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Abstract. Generalised zero-shot learning (GZSL) is defined by a train-
ing process containing a set of visual samples from seen classes and a
set of semantic samples from seen and unseen classes, while the testing
process consists of the classification of visual samples from the seen and
the unseen classes. Current approaches are based on inference processes
that rely on the result of a single modality classifier (visual, seman-
tic, or latent joint space) that balances the classification between the
seen and unseen classes using gating mechanisms. There are a couple of
problems with such approaches: 1) multi-modal classifiers are known to
generally be more accurate than single modality classifiers, and 2) gating
mechanisms rely on a complex one-class training of an external domain
classifier that modulates the seen and unseen classifiers. In this paper,
we mitigate these issues by proposing a novel GZSL method – augmen-
tation network that tackles multi-modal and multi-domain inference for
generalised zero-shot learning (AN-GZSL). The multi-modal inference
combines visual and semantic classification and automatically balances
the seen and unseen classification using temperature calibration, without
requiring any gating mechanisms or external domain classifiers. Exper-
iments show that our method produces the new state-of-the-art GZSL
results for fine-grained benchmark data sets CUB and FLO and for the
large-scale data set ImageNet. We also obtain competitive results for
coarse-grained data sets SUN and AWA. We show an ablation study
that justifies each stage of the proposed AN-GZSL.

Keywords: generalised zero-shot learning; multi-modal inference; multi-
domain inference

1 Introduction

As computer vision systems start to be deployed in unstructured environments,
they must have the ability to recognise not only the visual classes used during
the training process (i.e., the seen classes) but also classes that are not avail-
able during training (i.e., unseen classes). The importance of such ability lies in
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the impracticality of collecting visual samples from all possible classes that will
be shown to the system. In this context, approaches categorised as Generalised
Zero-Shot Learning (GZSL) [1–3] play an important role due to their ability to
classify visual samples from seen and unseen classes. In general, the training of
GZSL methods involves the use of visual samples from seen classes and semantic
samples (e.g., textual definition) from seen and unseen classes. The rationale
behind the use of semantic samples is that they are readily available from var-
ious sources, such as Wikipedia, English dictionary [4], or manually annotated
attributes [5]. Such training setup can potentially mitigate the issue of collect-
ing visual samples from all possible unseen classes, and the success of GZSL
lies in the effective transferring of knowledge between the semantic and visual
modalities.

In recent years, we note three different approaches for solving GZSL. One
type focuses on training a mapping function from the visual to the semantic
space [6], and then inference relies on classification in the semantic space. An-
other type is based on training a conditional generative model for visual samples.
The generated visual samples of unseen classes complement visual samples from
the seen classes for a visual classifier [7, 2, 8–14]. Another type relies on an ex-
ternal domain classifier (seen vs unseen) trained with the visual samples from
the seen classes via a one-class learning problem. The domain classification is
combined with the classification models in each domain [15–19].

Fig. 1. Our proposed model Augmentation Network for multi-modal and multi-domain
Generalised Zero-Shot Learning (AN-GZSL). AN-GZSL is composed of the augmen-
tation network to generates visual samples, the visual and the semantic networks, a
classification calibration (represented by τψ and τφ in (2)) that enables multi-domain
classification, and the multi-modal classification that combines the visual and semantic
modules.

The GZSL methods above have a couple of issues: 1) even though the train-
ing process involves some sort of interaction between the visual and semantic
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modalities, the inference usually does not rely on a truly multi-modal classifi-
cation (i.e., where both modalities are jointly used in the process) [15, 7, 2, 13] ,
which can be considered a weakness given the strong evidence that multi-modal
inference can improve classification accuracy [20, 15, 19]; and 2) the one-class
training of external domain classifiers that modulate the seen and unseen clas-
sification [15–19] is not a trivial process given the similarity between the seen
and unseen class domains. In fact, it can be argued that samples from these do-
mains are drawn from the same distribution, making it challenging to distinguish
between them.

In this paper, we introduce the Augmentation Network for multi-modal and
multi-domain Generalised Zero-Shot Learning (AN-GZSL) depicted in Fig. 1.
The approach introduces a novel loss function that combines the training of three
networks: augmentation network, visual network, and semantic network. The
proposed AN-GZSL represents the first method to perform inference
with multiple modalities without the use of external domain classifiers
for modulating the inference between seen and unseen classes. The
augmentation network is a generative model for visual samples conditioned on
the semantic data, the generated visual samples are then used by the visual
network (a visual classifier) and by the semantic network (a semantic classifier).
The visual and semantic classifiers are then temperature calibrated to enable a
modulation-free classification, which alleviates the burden of an external domain
classifier. Then, the two calibrated classifiers are combined in a multi-modal
classification. We show that the proposed approach produces state-of-the-art
GZSL results on the fine-grained benchmark data sets CUB [21, 3] and FLO [22]
and on the large-scale data set ImageNet [23, 24]. We also achieve competitive
results for the coarse-grained data sets SUN [3] and AWA [5]. We finally show
an ablation study that tests the importance of each component of the proposed
model.

2 Literature Review

In this section we describe relevant literature that contextualises and motivates
the proposed approach.

Generalised Zero-Shot Learning (GZSL). In recent years, we have ob-
served a growing interest in GZSL. A catalyst for such interest was the paper
by Xian et al. [3] that formalises the GZSL problem. Their work introduces a
solid experimental setup and a robust evaluation metric based on the harmonic
mean between the classification accuracy results of the seen and the unseen
visual classes. Recently proposed GZSL methods can be roughly divided into
three categories: semantic attribute prediction, visual data augmenta-
tion, and domain balancing. Semantic attribute prediction methods [25,
26, 5] tackle GZSL by training a regressor that maps visual samples from seen
classes to their respective semantic samples. Hence, given a test visual sample
(from a seen or unseen class), the regressor maps it into the semantic space,
which is then used in a nearest neighbour semantic classification process. The
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main assumption of this approach is that the mapping from visual to semantic
spaces learned from the seen class domain can be transferred to the unseen class
domain. Unfortunately, such assumption is unwarranted, and a typical issue of
this approach is that test visual samples from seen classes are classified cor-
rectly and samples from unseen classes are often incorrectly classified into one
of the seen classes – this is referred to as a bias toward the seen classes [3]. Re-
cent research exploring matching functions between visual and semantic samples
can address the issue mentioned above, but they still show biased classification
toward the seen classes [25].

Visual data augmentation relies on a generative model trained to produce
visual samples from the corresponding semantic samples [7, 2, 8–10]. Such model
allows the generation of visual samples for the unseen classes, which are then
used in the modelling of a visual classifier that is trained with real visual samples
from seen classes and generated visual samples from unseen classes. Methods
based on this approach are effective because they solve, to a certain extent,
the bias toward the seen classes [11–14]. Recently, the training process of this
approach has been extended, forcing generated visual samples to regress to the
corresponding semantic samples, in a multi-modal cycle consistent training [2,
14]. This extension represents the first attempt at a multi-modal training, which
allowed further improvements in GZSL results. However, none of the methods
above relies on a multi-modal inference process. It is interesting to note that the
inference process of semantic attribute prediction focuses exclusively on the
semantic space, while visual data augmentation works solely on the visual
space. A multi-modal inference process that effectively merges the two spaces
has yet to be proposed.

Domain balancing methods solve the bias toward the seen classes issue
with a gating mechanism that modulates the classification of seen and unseen
classes [15–19]. In particular, these methods consist of a (generally visual) clas-
sifier trained for the seen classes, a (usually semantic) classifier trained for the
unseen classes, and a domain classifier for the modulation process [15, 19, 17].

Even though domain balancing approaches hold outstanding results [15, 19],
they have the following challenges: 1) the training of multiple domain-specific
classifiers, and 2) the non-trivial training of a gating mechanism that needs to
classify between seen and unseen classes using a one-class classification process,
which is a hard task considering that these classes arguably come from the same
data distribution. In this paper, we also rely on visual data augmentation and
domain balancing, but differently from the approaches above, our multi-modal
classification relies on visual and semantic classifiers trained on all seen and
unseen classes (i.e., they are not domain-specific). Furthermore, the balancing
between seen and unseen domains is achieved with a classification calibration
approach that does not need any gating mechanism.
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3 Method

In the next sub-sections, we first formulate the GZSL problem. Then, we in-
troduce our proposed augmentation network for multi-modal and multi-domain
generalised zero-shot learning (AN-GZSL), with the explanation of the inference,
architecture and training processes.

3.1 Problem Formulation

To formulate the GZSL problem [1, 3], we first define the visual data set D =
{(xi, yi)}

N
i=1, where x ∈ X ⊆ R

K denotes a visual sample (acquired from the
second to last layer of a pre-trained deep residual nets [27]), and y ∈ Y =
{1, ..., C} denotes the visual class, which can also be described with a one-hot
vector h ∈ {0, 1}C , where the y-th position in h is assigned to 1, and all the
others 0. The visual data set has N samples, denoting the number of images.
We also need to define the semantic data set R = {ay}y∈Y , which associates
visual classes with semantic samples, where ay ∈ A ⊆ R

L represents a semantic
feature (e.g., word2vec features [3]). The semantic data set has as many elements
as the number of classes. The set Y is split into the seen subset YS = {1, ..., S},
and the unseen subset YU = {(S + 1), ..., (S + U)}. Therefore, C = S + U ,
with Y = YS ∪ YU , YS ∩ YU = ∅. Furthermore, D is also divided into mutually
exclusive training and testing visual subsets DTr and DTe, respectively, where
DTr contains a subset of the visual samples belonging to the seen classes, and
DTe has the visual samples from the seen classes held out from training and all
samples from the unseen classes. The training data set comprises the semantic
data set R and the training visual subset DTr, while the testing data set consists
of the testing visual subset DTe and the same semantic data set R.

3.2 AN-GZSL Calibrated Inference

The inference procedure consists of estimating the class label of a test visual
sample x that optimises

f(y|x,R) = σ(φ(y|x), τφ) + σ(ψ(y|x,R), τψ), (1)

where f(.) denotes the classification function, φ(.) and ψ(.) represent the visual
network (defined in Sec. 3.5) and the semantic network (Sec. 3.4) that return
a logit, and σ(.) represents the softmax activation function with temperature
calibration [28], defined by

σ(ly, τ) =
e(ly/τ)

∑C
c=1 e

(lc/τ)
, (2)

where the logit ly ∈ R represents the yth output of a network (i.e., the visual
or the semantic), and the temperature scaling τ represents a calibrating factor.
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The multi-modal inference in (1) consists of a sum of the results from the visual
and semantic classifiers, where the final classification is achieved by

y∗ = argmax
y∈Y

f(y|x,R). (3)

The GZSL inference in (3) balances the seen and unseen classes with a confi-
dence calibrated by the temperature scaling, which is a much simpler strategy
than to previously used gating mechanisms [15, 18, 19] that have to deal with
complicated one-class domain classification problems. Furthermore, (3) creates
a simple multi-modal inference without any hyper-parameter tuning to combine
the classifiers.

3.3 Augmentation Network

The augmentation network relies on a generative model [13] trained to produce
visual samples conditioned on their semantic samples. This model allows to gen-
erate visual samples for the unseen classes that together with real visual samples
from the seen classes are used to train a classifier [7, 2, 8–14]. This approach has
been recently extended with a cycle consistency loss that regularises the training
process [2]. The augmentation network is optimised with a Wasserstein genera-
tive adversarial network (WGAN) [29] loss and cycle-consistent loss [2], defined
by

ℓAN =ℓWGAN + ℓCY C , (4)

where ℓWGAN represents the WGAN loss [29] that optimises a conditional gen-
erator network g(.) and discriminator network d(.). The loss ℓWGAN is defined
by

ℓWGAN = E(x,a)∼P
x,a
s

[d(x,a; θd)]− E(x̃,a)∼P
x,a
g

[d(x̃,a; θd)]

− κE(x̂,a)∼P
x,a
α

[(||∇x̂d(x̂,a; θd)||2 − 1)
2
],

(5)

where E[.] represents the expected value operator. The joint distribution of vi-
sual and semantic samples from the seen classes is given by P

x,a
s , and P

x,a
g rep-

resents the joint distribution of semantic and visual samples produced by the
augmented network using the generator network, as follows: x̃ ∼ g(a, z; θg),
where z ∼ N (0, I). The coefficient κ in (5) weights the contribution of the third
term of the loss, and the joint distribution of the semantic and visual samples
produced by x̂ ∼ αx + (1 − α)x̃ with α ∼ U(0, 1) (i.e., uniform distribution) is
given by P

x,a
α . In this network, the generator receives a semantic sample a and a

noise vector z ∼ N (0, I) to generate visual samples, ∇x̂ represents the gradient
penalty [29]. Then, the discriminator network aims to differentiate the gener-
ated from the real visual samples [2]. The loss ℓCY C provides a cycle-consistent
training regularisation which guarantees that generated visual samples can re-
construct the corresponding semantic samples. The loss ℓCY C is defined by

ℓCY C = Ea∼Pa
s ,z∼N (0,I)

[

‖a− r(g(a, z; θg); θr)‖
2
2

]

+ Ea∼Pa
u,z∼N (0,I)

[

‖a− r(g(a, z; θg); θr)‖
2
2

]

,
(6)
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where the function r(.) represents a regressor network parameterised by θr that
estimates the original semantic samples from the visual samples generated by
g(.), the latent variable z represents Gaussian noise, and the distributions of
the semantic samples of seen and unseen domains are represented by P

a
s and

P
a
u. In contrast to previous approaches [7, 2, 8–14], our proposed augmentation

network feeds the visual and semantic networks with generated visual samples
from both domains – this allows the visual and semantic classifiers to jointly
learn an effective discriminating space for all seen and unseen classes.

3.4 Semantic Network

The semantic network consists of a bilinear neural network, novel in this appli-
cation, which extends the ranking loss proposed by Akata et al. [25]. We define
the semantic network as ψ(y|x,R) = xT θψay, represented by a bi-linear model
parameterised by θψ ∈ R

K×L, with ay ∈ R and x being either a real sample
from a seen class or a generated sample from an unseen class. This approach is
the first to use data augmentation to train a semantic classifier, when compared
to the one in [25]. For training we optimise the semantic loss loss, defined by

ℓSN =

M
∑

i=1

C
∑

c=1

λ(xi, θψ,ayi ,hi)
[

hi,c + xTi θψayi − xTi θψac

]

+
, (7)

where [.]+ represents the hinge loss, ayi denotes the semantic vector associated
with the class yi of the i

th training sample, hi,c represents the c
th position of the

one-hot vector for the ith training sample hi, andM is the size of the training set
(including the generated visual features), and ac is a semantic vector associated
with a class. In (7), the term inside of the hinge loss consists of a compatibility
bi-linear loss,

β(xi, θψ,ac,ayi , hi,c) = hi,c + xTi θψayi − xTi θψac, (8)

and λ(.) represents a ranking regularization, defined by

λ(xi, θψ,ayi ,hi) =
(

∑C
c=1 1

(

β(xi, θψ,ac,ayi , hi,c)
))−1

, (9)

where 1(.) represents a Heaviside step function, with the divisor computing the
ranking of the transformation according to the semantic data set.

The optimisation of (7) forces ψ(y|x,R) to be higher when x and ay match
correctly. This result is then calibrated by (2) to enable an effective multi-domain
classification.

3.5 Visual Network

The visual network is a fully connected neural network represented by φ(y|x), pa-
rameterised by θφ, where x can be a real sample from a seen class or a generated
sample from an unseen class. The network is trained with the usual cross-entropy
loss defined by ℓV N . Similarly to the semantic classifier, this visual classifier is
also calibrated with (2) for the multi-domain classification.



8 R. Felix et al.

3.6 AN-GZSL Training

The loss function for our proposed AN-GZSL model is defined by

ℓAN−GZSL = ℓAN + ℓV N + ℓSN , (10)

which is minimised to estimate the parameters θg, θd, θr, θφ, θψ. For training, we
use the visual samples produced by the augmentation network as input to the
proposed visual and semantic networks. This approach not only augments the
number of samples from the seen classes, but it also generates samples from
the unseen classes. In practice, we perform an alternating training where we
first optimise θg, θd and θr, then we optimise θψ and θφ. Empirically, we have
observed that the augmentation network tends to generate random samples at
early stages of training [30]. Hence, the alternating strategy provides stronger
gradients signal for the optimisation of θψ and θφ, at late stages. After all the
optimisation of (10) are completed, the temperatures (τφ and τψ in Eq. 1) are
quickly estimated by grid-search using the logits of a validation set held out from
training [28].

4 Experiments

In this section, we describe the benchmark data sets, evaluation criteria and the
setup adopted for the experiments. Then, we present a set of ablation studies
and the results of the proposed method, which are compared with the state of
the art (SOTA).

4.1 Data Sets

We assess the proposed method on publicly available benchmark GZSL data sets.
More specifically, we perform experiments on CUB-200-2011 [21, 3], FLO [22],
SUN [3], and AWA [5, 3] with the GZSL experimental setup described by Xian
et al. [3]. We also perform GZSL experiments on ImageNet [23, 24]. The data
sets CUB and FLO are generally regarded as fine-grained, while AWA and SUN
are coarse-grained, and ImageNet is large-scale4.

For the semantic features, we use the 1024-dimensional vector produced by
CNN-RNN [31] for CUB-200-2011 [3] and FLO [22]. These semantic features are
extracted from a set of textual description of 10 sentences per image. To define a
unique semantic sample per-class, the semantic features of all images belonging
to each class are averaged [3]. For the SUN and AWA data sets, we use manu-
ally annotated semantic features (attributes) containing 102 and 85 dimensions,
respectively [3]. For the visual samples, we follow the protocol by Xian et al. [3],
where the features are represented by the activation of the 2048-dimensional top
pooling layer of ResNet-101 [27], obtained for the image. To guarantee repro-
ducible and consistent results, we follow the data set split proposed by Xian et
al. [3], which prevents the model to violate the zero-shot conditions.

4 See supplementary material for more information on data sets.
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For the ImageNet experiment [23], there can be several testing splits for
GZSL (e.g., 2-hop, 3-hop), which rely on the training set of 1K classes and
testing set on 22K classes. However, recent studies reported that such splits
show overlap between seen and unseen classes for GZSL [2]. To demonstrate
the robustness of the proposed approach to large data sets, we experiment with
ImageNet [23] for a split containing 100 classes for testing [24] and the stan-
dard 1K classes for training [24], without any overlap between seen and un-
seen classes. For ImageNet, we used 500-dimensional semantic samples [24] and
2048-dimensional ResNet-features, where images are resized to 256× 256 pixels,
cropped to 224 × 224 pixels, normalised with means (0.485, 0.456, 0.406) and
standard deviations (0.229, 0.224, 0.225) per RGB channel [3].

4.2 Evaluation Protocol

The evaluation protocol is based on computing the average per-class top-1 accu-
racy measured independently for each class before dividing their cumulative sum
by the number of classes [3]. For GZSL, after computing the average per-class
top-1 accuracy on seen classes YS and unseen classes YU , we compute the har-
monic mean of the seen and the unseen classification accuracy [3]. We also show
results using the receiver operating characteristics (ROC) curve that measures
the seen and the unseen classification accuracy over many operating points of
the classifier [1].

4.3 Implementation Details

In this section, we describe the implementation details for the augmentation
network, visual network and semantic networks that compose the model AN-
GZSL, in terms of the model architecture and hyper-parameters (e.g. number of
epochs, batch size, number of layers, learning rate, weight decay, and learning
rate decay). Firstly, the augmentation network (composed of a generator (θg),
a discriminator (θd), and a regressor (θr)) is defined in terms of a generative
adversarial network (GAN) with cycle-consistency loss [2]. The generator con-
sists of a single hidden layer with 4096 nodes and LeakyReLU activation [32]
with an output layer of 2048 nodes (same dimension as ResNet [27] feature
layer). The discriminator consists of a single hidden layer with 4096 nodes with
a LeakyReLU activation function, the output layer has no activation. Secondly,
the visual network (θφ) consists of a model parameterised with one fully con-
nected layer from the 2048-dimensional visual space into label space Y. Thirdly,
the semantic network (θψ) is defined as a bi-linear model [25] that matches the
2048-dimensional visual space with the semantic space. We introduce a dropout
layer (rate equal to 0.2) for the visual and the semantic networks for regular-
isation during training. On all the benchmark data sets [13] we generate 300
visual samples per class for the training of the visual and the semantic networks.
Temperature calibration (2) is done after the training finding the parameters
τψ and τφ with grid search minimization of the losses for the visual and semantic
networks, using the validation set [3](this procedure does not require re-training
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of the whole model). Finally, we perform a Bayesian inference using Monte-
Carlo dropout [33] because recent results suggest that such Bayesian inference
can improve classification calibration and accuracy [34]. All hyper-parameters
of the proposed AN-GZSL model are estimated with standard model selection
methods on the validation sets proposed by Xian et. al. [3].

4.4 Ablation Study

In Table 1, we report the ablation study for the proposed method AN-GZSL.
First, we report the results for inference computed by the visual network (AN −
GZSLφ). Second, AN − GZSLψ reports the results for our semantic network.
Then, AN−GZSLτ=1 shows the combination of the visual and semantic network
without the temperature calibration. AN−GZSLT=1 shows the results without
MC dropout inference, and the last row shows the results with MC dropout
using the calibrated (i.e., multi-domain) multi-modal networks.

Table 1. GZSL results using per-class average top-1 accuracy on the test sets of unseen
classes YU , seen classes YS , and H-mean result H – all results shown in percentage.
The highlighted values represent the best ones for each column.

CUB FLO SUN AWA
Classifier YU YS H YU YS H YU YS H YU YS H

AN −GZSL
φ 46.2 61.5 52.8 60.0 70.8 65.0 48.7 33.1 39.4 55.4 64.8 59.7

AN −GZSL
ψ 77.7 41.8 54.4 84.9 36.6 51.2 47.2 21.6 29.6 46.4 67.3 54.9

AN −GZSL
τ=1 46.2 61.5 52.8 60.1 70.9 65.1 53.3 32.8 40.6 55.6 65.0 60.0

AN −GZSL
T=1 62.3 54.7 58.2 66.5 84.4 74.4 48.8 33.1 39.5 55.2 69.4 61.5

AN −GZSL 60.5 56.6 58.5 80.7 69.3 74.5 41.7 37.1 41.7 58.2 66.1 61.9

4.5 Results

In Table 2, we compare the GZSL results on CUB, FLO, SUN and AWA, pro-
duced by the proposed model AN-GZSL and several other methods previously
proposed in the field. These methods are split into three groups: semantic ap-
proach, generative approach and domain balancing. We report the following
metrics in Table 2: the accuracy for the unseen domain (YU ), the seen domain
(YS) and the harmonic-mean (H) between the two. Table 3 shows the top-1
accuracy on ImageNet for the proposed AN-GZSL and the results reported by
previous methods on the same experimental setup.

In Fig. 2, we show the ROC results of the proposed method AN-GZSL, and
the cycle-WGAN [2], which has code available online and represents the SOTA
for the measure, to the best of our knowledge. Furthermore, Figure 2 shows seen
and unseen classification results for previously published GZSL methods (please
refer to Tab. 2 for the original references). We represent previous methods [13]
by single (diamond-shaped) points denoting the results for seen and unseen
classification accuracies – this is because previous methods only report a single
operating point for the classification of seen and unseen classes).



AN-GZSL 11

Table 2. GZSL results using per-class average top-1 accuracy on the test sets of
unseen classes (YU ), seen classes (YS), and H-mean result (H); – all results shown
in percentage. The highlighted values represent the best for each column.

CUB FLO SUN AWA
Classifier YU YS H YU YS H YU YS H YU YS H

Semantic approach
DAP [5] 4.2 25.1 7.2 − − − 1.7 67.9 3.3 0.0 88.7 0.0
IAP [5] 1.0 37.8 1.8 − − − 0.2 72.8 0.4 2.1 78.2 4.1
DEVISE [35] 23.8 53.0 32.8 9.9 44.2 16.2 16.9 27.4 20.9 13.4 68.7 22.4
SJE [36] 23.5 59.2 33.6 13.9 47.6 21.5 14.7 30.5 19.8 11.3 74.6 19.6
LATEM [37] 15.2 57.3 24.0 6.6 47.6 11.5 14.7 28.8 19.5 7.3 71.7 13.3
ESZSL [38] 12.6 63.8 21.0 11.4 56.8 19.0 11.0 27.9 15.8 6.6 75.6 12.1
ALE [25] 23.7 62.8 34.4 13.3 61.6 21.9 21.8 33.1 26.3 16.8 76.1 27.5
PQZSL [39] 43.2 51.4 46.9 − − − 35.1 35.3 35.2 31.7 70.9 43.8
AREN [40] 38.9 78.7 52.1 − − − 19.0 38.8 25.5 − − −
MLSE [41] 22.3 71.6 34.0 − − − 20.7 36.4 26.4 − − −

Generative approach
SAE [42] 8.8 18.0 11.8 − − − 7.8 54.0 13.6 1.8 77.1 3.5
f-CLSWGAN [43] 43.8 60.6 50.8 58.8 70.0 63.9 47.9 32.4 38.7 56.0 62.8 59.2
cycle-WGAN [2] 46.0 60.3 52.2 59.1 71.1 64.5 48.3 33.1 39.2 56.4 63.5 59.7
CADA-VAE [12] 51.6 53.5 52.4 − − − 47.2 35.7 40.6 57.3 72.8 64.1
GDAN [8] 39.3 66.7 49.5 − − − 38.1 89.9 53.4 − − −
GMN [11] 56.1 54.3 55.2 − − − 53.2 33.0 40.7 61.1 71.3 65.8
Zhu et.al.[44] 33.4 87.5 48.4 − − − − − − − − −
LisGAN [9] 46.5 57.9 51.6 57.7 83.8 68.3 42.9 37.8 40.2 52.6 76.3 62.3

External Domain Classifier
CMT [18] 7.2 49.8 12.6 − − − 8.1 21.8 11.8 0.9 87.6 1.8
DAZSL [15] 41.0 60.5 48.9 59.6 81.4 68.8 35.3 40.2 37.6 64.8 51.7 57.5

Ours
AN −GZSL 60.5 56.6 58.5 80.7 69.3 74.5 41.7 37.1 41.7 58.2 66.1 61.9

Table 3. GZSL ImageNet results – all results shown in percentage. Please see caption
of Table 2 for details on each measure. The highlighted values represent the best ones.

Classifier YU YS H

f-CLSWGAN [13] 0.7 − −
cycle-WGAN [2] 1.5 66.5 2.8

AN −GZSL 2.5 47.4 4.8

Using the graph in Fig. 2, we compute the AUSUC on each data set for
AN-GZSL – results are shown in the supplementary material. Moreover, we
added the results reported by the previous methods EZSL [38], fCLSWGAN [13],
cycle-WGAN [2] and DAZSL [15]. We were able to compute the AUSUC results
for AN-GZSL and cycle-WGAN, but the other AUSUC results were extracted
from [15].

5 Discussions

Ablation study. Table 1 shows the importance of each component of AN-
GZSL, where the H-mean tends to be higher for the multi-modal approach,
compared to each individual modality. The multi-domain multi-modal method
that relies on Bayesian inference (last row) shows the highest H-mean on all data
sets. The similarity between the results of the un-calibrated (AN −GZSLτ=1)
and the visual network AN − GZSLφ suggests that un-calibrated multi-modal
classifiers rely entirely on the visual classifiers. This is explained by the fact that
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(a) CUB (b) FLO (c) SUN (d) AWA

Fig. 2. ROC curves for the proposed method AN-GZSL, and several baseline and state-
of-the-art methods (please see text and Table 2 for details about the methods). Note
that these graphs are used to compute the AUSUC in Table ??. (best seen on the
digital format with colors)

the classification results produced by the un-calibrated semantic classifier show
classification probabilities close to a uniform distribution, in contrast to the un-
calibrated visual classifier that shows more non-uniform distributions. However,
when calibration is applied, the classification probabilities produced by both
classifiers are pushed further away from the uniform distribution, which means
that the sum of calibrated classifiers can produce results that are different from
the original visual and semantic classifiers. In fact, Table 1 shows that the AN-
GZSL classification accuracy is always higher than single-modality classification
results. This multi-modal calibrated classifier also produces the most balanced
classification results between the seen and unseen domains for all data sets.
These results suggest that our proposed method provides a way to correct some
of the mistakes made using an individual modality. For example, this can happen
when the classification probabilities of the correct class are relatively high for
both modalities, but not the highest in any modality, and when summed, the
correct class receives the highest confidence.

Another important point to notice from Table 1 is that our proposed AN-
GZSL seems to be more advantageous in fine-grained (i.e., CUB and FLO) than
in coarse-grained (i.e., SUN and AWA) data sets, where the key to explain such
discrepancy lies in the effectiveness of temperature calibration. In coarse-grained
data sets, the results from the calibrated visual classifier are almost binary, with
the highest classification probability close to one and all other probability values
close to zero. The calibrated semantic classifier shows a more uniform distribu-
tion, which when combined with the almost binary results of the visual classifier
is less effective (than in fine-grained problems) to change a possibly incorrect
visual classifier result for the multi-domain multi-modal model. On the other
hand, in fine-grained data sets, the results from the calibrated visual classifier
are farther from binary, which when combined with the results from the se-
mantic classifier can be more effective to change an incorrect visual classifier
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result for the multi-domain multi-modal model. We speculate that this different
performance between visual classifiers can be explained by the cluttered or the
scattered nature of visual class distributions in fine-grained or coarse-grained
data sets – that is, more cluttered distributions provide more space for improve-
ment with an effective temperature calibration.

A final point from Table 1 is the apparent more accurate classification re-
sults for the unseen classes than for the seen classes for most of the data sets. We
studied this issue by running an unpaired t-test to check the significance of these
results, and for CUB, FLO and AWA the p-values are larger than 0.05, implying
that we cannot reject the null hypothesis (i.e., the hypothesis that there is no sig-
nificant difference between seen and unseen classification accuracies). For SUN,
the p-value is smaller than 0.05, which we believe is due to the large size of the
data set. It is important to note that previous methods have also reported similar
classification results for SUN [2, 13]. Nevertheless, it is worth mentioning that the
seen and unseen classification results represent the performance of a particular
adjustable operating point of the methods, as shown in Fig. 2. Hence, measures
that summarise the seen vs unseen classification, like H-mean or AUSUC, can
characterise better the method performance, but the dependence of H-mean on
an operating point makes it less reliable than AUSUC, so we advocate the use
of AUSUC as a more general measure for GZSL approaches.

Comparison with SOTA. In Table 2, we notice a clear trend of the pro-
posed AN-GZSL to perform substantially better than the SOTA in terms of
H-mean and classification accuracy on unseen classes for fine-grained (CUB and
FLO) data sets, and competitively for coarse-grained data sets (SUN and AWA).
This result shows that the more challenging classification problem offered by the
fine-grained data sets represents an ideal situation for exploring multi-modal and
multi-domain classification. We discuss in the ablation study above, the reasons
behind the superior performance in fine-grained data sets of our proposed AN-
GZSL method.

Another interesting point to observe from Table 2 is that none of the com-
peting methods stand out as a clear SOTA approach for all data sets since
one method can be better in one data set, but worse in others. In fact, out of
the four data sets studied, AN-GZSL is better in two, GDAN is better in one
and GMN is better in another. It is also worth comparing the performance of
previous semantic approaches in Table 3, and our proposed semantic network,
represented by AN −GZSLψ in Table 1. This comparison is important because
our proposed semantic network introduces one significant novelty, which is the
use of visual data augmentation for training the semantic classifier. Our pro-
posed AN − GZSLψ produces substantially better results in terms of H-mean
and classification accuracy on unseen classes for CUB, FLO and AWA.

In terms of the large-scale data set ImageNet, we show in Table 3 that the
proposed method establishes a new SOTA in terms of the H-mean result. More
specifically, the proposed method achieves around 80% of relative H-mean im-
provement. We speculate that these results can be explained by the similar
challenges present in fine-grained and large-scale data sets. Also, the proposed
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approach scales as well as f-CLSWGAN [13] and cycle-WGAN [2] with respect
to the number of classes and samples.

Seen and unseen classification graphs. Figure 2 shows the trade-off
between the classification of seen and unseen classes for GZSL methods. In par-
ticular, it is interesting to notice a fact that is prevalent in GZSL methods, which
is the classification imbalance that usually favours the seen classes – the figure
illustrates that the majority of the previous methods (represented by diamonds)
lie at the bottom-right part of the graphs, indicating the preference for seen
classes. In terms of seen and unseen curves, the more balanced methods (see
Table 2) usually lies close to the elbow of the curve, located at the top-right
part of the graph.

AUSUC. Figure 2 shows that the proposed approach, AN-GZSL, outper-
forms previous methods on data sets CUB, SUN and FLO. For AWA, we achieve
competitive performance, where the proposed method is the second best. It is
worth emphasising that the AUSUC measure provides a more complete assess-
ment of GZSL methods, where it is no longer necessary to commit to a particular
operating point of the classification of seen and unseen classes.

6 Conclusions and Future Work

In this paper, we introduce a new approach to perform GZSL using a multi-
modal multi-domain augmentation network. The proposed approach is the first
to explore visual data augmentation for training visual and semantic classi-
fiers, enabling a truly and novel multi-modal training and inference for GZSL.
In addition, we show that the calibration of those visual and semantic classi-
fiers provide an effective multi-domain classification, where the classification of
seen and unseen classes are accurate and well balanced. The experimental results
show that the proposed approach has established new state-of-the-art GZSL har-
monic mean results for three benchmark data sets (CUB, FLO, and Imagenet).
In particular, we report results that are substantially better than the previous
methods on CUB and FLO, which are fine-grained data sets, and competitive
on SUN and AWA, which are coarse-grained data sets. Moreover, the results of
the proposed approach outperform previous methods on Imagenet data set by
a large margin. Also, our proposed AN-GZSL achieves the best performance in
terms of AUSUC for three benchmark data sets.

In the future, we intend to study more thoroughly the reason behind the
performance difference observed between fine-grained and coarse-grained data
sets. We will also investigate why it is challenging to obtain high classification
accuracy on the unseen classes of the large scale ImageNet data set.
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