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Abstract. Existing zero-shot learning (ZSL) methods assume that there
exist sufficient training samples from seen classes, each annotated with
semantic descriptors such as attributes, for knowledge transfer to unseen
classes without any training samples. However, this assumption is often
invalid because collecting sufficient seen class samples can be difficult and
attribute annotation is expensive; it thus severely limits the scalability of
ZSL. In this paper, we define a new setting termed Few-Shot Zero-Shot
Learning (FSZSL), where only a few annotated images are collected from
each seen class (i.e., few-shot). This is clearly more challenging yet more
realistic than the conventional ZSL setting. To overcome the resultant
image-level attribute sparsity, we propose a novel inductive ZSL mod-
el termed sparse attribute propagation (SAP) by propagating attribute
annotations to more unannotated images using sparse coding. This is
followed by learning bidirectional projections between features and at-
tributes for ZSL. An efficient solver is provided for such knowledge trans-
fer with less supervision, together with rigorous theoretic analysis. With
our SAP, we show that a ZSL training dataset can also be augmented
by the abundant web images returned by image search engine, to further
improve the model performance. Extensive experiments show that the
proposed model achieves state-of-the-art results.

1 Introduction

Due to the difficulty in collecting sufficient training images for large-scale object
recognition [1–4] where deep convolutional neural networks (CNNs) are often
employed, zero-shot learning (ZSL) has become topical in computer vision [5–13].
To recognize unseen classes without any training images, existing ZSL models
leverage a semantic space as the bridge for knowledge transfer from seen classes
to unseen ones, and the semantic attribute space is the most commonly used
[14]. Given a set of seen class images, the visual features are first extracted,
typically using CNNs pretrained on ImageNet. With the feature representations
of images and the semantic representations of class names, the next task is to
learn a joint embedding space using seen class data. In such a space, both feature
and semantic representations are projected to be directly compared. Once the
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Fig. 1. Schematic illustration of the proposed ZSL model including SAP and BPL.
The web images are obtained by Google with the query ‘North American Bird’. The
few annotated seen class images are augmented with these unannotated external data.

projection functions are learned, they are applied to test images and unseen class
names, and the nearest neighbor class name is found for each test image.

Although ZSL can avoid the need of collecting unseen class images for train-
ing, it still requires a large number of attribute/label annotations per seen class:
hundreds of class-level attribute annotations are often needed, along with hun-
dreds of image-level class label annotations. This severely limits the scalability
of ZSL. In this paper, to study how to overcome this limitation associated with
existing ZSL models and make ZSL truly scalable, we define a new ZSL setting
termed Few-Shot Zero-Shot Learning (FSZSL), where only a few annotated im-
ages are collected from each seen class. This is clearly more challenging yet more
realistic than the conventional ZSL setting. Note that our new FSZSL setting is
often encountered in real-world application scenarios such as fine-grained classi-
fication and medical image recognition. More specifically, in these scenarios, each
image is hard to annotate with a class label even for an expert and thus only
a few annotated images per seen class can be obtained; meanwhile, recognizing
unseen classes is always needed because the new/rare classes will unavoidably
occur when more data is accumulated.

To overcome the resultant image-level attribute sparsity, we propose a novel
inductive ZSL model termed sparse attribute propagation (SAP) by propagat-
ing attribute annotations to more unannotated images using sparse coding [15,
16]. This is followed by learning bidirectional projections between features and
attributes for ZSL. We formulate sparse attribute propagation (SAP) and bidi-
rectional projection learning (BPL) within a unified ZSL framework: SAP aims
to obtain more reliable attribute annotations, while BPL aims to learn more
generalizable projections. We also give an efficient iterative solver, with rigor-
ous theoretic algorithm analysis provided. Note that under the inductive ZSL



Few-Shot Zero-Shot Learning 3

setting, only seen class images can be used for SAP. However, with SAP, our
FSZSL becomes a semi-supervised learning problem. As a result, we are now
able to exploit the abundant web images collected using image search engine to
augment a ZSL dataset. These web images could even be used to replace the u-
nannotated seen class images which are also exploited for training. In summary,
we provide a flexible ZSL approach that can scale to real-world ZSL tasks. Our
proposed ZSL model is illustrated in Fig. 1.

Our contributions are: (1) For the first time, we define a new setting termed
FSZSL, which is more challenging yet more realistic than the conventional ZSL
setting. (2) To overcome the attribute sparsity under our new setting, we pro-
pose a novel inductive ZSL model by integrating SAP and BPL into a unified
framework. An efficient iterative solver is formulated, together with rigorous the-
oretic analysis. (3) Our model is highly flexible and can be generalized to other
vision problems such as social image annotation (SIA) [17–19] (see the suppl.
material). Extensive experiments show that our model achieves state-of-the-art
results on both problems (i.e., ZSL and SIA).

2 Related Work

Knowledge Transfer for ZSL. Since both seen and unseen classes can be
defined in a same semantic space, it is often leveraged as a bridge for knowledge
transfer from seen classes to unseen ones. Existing ZSL methods typically learn
a projection between the visual feature space and the semantic space, and can
be divided into three groups depending on how the projection function is built:
(1) The first group projects both visual and semantic spaces into a latent embed-
ding space [20–23]. (2) Methods in the second group learn projections from the
visual space to the semantic one [7, 6, 24]. (3) The third group projects semantic
representations into the visual space [25, 26], which can reduce the hubness prob-
lem [27]. Moreover, several works [12, 28–31] first projects visual representations
into the semantic space and then projects them back, which can help reduce the
domain shift problem. Note that Semantic AutoEncoder (SAE) and our BPL
are closely related. The main difference is that the weight hyperparameter for
balancing the two projection directions is removed from our BPL. Moreover, our
algorithm is given a theoretic analysis while such an analysis is missing for SAE.
Notably, as we have stated our contributions above, BPL is not the focus of this
work, and it can be replaced by any other embedding method (see Table 3).
ZSL with Less Human Annotation. A ZSL model typically exploits two
types of human annotations for recognizing unseen classes without any training
images: (1) the human-annotated class labels of training images from seen class-
es; (2) the human-defined semantic representations of seen/unseen classes. In the
area of ZSL, much attention has been paid to reducing the annotation cost of
generating human-defined semantic representations (e.g., the semantic space is
formed using online textual documents [7, 8], human gaze [10], or visual similes
[32, 11] instead of attributes), which leads to significantly less annotation cost.
Different from these ZSL models, we focus on ZSL with less human annotation
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by defining a new ZSL setting, i.e., only a few annotated images are collected
from each seen class. Although our ZSL model is proposed based on attributes
in this paper, it can be easily generalized to other forms of semantic space [7, 8,
10, 11] to further reduce the annotation cost. To our best knowledge, we are the
first to define this new setting in the area of ZSL.
Semi-Supervised ZSL. In this paper, attribute propagation is performed
from a few annotated seen class images to more unannotated images so that
more reliable attribute annotations can be obtained. This can be regarded as
a form of semi-supervised ZSL. Note that the test images from unseen classes
are not used for training our model, i.e., we take an inductive ZSL setting.
However, in the area of ZSL, when semi-supervised learning is applied to ZSL,
the unlabelled test images from unseen classes are typically used for training.
This results in a transductive ZSL setting: either label propagation [5, 6, 33, 9]
or self-training [34–38, 28] is employed for semi-supervised learning. Since these
transductive ZSL models assume the access to the whole test set, they have
limited applications in real-world scenarios. Note that although the test set is
not involved in the training process, our model still exploits the unannotated
seen class images for attribute propagation. Given that it is not easy to obtain
the unannotated seen class images, we choose to perform attribute propagation
with unannotated external data from image search engine, which thus provides
a feasible/convenient approach to applying our model to real-world ZSL tasks.
ZSL with Web Images. In computer vision, web images have been widely
used to promote the performance of existing recognition models as in [39–42].
However, there is less attention on exploiting web images for ZSL. Two excep-
tions are: the web images are utilized to augment the unseen class data in [43]
and discover event composition knowledge for zero-shot event detection in [44].
In this work, although web images are also employed as external data, our mod-
el is quite different from [43] in that we do not search web images directly with
unseen class names since this is against the zero-shot setting.

3 Methodology

3.1 Problem Definition

Let Cs = {cs1, · · · , csp} denote a set of seen classes and Cu = {cu1, · · · , cuq}
denote a set of unseen classes, where p and q are the numbers of seen and un-
seen classes, respectively. These two sets of classes are disjoint. Similarly, Zs =

[z
(s)
1 , · · · , z(s)p ] ∈ R

k×p and Zu = [z
(u)
1 , · · · , z(u)q ] ∈ R

k×q denote the correspond-
ing seen and unseen class semantic representations (e.g., k-dimensional attribute

vectors). We are given a set of seen class training images Ds = {(x(s)
i , l

(s)
i ),y

(s)
i :

i = 1, · · · , r, r+ 1, · · · , Ns}, where x
(s)
i ∈ R

d×1 is the d-dimensional feature vec-

tor of the i-th training image, l
(s)
i ∈ {1, · · · , p} is the label of x(s)

i according to Cs,
y
(s)
i = z

(s)

l
(s)
i

is the semantic representation of x
(s)
i (i.e., only class-level attributes

are needed), and Ns is the number of training images. In this paper, only the first



Few-Shot Zero-Shot Learning 5

r annotated training images x
(s)
i (1 ≤ i ≤ r) have non-zero attribute vectors, i.e.,

y
(s)
i = 0 (r+1 ≤ i ≤ Ns). Moreover, let Du = {(x(u)

i , l
(u)
i ),y

(u)
i : i = 1, · · · , Nu}

denote a set of unseen class test images, where x
(u)
i ∈ R

d×1 is the feature vector

of the i-th test image, l
(u)
i ∈ {1, · · · , q} is the unknown label of x

(u)
i according

to Cu, y(u)
i denotes the unknown semantic representation of x

(u)
i , and Nu is the

number of test images. The goal of FSZSL is to predict the labels of test images

by learning a classifier f : Xu → Cu, where Xu = {x(u)
i : i = 1, · · · , Nu}. Under

the generalized FSZSL setting (following [45–47]), the test samples can come
from both seen and unseen classes, so the classifier becomes f : X → Cs ∪ Cu,
where X denotes the set of all test samples.

Note that the above problem definition is consistent with the inductive ZSL
setting, where the unannotated seen class training images are given along with
the annotated seen class training ones. Their uniform notations make the model
formulation more concise. As we have mentioned, the unannotated seen class
images can be replaced by the unannotated web images from image search engine
(see Fig. 1), resulting in a feasible approach for real-world ZSL tasks. The details
of such FSZSL with external data are given at the end of Section 3.

3.2 Model Formulation

When learned with only a few annotated images per seen class under our new
ZSL setting, the projection function between the feature and semantic spaces
is not reliable. Therefore, we choose to propagate such sparse attribute annota-
tions to more unannotated images using sparse coding [15, 16]: more attribute
annotations enable us to learn a more reliable projection, but the noise caused
by attribute propagation should also be suppressed by sparse coding, which is
thus called sparse attribute propagation (SAP). Moreover, given all seen class
training images (with ground truth/predicted attribute vectors), we integrate
the forward and reverse projections for ZSL, since either projection suffers from
the projection domain shift [5, 25]. By bidirectional projection learning (BPL), a
visual feature vector is first projected into a semantic space and then back into
visual feature space to reconstruct itself. Such self-reconstruction can improve
the generalization ability of the model and help tackle the projection domain
shift. Our unified framework including SAP and BPL is given below.

Concretely, with the whole seen class training set Xs = {x(s)
i : i = 1, · · · , Ns},

we construct first a graph G = {V,A} with its vertex set V = Xs and affinity
matrix A = [aij ]Ns×Ns

, where aij denotes the similarity between training images

x
(s)
i and x

(s)
j . The affinity matrix A can be defined as: aij = exp(−‖x(s)

i −
x
(s)
j ‖22/(2σ2)), where the parameter σ can be determined empirically (σ = 1 in

this paper). The normalized Laplacian matrix L is given by

L = I−D−
1
2AD−

1
2 , (1)

where I is an identity matrix, and D is a diagonal matrix with its i-th diagonal
element being

∑

j aij . We derive a new matrix B ∈ R
Ns×Ns from L: B = Σ

1
2VT ,
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where V is an orthonormal matrix with each column being an eigenvector of L,
and Σ is a diagonal matrix with its diagonal element Σii being an eigenvalue of
L (sorted as 0 ≤ Σ11 ≤ · · · ≤ ΣNsNs

). Denoting the eigen-decomposition of L

as L = VΣVT , L can be represented as: L = (Σ
1
2VT )TΣ

1
2VT = BTB.

We further collect the feature and attribute vectors of the training set as

X(s) = [x
(s)
1 , · · · ,x(s)

Ns
] ∈ R

d×Ns and Y(s) = [y
(s)
1 , · · · ,y(s)

Ns
] ∈ R

k×Ns . Our ZSL
model solves the following optimization problem:

min
Y,Ỹ,W

{‖Y − Ỹ‖2F + λ1‖BỸT ‖1 + λ2‖Y −Y(s)‖1

+ λ3(‖WX(s) −Y‖2F + ‖X(s) −WTY‖2F + λ4‖W‖2F )} , (2)

where W ∈ R
k×d is a projection matrix from the visual feature space to the

semantic space, Y ∈ R
k×Ns collects the optimal attribute vectors of all seen class

training images, Ỹ ∈ R
k×Ns denotes an intermediate matrix that approaches Y,

and λ1, λ2, λ3, λ4 are free parameters.
The first and third terms of Eq. (2) are the L2-norm and L1-norm fitting

constraints, respectively. Particularly, the third term enforces the noise sparsity
in Y, which is a commonly used constraint for data noise and has been proven to
be effective. Also, by adding this term, the reliable entries ofY (with large values)
will remain large, while the unreliable entries (with small values) are forced to be
close to zero, leading to noise reduction. Fig. 3(b) shows that removing the third
term of Eq. (2) leads to significant performance degradation (see ‘Single L1’ vs.
‘No L1’ in Fig. 3(b)). The second term is a graph smoothness constraint, different
from the conventional graph smoothness constraint as a trace norm term. Here,
L1-norm is used to promote the sparsity on the inferred attribute vectors and
thus noise reduction (see Fig. 3(b)). Additionally, the last three terms denote
the loss function of projection learning for ZSL. The two projection matrices are
transpose of each other, similar to those in an auto-encoder [48, 49].

Note that introducing both Y and Ỹ makes Eq. (2) much easier to solve.
If we do not introduce the intermediate attribute matrix Ỹ, the SAP part of
Eq. (2) becomes λ1‖BYT ‖1 + λ2‖Y − Y(s)‖1. That is, the objective function
would have two L1-norm terms, and solving an optimization problem with such
an objective function is notoriously hard. We thus replace Y in λ1‖BYT ‖1 with
Ỹ and add a term ‖Y − Ỹ‖2F to ensure that Ỹ and Y are close.

3.3 Optimization Algorithm

Let F(Y, Ỹ,W) denote the objective function in Eq. (2). The optimization
problem in Eq. (2) can be solved in two alternating steps as follows:

SAP : Y∗, Ỹ∗ = argmin
Y,Ỹ

F(Y, Ỹ,W∗) , (3)

BPL : W∗ = argmin
W

F(Y∗, Ỹ∗,W) , (4)

where Y∗ is initialized with Y(s), and W∗ is initialized by solving the BPL
problem in Eq. (4) with Y∗ = Ỹ∗ = Y(s).
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Sparse Attribute Propagation (SAP). The SAP subproblem in Eq. (3)
is solved with the alternating optimization technique as follows: 1) SAP-I: fix
Y = Y∗, and update Ỹ by Ỹ∗ = argmin

Ỹ
F(Y∗, Ỹ,W∗); 2) SAP-II: fix Ỹ =

Ỹ∗, and update Y by Y∗ = argminY F(Y, Ỹ∗,W∗).
1) SAP-I. Directly solving the SAP-I subproblem is of high computational cost
mainly due to the dimension of B (Ns × Ns). Fortunately, we find a way to
dramatically reduce this dimension by using only a small subset of eigenvectors
of L. Specifically, we decompose Ỹ to Ỹ = (Vmα)T , where α = {αij}m×k is an
m× k matrix that collects the reconstruction coefficients and Vm is an Ns ×m
matrix whose columns are the m smallest eigenvectors of L (i.e., the first m
columns of V). The SAP-I subproblem can be reformulated as follows:

α∗ =argmin
α

‖Vmα−Y∗T ‖2F + λ1‖BVmα‖1

=argmin
α

k
∑

j=1

(‖Vmα.j −Y∗T
.j ‖22 + λ1‖BVmα.j‖1) , (5)

where α.j and Y∗T
.j denote the j-th column of α and Y∗T , respectively. The

above problem can be decomposed into k independent subproblems:

argmin
α.j

‖Vmα.j −Y∗T
.j ‖22 + λ1‖BVmα.j‖1

=argmin
α.j

‖Vmα.j −Y∗T
.j ‖22 + λ1‖

m
∑

i=1

Σ
1
2VTV.iαij‖1

=argmin
α.j

‖Vmα.j −Y∗T
.j ‖22 + λ1

m
∑

i=1

Σ
1
2
ii |αij | , (6)

where the orthonormality of V is used to simplify ‖BVmα.j‖1. Many off-the-
shelf solvers exist for solving L1-optimization problems like Eq. (6). L1General3

is employed here, which can solve Eq. (6) at a linear time cost.
To further improve the efficiency, we compute the affinity matrix A over a

kg-nearest neighbor graph with kg ≪ Ns. The time complexity for finding m
eigenvectors with the smallest eigenvalues of the sparse matrix L is O(m3 +
m2Ns + kgmNs), which scales well to the data.
2) SAP-II. Let Ȳ = Y−Y(s). The SAP-II subproblem can be reformulated as

Ȳ∗ =argmin
Ȳ

{‖Ȳ +Y(s) − Ỹ∗‖2F + λ2‖Ȳ‖1

+ λ3(‖W∗X(s) − (Ȳ +Y(s))‖2F + ‖X(s) −W∗T (Ȳ +Y(s))‖2F )}
=argmin

Ȳ

{loss(Ȳ) + λ2‖Ȳ‖1} , (7)

where loss(Ȳ) = ‖Ȳ +Y(s) − Ỹ∗‖2F + λ3(‖W∗X(s) − (Ȳ +Y(s))‖2F + ‖X(s) −
W∗T (Ȳ + Y(s))‖2F ). Since loss(Ȳ) is a quadratic function w.r.t. Ȳ, the above
L1-optimization problem can also be solved efficiently with L1General.

3 https://www.cs.ubc.ca/ schmidtm/Software/L1General.html
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Algorithm 1 Inductive FSZSL with Joint SAP and BPL

Input: Feature representation of the training set X(s)

Initial semantic representation Y(s)

Parameters kg,m, λ1, λ2, λ3

Output: W∗

1: Construct a kg-NN graph with its affinity matrix A being defined over X(s);
2: Find m smallest eigenvectors of the Laplacian matrix L and store them in Vm;
3: Initialize W∗ by solving Eq. (8) with Y∗ = Y(s);
4: for all iteration = 1, ..., MaxIteration do

5: SAP-I: find α∗ with Eq. (5) and compute Ỹ∗ as Ỹ∗ = (Vmα∗)T ;
6: SAP-II: find Ȳ∗ with Eq. (7) and compute Y∗ as Y∗ = Ȳ∗ +Y(s);
7: BPL: find W∗ by solving Eq. (8);
8: end for

9: return W∗.

Bidirectional Projection Learning (BPL). By setting ∂F(Y∗,Ỹ∗,W)
∂W

= 0,
the BPL subproblem in Eq. (4) can be solved using a Sylvester equation:

(Y∗Y∗T + λ4I)W +W(X(s)X(s)T ) = 2Y∗X(s)T , (8)

which is solved (using Matlab built-in function) with a time complexity of
O((k2 + d2 + kd)Ns + k3 + d3). We empirically set λ4 = 0.01.

By joint SAP and BPL for inductive FSZSL, our algorithm is given in Al-
gorithm 1. Once learned, given the optimal projection matrix W∗ found by our

algorithm, we predict the label of a test image x
(u)
i as

l
(u)
i = argmin

j
‖x(u)

i −W∗T z
(u)
j ‖22 . (9)

Since each of iteration steps 5–7 in Algorithm 1 has an efficient solver and our
algorithm is shown to converge very quickly (≤ 5 iterations) in the experiments,
it has a linear time complexity with respect to the data size.

3.4 Algorithm Analysis

We provide a rigorous analysis on the properties and behaviors of Algorithm 1

as follows. Without loss of generality, we first normalize all of ‖x(s)
i ‖2, ‖y(s)

j ‖1
to 1, and thus have: ‖Y(s)‖F ≤ ‖Y(s)‖1 ≤ √

r.

Proposition 1 The solutions (Y∗ and W∗) found by Algorithm 1 are bounded.

Proof. (a) Eq. (7) is equivalent to: Ȳ∗ = argmin
Ȳ

loss(Ȳ), s.t. ‖Ȳ‖1 ≤ M(λ2),

where M(λ2) is a constant depended on λ2. Since Y∗ = Ȳ∗ + Y(s), we have
‖Y∗‖F ≤ ‖Ȳ∗‖F + ‖Y(s)‖F ≤ C1, where C1 = M(λ2) +

√
r.

(b) Given that Y∗Y∗T + λ4I and X(s)X(s)T in Eq. (8) are non-negative def-
inite, there exist orthogonal matrices P, Q s.t. Σ1P

TWQ + PTWQΣ2 =
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2PTY∗X(s)TQ, where Σ1 = diag(θ11, ...θ
1
k) and Σ2 = diag(θ21, ...θ

2
d) collect the

eigenvalues of Y∗Y∗T +λ4I and X(s)X(s)T , respectively. Obviously, θ1i ≥ λ4 (i =
1, ..., k), θ2j ≥ 0 (j = 1, ..., d). Let W̃ = PTWQ and R̃ = PTY∗X(s)TQ. We

have Σ1W̃ + W̃Σ2 = 2R̃. Since w̃ij = 2r̃ij/(θ
1
i + θ2j ), ‖W∗‖F = ‖W̃‖F ≤

2‖Y∗X(s)T ‖F /λ4. Given that ‖Y∗‖F ≤ C1, we further obtain: ‖W∗‖F ≤ 2‖Y∗‖F ‖X(s)T ‖F /λ4 ≤
C2, where C2 = 2C1

√
Ns/λ4. �

Proposition 2 The optimal projection matrix W∗ found by Algorithm 1 is in-
sensitive to the perturbation of Y∗, i.e., ‖△W∗‖F → 0, if ‖△Y∗‖F → 0.

Proof. Given W∗ found by Algorithm 1, we have

(Y∗Y∗T + λ4I)W
∗ +W∗(X(s)X(s)T ) = 2Y∗X(s)T . (10)

When a perturbation △Y∗ is added to Y∗, the optimal projection matrix found
by Algorithm 1 is Ŵ∗:

HŴ∗ + Ŵ∗(X(s)X(s)T ) = 2(Y∗ +△Y∗)X(s)T , (11)

where H = (Y∗+△Y∗)(Y∗+△Y∗)T +λ4I. Let △W∗ = Ŵ∗−W∗. Subtracting
Eq. (10) from Eq. (11), we obtain H△W∗ + △W∗(X(s)X(s)T ) = K, where
K = 2△Y∗X(s)T − (△Y∗△Y∗T +Y∗△Y∗T +△Y∗Y∗T )W∗. According to the
proof of Prop. 1, we similarly obtain ‖△W∗‖F ≤ ‖K‖F /λ4. We further have:

‖△W∗‖F ≤ [2
√

Ns‖△Y∗‖F + C2‖△Y∗‖F (‖△Y∗‖F + 2‖Y∗‖F )]/λ4

≤ ‖△Y∗‖F [2
√

Ns + C2(‖△Y∗‖F + 2C1)]/λ4 , (12)

which means that ‖△W∗‖F → 0, if ‖△Y∗‖F → 0. �

Note that Prop. 1 is used in the proof of Prop. 2 as a preliminary proposition.
Importantly, from Prop. 2, the optimal projection matrix W∗ used for final
recognition is insensitive to the perturbation of Y∗. This thus provides guarantee
that Algorithm 1 is robust under our new ZSL setting.

3.5 FSZSL with External Data

Although the test images from unseen classes are not involved in the training
process (see Algorithm 1), the proposed algorithm still exploits the unannotated
seen class images for SAP. Sometimes, even collecting unannotated seen class
images becomes a burden. To address this issue, we thus choose to perform S-
AP with the unannotated external data from image search engine. By searching
relevant images with high-level semantic abstraction (i.e., query) of seen classes,
we obtain many free web images to augment the few annotated seen class im-
ages at hand. These unannotated web images can be readily exploited for SAP,
instead of the unannotated seen class images used in Algorithm 1. When the few
annotated seen class images are fused with the unannotated external data, the
proposed algorithm can be implemented without any modifications.
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Note that the unannotated web images are obtained at a low cost (search key
words on a image search engine), and thus unavoidably contain some images that
do not belong to the seen classes. For example, given the benchmark seen/unseen
class split (i.e., 150/50) of the CUB-200-2011 Birds (CUB) dataset [50], we
collect the external data by Google with the query ‘North American Bird’ (i.e.,
high-level semantic abstraction of seen classes). With this high-level query, it is
very likely that a returned image comes from either seen or unseen classes, and
beyond (see Fig. 2). In this paper, we choose to classify the obtained web images
using the CNN model proposed in [51], and then discard the images that are
classified to unseen classes. Given that [51] has reported a very high accuracy
in fine-grained classification, the effect of possible unseen class images can be
suppressed dramatically during training our SAP model. Therefore, the achieved
improvements (if any) are mainly contributed to our SAP model itself.

4 Experiments

4.1 FSZSL on Benchmark Datasets

Datasets and Settings. 1) Datasets. Four widely-used benchmark dataset-
s are selected: (a) Animals with Attributes (AwA) [14] has 30,475 images, 85
attributes, and the seen/unseen class split of 40/10; (b) CUB-200-2011 Bird-
s (CUB) [50] has 11,788 images, 312 attributes, and the seen/unseen split of
150/50; (c) aPascal&Yahoo (aPY) [52] has 15,339 images, 64 attributes, and
the class split of 20/12; (d) SUN Attribute (SUN) [53] has 14,340 images, 102
attributes, and the split of 707/10.
2) Semantic and Feature Spaces. First, we establish the semantic space with
attributes for the four benchmark datasets, all of which provide the attribute an-
notations for seen/unseen classes. Second, we extract the ResNet101 [4] features
to form the visual feature space as in [54–56].
3) Evaluation Metrics. For the standard FSZSL setting, we compute the
multi-way top-1 accuracy as in previous works. For the generalized FSZSL set-
ting (following [45–47]), we compute the harmonic mean of the following two
accuracies: accu – the top-1 accuracy of classifying the test samples from unseen
classes to all seen/unseen classes, and accs – the top-1 accuracy of classifying
the test samples from seen classes to all seen/unseen classes.
4) Parameter Settings. Our algorithm has five hyperparameters: kg, m, λ1,
λ2, λ3. Given only a few annotated seen class images, it is impossible to select
the parameters by cross-validation. Fortunately, our algorithm is shown to be
insensitive to these parameters (see the suppl. material). We thus uniformly set
kg = 300, m = 50, λ1 = 0.01, λ2 = 1e − 4, and λ3 = 1e − 6. Note that λ1, λ2

and λ3 are small but such small values are needed. For λ1 and λ3, they need
to be small because the associated terms have much larger values than others.
For λ2, it controls the strength of noise reduction and it needs to be small since
the entries of the associated matrix are mostly small (otherwise most entries
are forced to be zeros). However, having such small values does not mean that
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Table 1. Comparative results (%) of standard FSZSL. Average top-1 accuracy is re-
ported (with standard deviation in bracket).

Dataset K RPL [27] ESZSL [24] SSE [20] SAE [12] ZSKL [57] RN [55] PQZSL [23] AREN [58] Ours

5 29.4(1.4) 24.1(1.4) 15.6(2.8) 29.7(1.5) 32.2(1.6) 27.5(7.9) 26.5(1.1) 29.9(0.9) 40.9(1.5)
10 34.3(1.0) 27.7(0.8) 16.3(1.4) 35.8(1.9) 37.8(0.8) 28.0(3.2) 31.0(1.5) 30.9(0.9) 45.8(0.8)

CUB 15 38.2(0.9) 30.3(0.6) 18.2(0.9) 39.1(0.8) 40.5(0.5) 31.3(6.5) 36.9(0.5) 31.5(0.7) 47.5(0.8)
20 40.0(0.5) 32.9(0.4) 19.2(1.2) 41.0(0.2) 41.5(0.7) 32.6(4.0) 38.7(1.0) 31.9(0.6) 48.4(0.3)
25 41.4(1.0) 34.9(0.6) 21.0(0.6) 43.0(0.4) 42.3(0.3) 35.4(1.8) 40.3(0.3) 32.0(0.3) 49.3(0.7)

5 50.3(2.0) 26.4(4.0) 39.9(3.2) 58.1(5.3) 54.5(2.7) 28.7(3.2) 40.9(2.9) 60.0(1.1) 71.0(3.1)
10 53.6(2.2) 26.8(5.7) 41.4(5.8) 62.6(4.1) 61.0(2.2) 29.7(1.8) 43.3(7.2) 60.8(0.4) 74.5(1.8)

AwA 15 53.8(2.3) 34.4(1.8) 42.2(4.4) 63.2(2.0) 62.6(2.4) 31.1(4.0) 51.2(1.8) 61.1(0.8) 75.7(1.7)
20 55.2(1.7) 40.8(1.7) 42.6(4.5) 65.4(1.7) 65.6(1.5) 32.4(5.2) 54.2(1.9) 61.3(0.6) 76.0(1.4)
25 55.7(1.4) 41.5(2.0) 42.9(3.5) 66.6(1.5) 66.7(1.9) 35.2(3.3) 56.5(2.9) 64.2(5.3) 77.5(0.9)

5 21.4(5.7) 19.2(4.4) 13.1(3.0) 25.5(5.2) 33.6(3.4) 8.0(4.3) 24.8(1.7) 34.1(2.5) 42.5(8.3)
10 22.3(3.6) 19.8(4.0) 14.0(3.4) 31.6(6.8) 35.0(6.1) 27.4(4.6) 26.6(5.4) 36.6(2.5) 44.1(4.8)

aPY 15 23.0(2.6) 20.8(5.3) 14.1(4.0) 35.5(6.2) 37.1(4.7) 32.2(2.8) 29.1(2.9) 37.3(3.6) 44.8(5.0)
20 24.9(2.8) 20.6(3.4) 15.3(2.3) 39.2(5.4) 38.7(6.5) 32.7(2.8) 30.7(2.2) 37.5(3.3) 45.7(4.7)
25 25.5(2.8) 21.8(2.1) 17.6(2.1) 40.6(5.0) 40.4(4.6) 35.1(2.5) 32.0(2.2) 37.7(2.6) 47.4(4.7)

1 57.2(3.2) 58.0(4.4) 58.1(3.1) 53.4(2.1) 58.9(5.5) 54.2(3.8) 55.0(3.3) 57.3(1.1) 81.7(1.9)
2 62.4(3.3) 62.5(4.7) 60.2(3.3) 64.4(1.5) 67.8(1.6) 58.7(4.8) 57.8(3.0) 59.4(1.7) 83.0(2.2)

SUN 3 64.0(4.1) 65.8(5.2) 60.8(3.2) 70.1(3.1) 70.3(2.4) 60.4(4.0) 66.1(2.6) 61.0(1.0) 83.3(1.4)
4 66.5(3.2) 68.9(4.5) 62.1(3.4) 74.5(2.6) 71.4(2.6) 62.1(5.5) 71.5(2.1) 61.0(1.0) 83.9(1.4)
5 69.1(1.9) 70.2(2.1) 62.6(2.2) 76.8(2.0) 73.4(2.2) 64.6(4.4) 75.9(3.3) 61.5(0.3) 84.3(1.3)

the corresponding terms can be dropped. Concretely, when the second term
of Eq. (2) is removed (i.e., λ1 = 0), the performance drops (see SAP-I+BPL
vs. BPL in Fig. 3(a)). When the third term of Eq. (2) is removed (i.e., λ2 = 0),
the performance drops significantly (see SAP-I+SAP-II+BPL vs. SAP-I+BPL
in Fig. 3(a)). As for λ3, it surely cannot be zero since BPL is needed for ZSL.

5) Compared Methods. We select eight representative/state-of-the-art ZSL
models as the baselines: RPL [27], ESZSL [24], SSE [20], SAE [12], ZSKL [57],
RN [55], PQZSL [23], and AREN [58]. Note that for the comparison in Table 3,
some baselines are selected because they can utilize the propagated attributes
(with continuous, rather than binary values) as inputs for ZSL.

Results of Standard FSZSL. The comparative results under the standard
FSZSL setting are shown in Table 1. Note that all seen class images from each
dataset are provided for training, but only K images per seen class are annotat-
ed (the others are unannotated). Since there are only 20 images in each class of
SUN, we take K ∈ {1, 2, 3, 4, 5}. For fair comparison, all eight ZSL alternatives
apply the nearest neighbor classifier over a few annotated seen class images to
classify each unannotated image to a seen class (thus its pseudo label and the
corresponding attribute vector can be obtained)4. We have the following obser-
vations: (1) Our model achieves the best results on all four datasets, and the
improvements over the second-best range from 6% to 23%. This clearly vali-
dates the effectiveness of our model in overcoming the attribute sparsity prob-
lem. (2) The performance margin between our model and eight ZSL alternatives

4 Due to the insufficient initial supervision, stronger label propagation models often
induce too much noise. In contrast, with only one-step propagation, such nearest
neighbor based label propagation (NN-LP) induces much less noise. Experiments
in the suppl. material also show that NN-LP is comparable to MixMatch [59] (one
of the strongest, but without denoising) under our FSZSL setting. Therefore, it is
reasonable to use NN-LP for all compared ZSL models.
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Table 2. Comparative results (%) of generalized FSZSL. Harmonic mean is reported
(with standard deviation in bracket).

Dataset K RPL [27] ESZSL [24] SSE [20] SAE [12] ZSKL [57] RN [55] PQZSL [23] AREN [58] Ours

5 16.8(1.5) 9.4(0.6) 6.9(1.4) 18.5(1.1) 18.6(0.9) 12.4(2.5) 19.9(1.3) 23.1(2.4) 27.7(0.5)
10 21.3(0.8) 9.9(0.5) 8.7(1.4) 24.9(0.9) 22.2(0.5) 14.3(1.4) 22.5(0.9) 25.9(1.2) 33.9(0.4)

CUB 15 23.7(0.3) 10.6(0.9) 9.0(0.6) 28.4(0.6) 24.1(0.3) 15.3(2.6) 24.8(0.7) 26.7(0.6) 36.1(0.9)
20 25.3(0.2) 11.8(0.4) 9.9(0.3) 30.2(0.5) 25.3(0.3) 17.3(1.4) 26.6(0.5) 27.1(0.8) 37.9(0.7)
25 26.1(0.3) 12.7(1.4) 10.5(1.2) 31.8(0.6) 26.0(0.3) 19.9(4.6) 28.1(0.3) 28.1(0.6) 39.0(0.3)

5 40.6(1.6) 27.7(4.1) 19.4(2.4) 33.5(3.9) 45.6(1.7) 36.8(2.4) 37.0(3.1) 37.6(2.0) 55.1(2.8)
10 41.3(1.7) 29.2(4.0) 21.7(2.2) 44.0(2.4) 46.9(1.7) 37.8(4.8) 38.1(2.2) 41.1(2.6) 59.0(1.7)

AwA 15 41.4(0.9) 33.2(2.6) 24.2(2.6) 47.8(2.1) 47.4(1.8) 40.3(1.8) 47.3(1.8) 42.4(2.7) 61.2(1.3)
20 41.5(1.6) 37.1(1.5) 28.6(0.6) 50.4(1.4) 48.1(1.5) 41.7(0.6) 50.3(1.1) 42.5(4.3) 62.7(1.3)
25 41.6(1.4) 39.7(2.4) 32.5(0.6) 51.8(0.6) 48.5(1.5) 42.7(3.5) 51.1(1.6) 42.7(1.6) 63.0(2.0)

Table 3. Comparative accuracies (%) of FSZSL with external data on the CUB+Web
dataset. Note that RPL, ESZSL, SAE, and ZSKL also exploit the propagated attributes
obtained by our SAP method for fair comparison.

K RPL0 [27] RPL [27] ESZSL0 [24] ESZSL [24] SAE0 [12] SAE [12] ZSKL0 [57] ZSKL [57] Ours

1 21.5 26.9 10.4 12.8 22.0 27.8 23.0 26.5 29.1

2 23.5 29.4 20.6 23.5 24.7 30.6 26.2 30.3 32.9

3 26.2 31.4 22.1 27.6 25.1 33.3 28.5 32.7 36.4

4 28.9 35.0 23.5 30.8 27.9 35.7 30.5 34.5 39.1

5 29.4 37.3 24.1 32.2 29.7 37.6 32.2 35.8 41.2

generally becomes bigger as fewer annotated seen class images are provided for
training. Our explanation is that: other than eight ZSL alternatives, our model
exploits more accurately propagated attribute annotations (obtained by SAP)
for BPL. (3) Our model significantly outperforms the state-of-the-art deep ZSL
models RN [55] and AREN [58], suggesting that deep models tend to suffer from
the annotation sparsity and thus may not be suitable for our new setting.
Results of Generalized FSZSL. We take the generalized FSZSL setting by
following [45]. K annotated images per seen class are given for model training
as in the standard setting. The comparative results are presented in Table 2.
Our model is still shown to achieve the best results under this more challenging
setting. Importantly, the obtained even bigger margins suggest that both SAP
and BPL can promote the generalization ability of our model.

4.2 FSZSL with External Data

Dataset and Settings. We construct a new dataset called CUB+Web5 as
follows: 1) The training set has 750 annotated images (5 per class) from the 150
seen classes of standard CUB [50], along with 1,205 unannotated web images
obtained by Google with the query ‘North American Bird’; 2) The test set has
2,946 unannotated images from the 50 unseen classes of CUB. Particularly, we
first download top-2,000 web images from Google and discard the images with
bird objects from multiple classes (see Fig. 2). Furthermore, we classify the ob-
tained web images using the CNN model proposed in [51], and discard the images
that are classified to unseen classes, resulting in 1,205 unannotated web images
left. Since [51] has reported a very high accuracy in fine-grained classification,

5 https://github.com/anonymous04321/cub-web
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Fig. 2. Examples of the top images returned by Google with the query ‘North American
Bird’. We discard the images containing multiple bird classes (marked with red boxes).

the effect of possible unseen class images can be suppressed dramatically during
training our SAP model. Additionally, for CUB+Web, the semantic and feature
spaces are formed exactly the same as in Section 4.1.

Comparative Results. We compare with eight closely-related ZSL models:
1) RPL0 – the reverse projection learning model [27] trained with only a few
annotated seen class images; 2) RPL – the RPL model trained with not only a
few annotated seen class images but also the web images with the propagated
attributes obtained by our model; 3) ESZSL0 – the ESZSL model [24] trained
like RPL0; 4) ESZSL – ESZSL trained like RPL; 5) SAE0 – the SAE model
[12] trained like RPL0; 6) SAE – SAE trained like RPL; 7) ZSKL0 – the ZSKL
model [57] trained like RPL0; 8) ZSKL – ZSKL trained like RPL.

Note that four baselines (i.e., SSE, RN, PQZSL, and AREN) require class
labels of training samples as inputs. Applying the nearest neighbor classifier
like Table 1 makes no sense here, because the external images are not even
guaranteed to belong to seen classes (there may be outliers although the unseen
class images have been mostly removed). These baselines thus are inapplicable,
but others can still benefit from external data (with propagated attributes).

The comparative results in Table 3 (with K annotated images per seen class)
show that: (1) The five models (i.e., RPL, ESZSL, SAE, ZSKL and ours) trained
using extra web images with propagated attributes lead to significant improve-
ments over those without using extra web images (i.e., RPL0, ESZSL0, SAE0
and ZSKL0), validating the effectiveness of our SAP method. (2) Due to iterative
optimization between BPL and SAP, our model still outperforms RPL, ESZSL,
SAE, and ZSKL (although they also utilize the web images with propagated
attributes obtained by our SAP method).

Further Evaluation. 1) Ablation Study. To evaluate the contribution of
each component (SAP-I, SAP-II, or BPL) of our full model, we conduct exper-
iments by adding more components to the BPL model. The ablative results in
Fig. 3(a) show that: (1) The SAP-I step by solving Eq. (5) yields better results
(see SAP-I+BPL vs. BPL). (2) The SAP-II step by solving Eq. (7) obtains fur-
ther improvements (see SAP-I+SAP-II+BPL vs. SAP-I+BPL), which become
more significant with fewer annotated seen class images (i.e., smaller K).
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(b) Alternative attribute propagation

Fig. 3. (a) Ablation study results for our full model on the CUB+Web dataset. (b)
Comparative results obtained by different attribute propagation models (the same BPL
is used for ZSL) on the CUB+Web dataset.

2) Alternative Attribute Propagation. We compare four alternative at-
tribute propagation models: 1) ‘Double L1’: our model formulated in Eq. (2);
2) ‘Single L1’: ‖BỸT ‖1 used in our model is replaced by ‖BỸT ‖2F ; 3) ‘No
L1’: ‖Y −Y(s)‖1 is removed from the second model ‘Single L1’; 4) ‘MixMatch’
[59]: our SAP is replaced by the state-of-the-art semi-supervised learning (SSL)
method to perform attribute propagation. The comparative results are presented
in Fig. 3(b). As expected, more L1-norm regularization terms used for attribute
propagation lead to better results, due to the stronger noise reduction ability. In-
terestingly, under our FSZSL setting where only few labelled seen class samples
can be used as initial supervision, MixMatch (one of the strongest, but without
denoising) performs even worse than ‘Double L1’ and ‘Single L1’. This shows
the importance of noise reduction during performing attribute propagation for
FSZSL (which is also our main motivation of developing SAP).

5 Conclusion

In this paper, we have investigated the challenging problem of ZSL with less
human annotation. For the first time, we define the new FSZSL setting where
only a few annotated seen class images are given for training. To overcome the
annotation sparsity, we propose a novel inductive ZSL model by formulating SAP
and BPL within a unified framework, with rigorous theoretic analysis provided.
Moreover, we generalize the proposed model to FSZSL with external data as
well as social image annotation. Extensive experiments show that the proposed
model achieves state-of-the-art results.
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