds no computational cost to the baseline method and it
takes approximately 25 hours to train with a single Nvidia Tesla V100. Results
on the Berkeley Deep Driving dataset are given in Supp. Mat.
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25. Krähenbühl, P., Koltun, V.: Parameter learning and convergent inference for dense
random fields. In: International Conference on Machine Learning. (2013) 513–521
7

26. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution
for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017) 7

27. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with
atrous separable convolution for semantic image segmentation. In: Proceedings of
the European conference on computer vision (ECCV). (2018) 801–818 7

28. Zhang, Q., Zhang, J., Liu, W., Tao, D.: Category anchor-guided unsupervised
domain adaptation for semantic segmentation. In: Advances in Neural Information
Processing Systems. (2019) 433–443 7

29. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
(2016) 770–778 9


