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Abstract. Channel pruning is an effective way to accelerate deep con-
volutional neural networks. However, it is still a challenge to reduce
the computational complexity while preserving the performance of deep
models. In this paper, we propose a novel channel pruning method via the
Wasserstein metric. First, the output features of a channel are aggregated
through the Wasserstein barycenter, which is called the basic response
of the channel. Then the channel discrepancy based on the Wasserstein
distance is introduced to measure channel importance, by considering
both the channel’s feature representation ability and the substitutabil-
ity of the basic responses. Finally, channels with the least discrepancies
are removed directly, and the loss in accuracy of the pruned model is
regained by fine-tuning. Extensive experiments on popular benchmarks
and various network architectures demonstrate that the proposed ap-
proach outperforms the existing methods.
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1 Introduction

In recent years, convolutional neural networks (CNNs) have made great achieve-
ments in various computer vision tasks [1,2,3,4]. However, the superior perfor-
mance of CNNs relies on its huge computation and memory cost, which makes
these CNNs very difficult to deploy on the devices with limited resources, such
as mobile phones or embedded gadgets, etc. To expand the application scope of
the CNNs, the research on model compression has attracted great interest.

Recent developments in model compression can be divided into three cat-
egories, namely, quantization, low-rank approximation, and network pruning.
Network quantization compresses the original network by using few bits to rep-
resent each weight. However, the quantization error leads to low training effi-
ciency of the network. Low-rank approximation aims to compress and accelerate
the network through tensor decomposition, but these methods often suffer from
expensive fine-tuning processes and performance degradation. Network prun-
ing has two branches, i.e., weight pruning and filter/channel pruning. Weight
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pruning simply removes weights parameters in filters, which may lead to non-
structured sparsity. Thus the specific hardware structure is required for efficient
inference. In contrast, channel pruning can significantly reduce memory foot-
print and boost the inference speeds by directly discarding redundant channels.
Moreover, channel pruning is hardware-friendly and it can be easily integrated
with other model compression techniques.

In recent work [5], the greedy algorithm is used to remove redundant channels
by minimizing the reconstruction error before and after pruning. Regularization-
based methods [6,7,8,9] introduce the sparsity penalty to the training objective.
For these methods, more training epochs and extra optimization are required
to achieve an optimal pruning result, which leads to low efficiency for large
networks and datasets. In [10] channel pruning is implemented based on feature
reconstruction, which leads to the problem of redundant feature maps due to the
absence of the analysis on the relationship among the channels. Wang et al. [11]
explore the linear relationship among the channels through clustering feature
maps. However, the clustering results are only obtained by specific inputs, which
do not apply to various input categories. LFC et al. [12] prunes one filter of the
filter pairs with the largest correlation. LFC only considers the linear relationship
of filters while ignoring the nonlinear relationships of filters. Moreover, the extra
optimization is needed to increase correlations. To address the above issues, we
propose a novel pruning method via the Wasserstein metric.

The concept of the Wasserstein metric or distance derives from optimal trans-
port theory [13], which provides many powerful tools for probability measures
and distributions. The Wasserstein distance measures the similarity or discrep-
ancy between distributions by computing the minimal cost of transporting all
the mass contained in one distribution to another. The Wasserstein distance sat-
isfies all metric axioms and has many favorable properties, and the details are
referred to [13].

In this paper, we aim to identify the most replaceable channels by summariz-
ing the output features of channels, which can reflect the channels’ contributions
to the layer. Specifically, to prune the most redundant channels in a pre-trained
model, the Wasserstein barycenter [14,15] is first utilized to aggregate the output
features of a channel. The Wasserstein barycenter is defined as the basic response
of the channel, which represents the unique output characteristics of the chan-
nel and is independent of the specific input category. This property allows us
to identify redundant channels by analyzing the discrepancy between the basic
responses. After obtaining the basic response of channels, we further propose
channel discrepancy to measure the differences between channels and the chan-
nel’s feature representation ability. Channels with minimal channel discrepancy
can be substituted by other channels. By directly identifying and removing the
channels that contribute the least to each layer, the proposed method avoids the
tedious feature reconstruction process. After pruning all redundant channels, the
pruned model is fine-tuned to recover performance. Given a pre-trained model,
the proposed method can construct a compact model with comparable or even
higher performance.
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The main contributions of this work can be summarized as follows:

– A novel channel pruning approach via the Wasserstein metric is proposed.
The channel discrepancy is introduced to measure the contribution of the
channel, which provides a new perspective for understanding channel redun-
dancy. And the non-iterative pruning manner makes the proposed method
more efficient than previous methods.

– To our knowledge, this is the first work to introduce the Wasserstein metric
for pruning deep convolutional neural networks. The Wasserstein metric can
be regarded as a new indicator of channel importance, which expands the
current evaluation criteria.

– Extensive experiments on popular datasets and various network architec-
tures demonstrate that the proposed pruning approach outperforms the pre-
vious methods. On CIFAR-10 [1], the proposed approach achieves about
60% FLOPs reduction of ResNet-56 and ResNet-110 with an accuracy gain
of 0.02% and 0.27% respectively. On ImageNet [16], the pruned ResNet-101
achieves a 58.8% FLOPs reduction with a loss of 0.64% in the top-1 accuracy.

2 Related Work

Low-rank approximation. Denton et al. [17] introduce tensor decompositions
based on SVD to approximate the weight matrix in CNNs. Jaderberg et al. [18]
achieve a 4.5× speedup with little performance loss by approximating filter banks
via low-rank filters. Lebedev et al. [19] utilize the Canonical Polyadic decom-
position on the kernel tensors, which can be efficiently computed by existing
algorithms.

Network quantization. Chen et al. [20] propose to hash the network weights
into different groups and the weight value is shared in each group. In [21], net-
works are quantized with binary weights which significantly reduces memory us-
age. Rastegari et al. [22] propose XNOR-Net to approximate convolutions with
bitwise operations. Compared to standard networks, the proposed XNOR-Net
can achieve a similar performance but more efficient. Zhao et al. [23] introduce
outlier channel splitting to improve network quantization without retraining. To
enhance the representational capability, Liu et al. [24] use a identity mapping to
propagate the real-valued information before binarization.

Network pruning. Recent work on network pruning can be categorized into
two sub-families: weight pruning and channel pruning. In early weight pruning
work, LeCun et al. [25] and Hassibi et al. [26] propose to remove redundant
weights based on second-order derivatives of the loss function. Han et al. [27]
evaluate the importance of weights based on the magnitude and remove unim-
portant weights with small absolute values. Guo et al. [28] integrate pruning and
splicing operations, by which incorrect pruned connections could be recovered
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if they are found to be important. However, weight pruning can cause irregu-
lar connections, which requires specialized hardware to accelerate. Thus channel
pruning is more preferred than weight pruning. Channel pruning directly dis-
cards unimportant channels without affecting network structure. Li et al. [29]
utilize ℓ1-norm to measure the importance of each filter. Based on Lasso regres-
sion, He et al. [10] and Luo et al. [5] prune networks in a layer-by-layer manner
by selecting the filters that minimizing the reconstruction error. He et al. [30]
propose a soft manner pruning approach to preserve the model capacity. In [9],
the saliency of each filter is globally evaluated and dynamically updated. Ye
et al. [8] apply scaling factors to each channel and add the sparse penalty to the
training objective. He et al. [31] introduce the Geometric Median to prune the
fewer contribution filters in the network.

3 Preliminaries

In this section, we give a review of the key concepts used in our proposed method.

3.1 Wasserstein Distance

The p-Wasserstein distance [13], or the Monge-Kantorovich distance of order p,
quantifying the discrepancy between two distributions µ0 and µ1 is defined as

Wp (µ0, µ1) =

(

inf
π∈Π(µ0,µ1)

∫

M×M

d (x, y)
p
dπ (x, y)

)
1
p

, (1)

where M denotes the compact embedding space and d : M × M → R+ de-
notes the geodesic distance function. Π(µ0, µ1) is the set of joint distributions
of (µ0, µ1) having µ0 and µ1 as marginals.

The Wasserstein distance satisfies all metric axioms. It seeks a transport plan
π ∈ Π(µ0, µ1) with the optimal cost of transporting distribution µ0 to µ1, where
the cost of moving a unit of mass from x to y is

d (x, y)
p
= ‖x− y‖pp (2)

the cost d (x, y) equals ℓ1-norm, and d (x, y)
2
is calculated by the squared Eu-

clidean distance.

3.2 Wasserstein Barycenter

Given a set of distributions {µ1, µ2, . . . , µk}, the Wasserstein barycenter µ with
respect to the Wasserstein metric, is defined as the following minimization prob-
lem:

µ = argmin
µ

k
∑

i=1

αiW
2
2 (µ, µi) , (3)
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where (α1, α2, . . . , αk) are non-negative weights summing to 1, and W2
2 denotes

the squared 2-Wasserstein distance.
The Wasserstein barycenter tries to summarize the collection of distribu-

tions, which can describe the geometry characteristics better than the Euclidean
average.

3.3 Smoothed Wasserstein Distance

The computation of the normal version of the Wasserstein distance has high time
complexity, which scaling super-cubically in the size of the domain. Adding an
entropic regularization term to the original distance makes the problem strictly
convex. Specifically, the squared 2-Wasserstein distance with an entropic regu-
larization term is defined as

W2
2,γ (µ0, µ1) = inf

π∈Π(µ0,µ1)

[

∫

M×M

d (x, y)
2
π (x, y) dx dy − γH (π)

]

, (4)

where H (π) denotes the differential entropy of π on M × M and γ > 0 is the
regularization parameter.

The smoothed version of the Wasserstein distance can be solved iteratively
by Sinkhorn-Knopp algorithm [32], with a linear convergence rate. Another good
feature of the smoothed Wasserstein distance is that the computation can be car-
ried out simultaneously using elementary linear algebra operations, which could
take advantage of parallel GPGPU architectures to get further acceleration.

According to (3) and (4) , the original barycenter problem can be modified
as follows

µ = argmin
µ

k
∑

i=1

αiW
2
2,γ (µ, µi) . (5)

There has been a lot of excellent work aiming to solve (5). Our proposed
method employs the fast convolution [15], which enhances Sinkhorn’s efficiency
by avoiding explicit pairwise distance computation and via the pre-factored dif-
fusion operator.

4 Method

4.1 Notions

Let N denote a part of the samples of the training set. Considering the l-th layer
of an L-layer CNN model, let nl (l ∈ [1, 2, . . . , L]) denote the number of input
channels, k denote the spatial size of filters and hl/wl denote the height/weight

of the input feature maps. Given the input feature maps Xl ∈ R
N×nl×hl×wl

, the

output feature maps Yl(i.e., Xl+1 ∈ R
N×nl+1×hl+1×wl+1

) can be computed by

applying weights θl ∈ R
nl+1×nl×k×k.
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For the i-th sample and the j-th channel of the l-th layer, the output feature
map can be formulated as

Yl
i,j = σ

(

θ
l
j ⊗Xl

i + bl
)

, (6)

where σ (·) denotes nonlinear activation functions and ⊗ denotes the convolu-
tional operation. In the following, the bias term bl and the layer index l are
omitted for simplicity.

4.2 The Basic Response of Channel

In the previous works [5,10], all feature maps are reconstructed to preserve the
ability of the channel but ignore that the output features corresponding to the
redundant channel and the important channel have different contributions to
the layer output. Thus the less important feature maps are also recovered by
mistake.

In this paper, without reconstructing the feature maps directly, we aim to
summarize the output features by the Wasserstein barycenter, which is defined
as the basic response of the channel. By aggregating the output feature maps, the
basic response could represent the unique output characteristics of the channel,
which is independent of the specific input category. Therefore, by analyzing the
discrepancy between the basic responses, it is possible to identify channels that
need to discard.

The j-th channel’s output Y:,j = {Y1,j ,Y2,j , . . . ,YN,j} is a collection of
output features learned from N training samples. According to (5), the basic
response, or the barycenter of the j-th channel is

Λj = argmin
Λ

N
∑

i=1

1

N
W2

2 (Λ,Yi,j) , (7)

where the basic response Λj summarizes the set of output distributions, and
remain the same shape of output feature map. Then the basic responses of the

l-th layer are {Λj}
nl+1

j=1 . According to (7), the calculation of the basic responses
does not require any training or reconstruction process.

4.3 Channel Discrepancy

We introduce the Wasserstein distance as a new indicator of channel importance,
due to its superior ability to measure the discrepancy of distributions. Once
obtained the basic responses of each channel, the discrepancy dj,k of the j-th
and the k-th channel is defined as

dj,k = W2
2 (Λj ,Λk) . (8)

dj,k measures the difference between the basic responses of the two channels. The
larger the value of discrepancy, the greater the difference between the output of
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Algorithm 1 Algorithm of channel pruning

Input: Training data D, pre-trained model M with weights
{

θ
l
}L

l=1
, pruning rate Pl,

number of training samples N to compute the basic response.
Output: The pruned model with selected channels.

1: Forward model and get the output feature maps
{

Yl
}L

l=1
.

2: for layer l in model M do

3: for channel in layer l do
4: Compute basic response of channel via (7).
5: end for

6: Compute channel discrepancy via (11).
7: Remove Pl-rate channels with smallest channel discrepancy.
8: end for

9: Fine-Tune the pruned model.

the two channels. The layer-discrepancy LDj of the j-th channel is the average
of the discrepancy between one channel and other channels, i.e.,

LDj =
1

nl+1 − 1

nl+1

∑

k=1,j 6=k

dj,k (9)

where nl+1 is the number of channels in the l-th layer. The channel with high
layer-discrepancy means that its output feature is unique and irreplaceable,
therefore is important to the layer.

The redundancy of a channel depend on not only the layer-discrepancy but
also its feature representation ability. An important channel is very active for
different inputs. The more active the channel is, the richer the output feature
maps. Such ability is called the output-discrepancy. According to (7) the output-
discrepancy ODj can be computed by

ODj =
N
∑

i=1

1

N
W2

2 (Λj ,Yi,j) , (10)

whereΛj represents the basic response andYi,j denotes the output feature maps
of the j-th channel. The output-discrepancy measures the feature representation
ability of the channel. The less redundant channel has large output-discrepancy.

For the j-th channel in the l-th layer, by combining both layer-discrepancy

and output-discrepancy, we have a joint discrepancy formula as follows

Dj = LDj + βODj =
1

nl+1 − 1

nl+1

∑

k=1,j 6=k

dj,k + β

N
∑

i=1

1

N
W2

2 (Λj ,Yi,j) , (11)

where the two terms are balanced by β. Dj measures the channel’s contribution
to the entire layer and is called the channel discrepancy.

The channel discrepancy not only considers the mutual relationship between
channels but also considers the channel’s feature representation ability, therefore
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Table 1. Comparison of pruning results for VGG-16 on CIFAR-10. “B. Top-k” and
“P. Top-k” denote the top-k accuracy of the baseline and pruned model respectively.
“Top-k↓(%)” means the top-k accuracy loss of pruned model compared to its baseline
(smaller is better). “FLOPs↓(%)” denotes the reduction of FLOPs.

Model Method B.Top-1(%) P.Top-1(%) Top-1↓(%) FLOPs↓(%)

VGG-16

L1 93.25 93.40 -0.15 34.2
CP 93.99 93.67 0.32 50.0

ThinNet 93.99 93.85 0.14 50.0
Ours 93.73 ± 0.16 93.99 ± 0.28 -0.26 50.4

channels with the smallest channel discrepancy can be directly identified and
safely pruned.

4.4 Pruning Algorithm

The proposed pruning algorithm can be described in the following steps to prune
the redundant channels at a pruning rate Pl:

1. For each channel’s output feature mapsY:,j inY, calculate its corresponding
basic response Λj through (7).

2. Obtain the channel discrepancy by using (11).
3. Remove Pl-rate channels in l-th layer with the minimal channel discrepancy,

and the related channels in the next layer are removed in the meanwhile.

All the channels with less discrepancies will be directly identified and then
pruned together. The performance of the pruned model can be quickly restored
after fine-tuning. This non-iterative pruning manner makes our method more
effective than the previous methods. Algorithm 1 details the procedures of our
pruning technique.

5 Experiments

5.1 Experimental Settings

The proposed pruning algorithm is evaluated on CIFAR-10 [1] and ImageNet [16]
with popular CNN networks, including VGGNet [2] and ResNet [3]. The CIFAR-
10 dataset contains 50K training images and 10K validation images of 10 classes,
and the ImageNet dataset consists of 1.28M training images and 50k valida-
tion images in 1000 classes. The CIFAR-10 experiments follow the same hyper-
parameters setting in [3], training schedule and data argumentation in [33], and
the “mean ± std” of accuracy is reported by running the experiment three times.
For the ImageNet experiments, we follow the default settings in [3]. The training
schedule is same as FPGM [31]. To balance the performance and efficiency, the
number of the training samples, N is set to 256. The computations (elementwise
arithmetic) of the Wasserstein distance and barycenter are accelerated by four
NVIDIA GTX 1080 Ti GPUs.
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Table 2. Pruning performance of Resnet-56 and Resnet-110 on CIFAR-10. For ResNet-
56, our method achieves the highest performance with similar FLOPs reduction com-
pared to previous methods. For ResNet-110, with 70% of the FLOPs reduced, the
pruned model could still maintain almost the same performance as the baseline.

Model Method B.Top-1(%) P.Top-1(%) Top-1↓(%) FLOPs↓(%)

ResNet-56

L1 93.04 93.06 -0.02 27.6
CP 92.80 91.80 1.00 50.0

ThinNet 93.80 92.98 0.82 49.8
SFP 93.59 93.35 0.24 52.6
AMC 92.80 91.90 0.90 50.0
LFC 93.57 93.32 0.25 61.5

FPGM 93.59 93.26 0.33 52.6
Ours(40%) 93.28 ± 0.26 93.69 ± 0.24 -0.41 39.4
Ours(50%) 93.28 ± 0.26 93.71 ± 0.14 -0.43 49.4
Ours(60%) 93.28 ± 0.26 93.30 ± 0.34 -0.02 59.4

ResNet-110

L1 93.53 93.55 -0.02 15.9
SFP 93.68 93.86 -0.18 40.8

FPGM 93.68 93.74 -0.16 52.3
Ours(40%) 93.59 ± 0.31 94.22 ± 0.28 -0.63 39.4
Ours(50%) 93.59 ± 0.31 94.11 ± 0.43 -0.52 49.5
Ours(60%) 93.59 ± 0.31 93.86 ± 0.37 -0.27 59.5
Ours(70%) 93.59 ± 0.31 93.83 ± 0.42 -0.24 69.9

5.2 VGG-16 on CIFAR-10

VGGNet is widely used for vision tasks, which has a plain and straight forward
network architecture. We select VGG-16 as a representative model. Following
PFEC [29], the VGG-16 with Batch Normalization layer is used in the experi-
ment, which is trained from scratch with 93.73% accuracy. When pruning, 30%
convolution channels of each convolution layer in VGG-16 has been removed.

Table 1 shows the results compared with PFEC, CP [10] and ThinNet [5].
With 50.4% of FLOPs reduction, our pruning method could even gain a 0.26%
improvement on accuracy.

5.3 ResNet on CIFAR-10

We also make experiments for Resnet-56 and ResNet-110 on CIFAR-10 dataset
with different pruning rates. Table 2 shows the results.

For ResNet-56, we achieves similar FLOPs reduction (59.4% vs. 61.5%) com-
pared to LFC [12], and maintains almost the same accuracy with respect to base-
line model (−0.02%), while LFC drops 0.25%. Moreover, By setting the pruning
rate to 50%, the proposed method achieves the best accuracy. With similar
FLOPs reduction, our method preserves the highest performance by comparison
with CP, ThinNet, SFP [30], AMC [34], and FPGM.
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Table 3. Pruning results for Resnet-50 and Resnet-101 on ImageNet. Our proposed
method achieves the best top-1 accuracy and top-5 accuracy compared with the existing
methods.

Model Method B.Top-1(%) P.Top-1(%) Top-1↓(%) Top-5↓(%) FLOPs↓(%)

ResNet-50

ThinNet 72.88 71.01 1.87 1.12 55.8

GAL 76.15 71.95 4.20 1.93 43.0
SN 76.10 74.90 1.20 - 43.0
SFP 76.15 62.14 14.01 8.27 41.8
GDP 75.13 71.89 3.24 1.59 51.3
LFC 75.30 73.40 1.90 0.80 50.4
Taylor 76.18 74.50 1.68 - 44.9
FPGM 76.15 74.83 1.32 0.55 53.5

Ours(45%) 76.15 75.27 0.88 0.37 50.4

ResNet-101
BN-ISTA 76.40 74.56 1.84 - 52.7
Taylor 77.37 75.95 1.42 - 63.5

Ours(50%) 77.37 76.73 0.64 0.39 58.8

For ResNet-110, by setting the pruning rate to 40%, our method achieves
94.22% accuracy, which is 0.63% higher than the baseline. As more FLOPs are
reduced, the improved performance starts to decrease, but still performs better
than previous methods. Under a FLOPs reduction of 69.9%, the pruned model
can still exceed the baseline by 0.24%.

It is worth noting that for pruning the pre-trained model of ResNet-56 or
ResNet-110, our method outperforms the baseline under various pruning ratios.
However, previous methods suffer performance loss under high FLOPs reduction.
These results verify the ability of our algorithm to compress the model while
maintaining or even achieving better performance.

5.4 ResNet on ImageNet

To further verify the effectiveness of the proposed pruning method, we test
ResNet-50 and ResNet-101 as two variants of ResNet on ImageNet, specifically
the ILSVRC2012 version. Following [5,30], the shortcut connections are main-
tained for simplicity. We report our results in Table 3.

Methods like GAL [35], SFP, and GDP [9] suffer a lot from FLOPs reduction
of ResNet-50, while our method achieves the best results with the only 0.88%
top-1 and 0.37% top-5 accuracy loss, which outperforms the previous channel
pruning methods(ThinNet, SN [36], SFP, LFC, FPGM, Taylor [37]). The reason
is that our method removes channels with the least contribution to the networks
according to the channel discrepancy, thus the model could keep high perfor-
mance after pruning. The pruned model of ResNet-101 maintains high top-1
accuracy (76.73%), and the top-5 accuracy only decreases by 0.39%, while the
accuracy drops of BN-ISTA [8] and Taylor are much larger than our method.
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Table 4. Pruning results by different measures. “A” with “B”: compute barycenter by
“A” and discrepancy by “B”.

ResNet-56(50%)
Our method WB with JS EB with WD EB with JS

93.71 93.51 93.34 93.30

Table 5. Resnet-56 pruning results on CIFAR-10 using different orders (p = 1, 2) of
Wasserstein distance.

Pruning ratio FLOPs↓(%)
Top-1 accuracy(%)

p = 1 p = 2

40% 39.4 93.57 93.64

50% 49.4 93.47 93.71

60% 59.4 93.09 93.30

6 Discussions

6.1 Comparing Wasserstein metric with other measures

The Kullback-Leibler (KL) divergence and Jensen-Shannon (JS) divergence are
commonly used to quantify the divergence between two distributions. The JS di-
vergence is symmetric while the KL divergence is not. As bin-by-bin dissimilarity
measures, these divergences only consider the relationships of bins belonging to
the same index but ignore the information across bins [38]. Moreover, they re-
quire distributions to have joint supports [39]. However, Wasserstein distance
(WD) can handle these problems well and be aware of the spatial information,
thus captures perfectly the underlying probability space of the distributions [13].

Meanwhile, as a probability measure, Wasserstein barycenter (WB) captures
important characteristics and preserves the basic structure of distributions better
than the Euclidean barycenter (EB) [14].

To demonstrate the discussions above, we experiment with the EB/WB to
compute barycenters, and JS/WD to compute the discrepancies. Results for
ResNet-56 on CIFAR-10 are reported in Table 4, which show the effectiveness
of our method.

6.2 Influence of the Order of the Wasserstein Distance

The discrepancies of channels can be computed using different orders of the
Wasserstein distance. According to (2), the transport cost is ℓ1-norm correspond-
ing to the 1-Wasserstein distance for p = 1, and is squared Euclidean distance
corresponding to the squared 2-Wasserstein distance for p = 2.

We explore the influence of the above two Wasserstein distances by pruning
ResNet-56 on CIFAR-10. Top-1 accuracy drops of the pruned model are reported
in Table 5. Obviously, the squared 2-Wasserstein distance achieves better results
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Fig. 1. Accuracy of ResNet-110 on CIFAR-10 regarding different pruning ratio of
FLOPs. The dashed line and solid curve denote the baseline and pruned model re-
spectively.

compared to the 1-Wasserstein distance, which means that 2-Wasserstein dis-
tance can find redundant channels more effectively. In addition, the proposed
method is completely using the squared 2-Wasserstein distance to maintain con-
sistency.

6.3 Varying Pruning Ratio of FLOPs

We conducted further experiments for ResNet-110 on CIFAR-10 with varying
pruning ratios of FLOPs. Results are shown in Figure 1. According to Figure 1,
when the pruning ratio increases to 10%, the performance rises sharply. It means
that after pruning, the redundancy of ResNet is reduced, thereby alleviating the
overfitting of the model. When the pruning ratio of FLOPs changes from 20%
to 70%, the accuracy is slowly decreasing. As the pruning ratio larger than 70%,
the accuracy of the pruned model drops dramatically, because the performance
is limited by the high pruning ratio. It is worth noting that the pruned model
always maintains a higher performance than the baseline when the pruning ratio
is less than 70%. Overall, the high performance of the pruned model illustrates
the powerful ability of the proposed method in compressing redundant models.

7 Conclusions

In this paper, a novel channel pruning method is proposed via the Wasserstein
metric to accelerate CNN models. The Wasserstein barycenter is utilized to gen-
erate the basic response, which integrates the output features and summarizes
the basic characteristics of each channel. Then the channel discrepancy of each
channel measures the channel contribution, by considering both the channel’s
feature representation ability and channel relationships based on the Wasser-
stein distance. Finally, channels with the smallest discrepancies are selected and
pruned. The comprehensive experiments on various popular network architec-
tures verify the superior performance of the proposed method compared with
the existing methods.
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