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Abstract. We propose a learning-based multi-view stereo (MVS) method
in scattering media such as fog or smoke with a novel cost volume, called
the dehazing cost volume. An image captured in scattering media de-
grades due to light scattering and attenuation caused by suspended par-
ticles. This degradation depends on scene depth; thus it is difficult for
MVS to evaluate photometric consistency because the depth is unknown
before three-dimensional reconstruction. Our dehazing cost volume can
solve this chicken-and-egg problem of depth and scattering estimation by
computing the scattering effect using swept planes in the cost volume.
Experimental results on synthesized hazy images indicate the effective-
ness of our dehazing cost volume against the ordinary cost volume re-
garding scattering media. We also demonstrated the applicability of our
dehazing cost volume to real foggy scenes.

1 Introduction

Three-dimensional (3D) reconstruction from 2D images is important in computer
vision. However, images captured in scattering media, such as fog or smoke,
degrade due to light scattering and attenuation caused by suspended particles.
For example, Fig. 1(a) shows a synthesized hazy image, the contrast of which is
reduced due to light scattering. Traditional 3D reconstruction techniques that
exploit observed pixel intensity cannot work in such environments.

We propose a learning-based multi-view stereo (MVS) method in scattering
media. MVS [1] is a method for reconstructing the 3D geometry of a scene from
multiple images. Recently, learning-based MVS methods have been proposed
and provided highly accurate results [2-4]. The proposed method is based on
MVDepthNet [5], which is one such MVS method.

MVDepthNet estimates scene depth by taking a cost volume as input for
the network. The cost volume is based on a plane sweep volume [6], i.e., it is
constructed by sweeping a fronto-parallel plane to a camera in the scene and
evaluates the photometric consistency between multiple cameras under the as-
sumptions that the scene lies on each plane. As described above, however, an
image captured in scattering media degrades; thus, using the ordinary cost vol-
ume leads to undesirable results, as shown in Fig. 1(c).
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Fig. 1. (a) synthesized hazy image due to scattering medium. (b) ground truth depth.
(c) output depth of fine-tuned MVDepthNet [5] with ordinary cost volume. (d) output
depth of network with our dehazing cost volume.
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To address this problem, we propose a novel cost volume for scattering media,
called the dehazing cost volume. In scattering media, light bouncing off a scene is
attenuated exponentially relative to the depth. On the other hand, scattered light
observed with a camera increases with depth. This means that the degradation
due to a scattering medium depends on the scene depth. Our dehazing cost
volume can restore images with such depth-dependent degradation and compute
the effective cost of photometric consistency simultaneously. It enables robust
3D reconstruction in scattering media, as shown in Fig. 1(d).

In summary, the primary contribution of this paper is to design a novel cost
volume for scattering media, which avoids the chicken-and-egg problem of depth
and scattering estimation by computing degradation with the depth of each swept
plane in the cost volume. Accordingly, our dehazing cost volume will accelerate
the real-time applicability of 3D reconstruction in scattering media.

2 Related work

2.1 Multi-view stereo

As mentioned above, MVS [1] is a method of reconstructing 3D geometry using
multiple cameras. In general, it exploits the dense pixel correspondence between
multiple images for 3D reconstruction. The correspondence is referred to as pho-
tometric consistency and computed on the basis of the similarity measure of pixel
intensity. One of the difficulties in the computation of photometric consistency
is occlusion, i.e., the surface of a target object is occluded from certain cameras.
This leads to incorrect correspondence and inaccurate 3D reconstruction. To ad-
dress this problem, methods have been proposed for simultaneous view selection
to compute effective photometric consistency and 3D reconstruction with MVS,
achieving highly accurate 3D reconstruction [7, 8].

Along with the above issue, there are many cases in which it is difficult to
obtain accurate 3D geometry with traditional MVS methods. A textureless sur-
face and an object with a view-dependent reflectance property, such as specular
reflection, are typical cases. Learning-based MVS methods have recently been
used to learn semantic information on large-scale training data and enable robust
3D reconstruction in such scenes.
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Learning-based MVS methods often construct a cost volume to constrain 3D
geometry between multiple cameras. For example, Wang and Shen [5] proposed
MVDepthNet, which constructs a cost volume from multi-view images setting
one of the images as a reference image. It can take an arbitrary number of input
images to construct the cost volume. The convolutional neural network takes the
reference image and cost volume as input then estimates the depth map of the
reference camera. DeepMVS proposed by Huang et al. [3] first constructs a plane
sweep volume, then the patch matching network is applied to the reference image
and each slice of the volume to extract features to measure the correspondence,
which is followed by feature aggregation networks and depth refinement with a
fully connected conditional random field. Yao et al. [2] and Im et al. [4] respec-
tively proposed MVSNet and DPSNet, in which input images are first passed
through the networks to extract features , then the features are warped instead
of constructing the cost volume in the image space. Our proposed method is
based on MVDepthNet [5], which is the simplest and light-weight method, and
we extended the ordinary cost volume for scattering media.

2.2 Dehazing

In scattering media, a captured image degrades due to light scattering and at-
tenuation. To enhance the quality of an image captured in scattering media,
dehazing and defogging methods have been proposed [9-12]. These studies in-
troduced the priors of latent clear images to solve the ill-posed nature of the
problem. For example, He et al. [9] proposed a dark channel prior with which
a clear image having a dark pixel in a local image patch is assumed. Berman
et al. [12] proposed a haze-line prior with which the same intensity pixels of
the latent clear image forms a line in RGB space. Many learning-based methods
using neural networks have also been proposed recently [13-18]. Dehazing can
improve computer vision tasks in scattering media such as object detection [19].

2.3 3D reconstruction in scattering media

Our goal is to reconstruct 3D geometry directly from degraded images by scatter-
ing media instead of recovering the latent clear images. There has been research
focusing on the same problem as in our study. For example, Narasimhan et al.
[20] proposed a 3D reconstruction method using structured light in scattering
media. Photometric stereo methods have also been proposed for scattering me-
dia [21-23]. However, these methods require active light sources, which limits
real-world applicability. Instead of using an ordinary camera, Heide et al. [24]
and Satat et al. [25] respectively used a time-of-flight camera and single photon
avalanche diode for scattering media. Wang et al. [26] combined a line sensor
and line laser to generate a programmable light curtain that can suppress the
backscatter effect. However, the use of these methods is hindered due to the
requirement of expensive sensors or special hardware settings.

The proposed method is based on stereo 3D reconstruction requiring neither
active light sources nor special hardware settings. Caraffa et al. [27] proposed
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a binocular stereo method in scattering media. With this method, image en-
hancement and stereo reconstruction are simultaneously modeled on the basis
of a Markov random field. Song et al. [28] proposed a learning-based binocular
stereo method in scattering media, where dehazing and stereo reconstruction
are trained as multi-task learning. The features from the networks of each task
are simply concatenated at the intermediate layer. The most related method
to ours is the MVS method proposed by Li et al. [29]. They modeled dehazing
and MVS simultaneously, and the output depth was regularized using an or-
dering constraint, which was based on a transmission map that was the output
of dehazing with Laplacian smoothing. With all these methods, homogeneous
scattering media is assumed; thus, we followed the same assumption. It is left
open to apply these methods to inhomogeneous media.

These previous studies [27,29] designed photometric consistency measures
considering the scattering effect. However, this requires scene depth because
degradation due to scattering media depends on this depth. Thus, they relied
on iterative implementation of an MVS method and dehazing, which leads to
large computation cost. In contrast, our dehazing cost volume can solve this
chicken-and-egg problem by computing the scattering effect in the cost volume.
The scene depth is then estimated effectively by taking the cost volume as input
for a convolutional neural network, making fast inference possible.

3 Multi-view stereo in scattering media

In this section, we describe MVS in scattering media with our dehazing cost
volume. First, we introduce an image formation model in scattering media then
give an overview of the proposed method, followed by a discussion on an ordinary
cost volume and our dehazing cost volume.

3.1 Image formation model

We use an atmospheric scattering model [30] for image observation in scatter-
ing media. This model is used for many dehazing methods and describes the
degradation of an observed image in scattering media in daylight. Let an RGB
value at the pixel (u,v) of a degraded image captured in scattering media and
its latent clear image be I(u,v) € R® and J(u,v) € R3, respectively. We assume
that the pixel value of each color channel is within 0 and 1. The observation
process of this model is given as

I(u,v) = J(u,v)e™ 200 4 A1 — ¢ #200)), (1)

where z(u,v) € R is the depth at pixel (u, v), 8 € R is a scattering coefficient that
represents the density of a medium, and A € R is global airlight. The first term
is a component that describes reflected light in a scene. This reflected component
becomes attenuated exponentially with respect to the scene depth. The second
term is a scattering component, which consists of scattered light that arrives at a
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Fig. 2. Input of network is reference image captured in scattering medium and our
dehazing cost volume. Our dehazing cost volume is constructed from reference image
and source images. Network architecture of our method is same as that of MVDepthNet
[5], which has encoder-decoder with skip connections. Output of network is disparity
maps (inverse depth maps) at different resolutions.

camera without reflecting on objects. In contrast to the reflected component, this
component increases with depth. Therefore, image degradation due to scattering
media depends on the scene depth.

In the context of image restoration, we aim to estimate unknown parameters
J, z, scattering coefficient S, and airlight A from an observed image I, and the
estimation of all these parameters at the same time is an ill-posed problem.
Previous studies developed methods for estimating A from a single image [9, 31].
In addition, Li et al. [29] estimated 3 under a multi-view setting at a structure-
from-motion (SfM) step. This is the same problem setting as in our study. In
the rest of this paper, therefore, we assume that A and § have already been
estimated unless otherwise noted. At the end of Section 4, we discuss the the
effect of the estimation error of these parameters.

3.2 Overview

MVS methods are roughly categorized by output representation, e.g., point-
cloud, volume, or mesh-based reconstruction. The proposed method is formu-
lated as a depth map estimation, i.e., given multiple cameras, we estimate a
depth map for one of the cameras. In this paper, a target camera to estimate
a depth map is referred to as a reference camera r and the other cameras are
referred to as source cameras s € {1,---,S}, and images captured with these
cameras are denoted as a reference image I, and source images I,. We assume
that the camera parameters are calibrated beforehand.

An overview of the proposed method is shown in Fig. 2. Our dehazing cost
volume is constructed from a hazy reference image and source images captured
in a scattering medium. The network takes the reference image and our dehazing
cost volume as input then outputs a disparity map (inverse depth map) of the
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reference image. The network architecture is the same as that of MVDepthNet
[5], while the ordinary cost volume used in MVDepthNet is replaced with our
dehazing cost volume for scattering media.

3.3 Dehazing cost volume

In this section, we explain our dehazing cost volume, which is taken as input to
the network. The dehazing cost volume enables effective computation of photo-
metric consistency in scattering media.

Before explaining our dehazing cost volume, we show the computation of the
ordinary cost volume in Fig. 3(a). We first sample the 3D space in the reference
camera coordinate by sweeping a fronto-parallel plane. We then back-project
source images onto each sampled plane. Finally, we take the residual between
the reference image and each warped source image, which corresponds to the
cost of photometric consistency on the hypothesis that the scene exists on the
plane. Let the image size be W x H and number of sampled depths be N. We
denote the cost volume by V : {1,--- , W} x {1,--- ,H} x{1,--- ,N} —» R, and
each element of the cost volume is given as follows:

V(u,v,i) = %Z (17 (w; 0) = Ls(mr s (u, 03 20)) |11, (2)

where z; is the depth value of the i-th plane. The operator m,_,, : R? — R2
projects the camera pixel (u,v) of the reference camera r onto the source image
I, with the given depth, which is defined as follows:

u
|:7Tr%s(71vtuvvz):| ~ ZKer—mK;l v +Kstr—>57 (3)
1

where K, and K are the intrinsic parameters of r and the source camera s, and
R,_, and t,_, are a rotation matrix and translation vector from r to s. The
cost volume evaluates the photometric consistency of each pixel with respect
to the sampled depth; thus, the element of the cost volume with correct depth
ideally becomes zero.

An observed image captured in scattering media degrades in the manner
described in Eq. (1), and the ordinary cost volume defined in Eq. (2) leads to
undesirable results. In contrast, our dehazing cost volume dehazes the image and
computes photometric consistency cost simultaneously. As described in Section
3.1, degradation due to scattering media depends on scene depth; thus, our
dehazing cost volume restores degraded images using the depth of a swept plane.

Figure 3(b) shows the computation of our dehazing cost volume. A reference
image is dehazed directly using the depth of a swept plane. A source image is de-
hazed using the swept plane from a source camera view, then the dehazed source
image is warped to the reference camera coordinate. Similar to the ordinary cost
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Fig. 3. (a) Ordinary cost volume is constructed by sweeping fronto-parallel plane in
reference-camera coordinate. Cost of photometric consistency is simply computed as
residual between reference image and warped source image on each swept plane z = z;.
(b) In our dehazing cost volume, reference image is dehazed using sampled depth, z;,
which is constant over all pixels. Source image is dehazed using depth of swept plane
from source-camera view, then dehazed source image is back-projected onto plane. Cost
is computed by taking residual between both dehazed images.

volume, we define our dehazing cost volume as D : {1,--- , W} x {1,--- ,H} x
{1,---, N} = R, and each element of our dehazing cost volume is given as
1
D(u,v,i) = 5 zs: | (uy 05 2:) — s (s (u, 03 20)) |1, (4)

where J,(u, v; z;) and Js (75 (u, v; 2;)) are dehazed reference and source images,
and from Eq. (1), they are computed as follows:

I.(u,v) — A
Jr(u,v; 2;) = % + A, (5)
Is(’]rr—>s(u7v; Zz)) —A

e_BCs,i(wr—rs(ua'l);Zi))

Js(mros(u,v;25)) = + A. (6)
As shown in Fig. 3(b), the reference image is dehazed using the swept plane
with depth z;, whose depth map is denoted as z;. On the other hand, the source
image is dehazed using (, ;, which is a depth map of the swept plane from the
source camera view. The depth (s ;(m,—s(u,v; 2;)) is used for the cost computa-
tion of the pixel (u,v) of the reference camera because the pixel 7, (u, v; z;) on
the source camera corresponds to pixel (u,v) of the reference camera. Our de-
hazing cost volume exploits the dehazed images with much more contrast than
the degraded ones; thus, the computed cost is robust even in scattering me-
dia. According to this definition of our dehazing cost volume, the photometric
consistency between the latent clear images is preserved.

Our dehazing cost volume computes photometric consistency with dehazed
images in the cost volume. This is similar to the previous methods [27,29] that
compute photometric consistency considering scattering effect. However, this is
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Fig. 4. Visualization of our dehazing cost volume. (b) shows values of ordinary cost
volume and our dehazing cost volume at red point in (a), respectively.

a chicken-and-egg problem because the effect of scattering media depends on
scene depth, and they rely on iterative implementation of MVS and dehazing to
compute the scattering effect. Our method, on the other hand, can compute the
scattering effect using a depth hypothesis of a swept plane without an explicit
scene depth, which can eliminate the iterative optimization.

Our dehazing cost volume restores an image using all depth hypotheses; thus,
image dehazing with depth that greatly differs from the correct scene depth re-
sults in an unexpected image. The extreme case is when a dehazed image has
negative values at certain pixels. This includes the possibility that a computed
cost using Eq. (4) becomes very large. To avoid such cases, we revise the defini-
tion of our dehazing cost volume as follows:

([T (w, 03 23) — s (Trs (us 03 23)) 11
L1 if 0 < JS(u,v;2) <1and
D(u,v,1) = S Z 0 < Jmr_s(u,v;2)) <1lce{r,g,b} (7)
° ~ otherwise,

where J¢(u,v; 2;) and J¢(m,s(u,v; 2;)) are the pixel values of the channel ¢ €
{r,g,b} of the reconstructed clear images. A constant 7 is a parameter that is
set as a penalty cost when the dehazed result is not contained in the domain of
definition. This makes the training of the network stable because our dehazing
cost volume is upper bounded by . We can also reduce the search space of depth
by explicitly giving the penalty cost. In this study, we set v = 3, which is the
maximum value of the ordinary cost volume defined in Eq. (2) when the pixel
value of each color channel is within 0 and 1.

Figure 4 (b) visualizes the ordinary cost volume and our dehazing cost volume
at the red point in (a). Each point in (b) indicates a minimum, and the red point
in (b) indicates ground truth depth. The curve of the cost volume is smoother
than our dehazing cost volume due to the degradation of the image contrast,
which leads to a depth error. In addition, our dehazing cost volume can reduce
the search space with the dehazing constraint v on the left part in (b).
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3.4 Network architecture and loss function

As shown in Fig. 2, the network takes a reference image and our dehazing cost
volume as input. To compute our dehazing cost volume, we should predetermine
the target 3D space for scene reconstruction and number of depth hypotheses
for plane sweep. We uniformly sample the depth on the disparity space between
0.02 and 2 and set the number of samples to N = 256. The network architecture
is the same as that of MVDepthNet [5], which has an encoder-decoder archi-
tecture with skip connections. The network outputs disparity maps at different
resolutions. The training loss is defined as the sum of L1 loss between these
estimated disparity maps and the ground truth disparity map. For more details,
please refer to [5].

4 Experiments

In this study, we used MVDepthNet [5] as a baseline method. As mentioned
previously, the ordinary cost volume is replaced with our dehazing cost volume
in the proposed method, so we can directly evaluate the effect of our dehaz-
ing cost volume by comparing our method with this baseline method. We also
compared the proposed method to simple sequential methods of dehazing and
3D reconstruction using the baseline method. DPSNet [4], whose architecture is
more complicated such as a multi-scale feature extractor, 3D convolutions, and
a cost aggregation module, was also trained on hazy images for further compar-
ison. In addition to the experiments with synthetic data, we give an example of
applying the proposed method to actual foggy scenes. At the end of this section,
we discuss the effect of the estimation errors of scattering parameters.

4.1 Dataset

We used the DeMoN dataset [32] for training. This dataset consists of the SUN3D
[33], RGB-D SLAM [34], and MVS datasets [35], which have sequences of real
images. The DeMoN dataset also has the Scenes11 dataset [36, 32], which consists
of synthetic images. Each image sequence in the DeMoN dataset includes RGB
images, depth maps, and camera parameters. In the real-image datasets, most of
the depth maps have missing regions due to sensor sensibility. As we discuss later,
we synthesized hazy images from the DeMoN dataset for training the proposed
method, which requires a dense depth map without missing regions. Therefore,
we first trained the baseline method using clear images then compensated for
the missing regions of each depth map with the output depth of the baseline
method. To suppress boundary discontinuities and sensor noise around missing
regions, we applied a median filter after inpainting each depth map. For the MVS
dataset, which has larger noise than other datasets, we reduced the noise simply
by thresholding before inpainting. Note that the training loss was computed
using only pixels that originally had valid depth values. We generated 419,046
and 8,842 samples for training and test data, respectively. Each sample contained
one reference image and one source image. All images were resized to 256 x 192.
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We synthesized a hazy-image dataset for training the proposed method from
clear images. The procedure of generating a hazy image is based on Eq. (1). For
A, we randomly sampled A € [0.7,1.0] for each data sample. For /3, we randomly
sampled 8 € [0.4,0.8],[0.4,0.8],[0.05,0.15] for the SUN3D, RGB-D SLAM, and
Scenesll datasets, respectively. We found that for the MVS dataset, it was diffi-
cult to determine the same sampling range of § for all images because it contains
various scenes with different depth scales. Therefore, we determined the sampling
range of 3 for each sample of the MVS dataset as follows: first, we set the range
of a transmission map e=#* to e=#% € [0.2,0.4] for all samples then computed
the median of a depth map z,,.q for each sample. Finally, we determined the
range for each sample as 8 € [—10g(0.4)/zmed, —10g(0.2)/ zmed]-

Similar to [5], we adopted data augmentation to enable the network to re-
construct a wide depth range. The depth of each sample was scaled by a factor
between 0.5 and 1.5 together with the translation vector of the camera. Note
that when training the proposed method, 8 should also be scaled by the inverse
of the scale factor.

4.2 Training details

All networks were implemented in PyTorch. The training was done on a NVIDIA
V100 GPU with 32-GB memory. The size of a minibatch was 32 for all training.

We first trained the baseline method from scratch on the clear image dataset.
We used Adam with a learning rate of 1.0x10~%. After the initial 100K iterations,
the learning rate was reduced by 20% after every 20K iterations. The method
was trained for about 260K iterations in total.

We then fine-tuned the baseline method on hazy images and trained the pro-
posed method with our dehazing cost volume. The parameters of both methods
were initialized by that of the trained baseline method on clear images. The
initial learning rate was set to 1.0 x 10~* and reduced by 20% after every 20K
iterations. The fine-tuned baseline and proposed methods were trained for about
196K and 144K iterations, respectively.

We also trained the dehazing methods, AOD-Net [19] and FFA-Net [18], and
DPSNet [4] on our hazy image dataset for comparison. The dehazing networks
were followed by the baseline method trained on clear images for depth estima-
tion. DPSNet was trained with the same loss function and learning schedule as
in the original paper [4].

4.3 Results

Table 1 shows the quantitative evaluation of each method. We used four evalu-
ation metrics following [5]: L1-rel is the mean of the relative L1 error between
the ground truth depth and estimated depth, L1-inv is the mean of the L1 er-
ror between ground truth inverse depth and estimated inverse depth, sc-inv is
the scale-invariant error of depth proposed by Eigen et al. [37], and correctly
estimated depth percentage (C.P.) [38] is the percentage of pixels whose relative
L1 error is within 10%. The red and blue values are the best and second-best,
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Table 1. Quantitative results. We compared proposed method to baseline method [5]
fine-tuned on hazy images, simple sequential methods of dehazing [19,18] and depth
estimation with baseline method, and DPSNet [4] trained on hazy images. Red and
blue values are best and second-best, respectively.

Dataset Method L1-rel L1-inv sc-inv C.P. (%)
AOD-Net [19] + Baseline [5] 0.249 0.132 0.250 47.8
FFA-Net [18] + Baseline [5] 0.180 0.111 0.211  55.5

SUN3D Fine-tuned [5] 0.155 0.093 0.184 60.3
DPSNet [4] 0.145 0.082 0.183 64.7
Proposed 0.100 0.058 0.161 79.0

AOD-Net [19] + Baseline [5] 0.205 0.127 0.315  58.9
FFA-Net [18] + Baseline [5] 0.179 0.114 0.288  65.0

RGB-D SLAM Fine-tuned [5] 0.157 0.091 0.254 70.7
DPSNet [4] 0.152 0.090 0.234 71.6
Proposed 0.162 0.089 0.231  68.8

AOD-Net [19] + Baseline [5] 0.323 0.123 0.309 51.9
FFA-Net [18] + Baseline [5] 0.215 0.112 0.288  55.6

MVS Fine-tuned [5] 0.184 0.100 0.241 57.1
DPSNet [4] 0.191 0.088 0.239 67.9
Proposed 0.160 0.091 0.222  58.1

AOD-Net [19] + Baseline [5] 0.330 0.036 0.539 52.3
FFA-Net [18] + Baseline [5] 0.377 0.041 0.600 51.3

Scenesl1 Fine-tuned [5] 0.151 0.022 0.279 64.0
DPSNet [4] 0.105 0.018 0.381 81.8
Proposed 0.134 0.019 0.216  72.3

respectively. The proposed method was compared to the baseline method [5]
fine-tuned on hazy images, the sequential method of dehazing [19] and baseline
method [5], and DPSNet [4] trained on hazy images. In most evaluation metrics,
the proposed method outperformed the fine-tuned baseline method, demonstrat-
ing the effectiveness of our dehazing cost volume. For the RGB-D SLAM dataset,
the fine-tuned baseline method was comparable to the proposed method. This
is because many scenes in the RGB-D SLAM dataset are close to a camera. In
this case, the degradation of an observed image is small and exists uniformly
in the image, which has little effect on photometric consistency. The proposed
method also performed better than the sequential methods of dehazing [19, 18]
and baseline method [5]. Therefore, we can see that the simultaneous model-
ing of dehazing and 3D reconstruction based on our dehazing cost volume is
effective. DPSNet [4] first extracts feature maps from input images, and then
constructs a cost volume in the feature space. Thus, the feature extractor might
be able to deal with image degradation caused by light scattering. Nevertheless,
our dehazing cost volume allows considering image degradation with a simple
network architecture.

The output depth of each method is shown in Fig. 5. From top to bottom,
each row shows the results of the input images in the SUN3D, RGB-D SLAM,
MVS, and Scenes11 datasets, respectively. DPSNet failed to construct correspon-
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Fig. 5. Qualitative results. (a) clear image, (b) hazy input, (c) ground-truth depth, (d)
output of fine-tuned baseline [5], (e) output of DPSNet [4], and (f) output of proposed
method. From top to bottom, each row shows results of input images in SUN3D, RGB-
D SLAM, MVS, and Scenes11 datasets, respectively. Values below each estimated depth
represent error values (L1-rel/L1-inv/sc-inv/C.P.).

dence in some scenes, although it has the multi-scale feature extractor. Note that
the results from the Scenesll dataset indicate that the proposed method can re-
construct the 3D geometry of a distant scene where the image is heavily degraded
due to scattering media.

4.4 Experiments with actual data

We applied the proposed method to actual scenes including scattering media.
The captured images are shown in Figs. 6(a)(b). We generated fog artificially
with a fog generator. Differing from the synthetic data, A and 8 were unknown.
We applied a previous method [31] to both the reference and source images
to estimate A as pre-processing. We then applied COLMAP [39, 8] to estimate
extrinsic parameters and an initial depth map, which was very sparse due to
image degradation, as shown in Fig 6(c). This sparse depth was used for the
estimating 8 in a similar manner to [29]. The results of depth estimation are
shown in Figs. 6(d)—(f). The proposed method also estimated depth effectively
in these actual hazy scenes. DPSNet estimated edge-preserved depth, which was
achieved due to its cost aggregation module.

We also applied the proposed method to actual outdoor scenes including
scattering media. We used the image sequence bali [29] for the actual data. We
rescaled the camera parameters so that the scene depth is contained within the
target 3D space of our dehazing cost volume. In this experiment, the network
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(a) Reference (b) Source (c )COLMAP (d) Fine-  (e) DPSNet (f) Proposed
8] tuned [5] [4]

Fig. 6. Experimental results with actual foggy scenes. Top and bottom rows show
clear and hazy scenes, respectively. (a) Reference image, (b) source image, (c) output
of COLMAP 8], (d) output of fine-tuned baseline [5], (e) output of DPSNet [4], and

(f) output of proposed method.

a) Foggy input (b) Li et al. [29]  (¢) Fine-  (d) DPSNet [4] (e) Proposed
tuned [5]

Fig. 7. Experimental results on actual outdoor foggy scenes. (a) foggy input, (b) esti-
mated depth of [29], (c) output of fine-tuned baseline method [5], (d) output of DPSNet
[4], and (e) output of proposed method.

took five images as input, one as a reference image and the others as source
images. For A and [, we used the estimated values presented in a previous
paper [29].

The results are shown in Fig. 7. These scenes are very difficult for learning-
based methods due to a large domain gap. The fine-tuned baseline method and
DPSNet did not perform well in these scenes. In contrast, the proposed method
is more robust and the estimated depth is the closest to that of [29], though
the details of the near objects were lost. However, the method proposed by Li
et al. [29] requires iterative graph-cut optimization, so it takes a few minutes to
estimate depth for one image. Our method, on the other hand, requires only a
few seconds to estimate depth for one reference image.
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Fig. 8. Discusssion on errors of 8. 8 can be adjusted so that output depth corresponds
to sparse SfM depth.

4.5 Discusssion on errors of scattering parameters

In this study, scattering parameters A and 3 are assumed to be estimated before-
hand. However, this assumption is sometimes too strict especially for 5 because
the estimation method [29] that uses sparse point clouds obtained at a SIM step
and the corresponding pixel intensity is not necessarily numerically stable. How-
ever, our dehazing cost volume is parameterized by 3, that is, the output depth
can be regarded as a function of one variable 5. Thus, 8 can be easily adjusted
so that the output depth corresponds to the sparse SfIM depth. Figure 8(b) is the
StM depth of (a). (c) shows the L1 error between the sparse depth and output
depth with each 5. The green dashed line, which represents the ground truth 3,
corresponds to the global minimum. The final output depth (d) is obtained with
this value.

5 Conclusion

We proposed a learning-based MVS method with a novel cost volume, called
the dehazing cost volume, which enables MVS methods to be used in scatter-
ing media. Differing from the ordinary cost volume, our dehazing cost volume
can compute the cost of photometric consistency by taking into account image
degradation due to scattering media. This is the first paper to solve the chicken-
and-egg problem of depth and scattering estimation by computing the scattering
effect using each swept plane in the cost volume without explicit scene depth.
The experimental results on synthesized hazy images indicate the effectiveness of
our dehazing cost volume in scattering media. We also demonstrated its applica-
bility using the images captured in actual foggy scenes. For future work, we will
include the estimation of the scattering coefficient and airlight in our method.
We will also extend the proposed method to depth-dependent degradation, other
than light scattering, such as defocus blur [40, 41].

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 18H03263 and
19J10003.



Dehazing Cost Volume for Deep Multi-view Stereo in Scattering Media 15

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Furukawa, Y., Herndndez, C.: Multi-view stereo: A tutorial. Foundations and
Trends® in Computer Graphics and Vision 9 (2015) 1-148

. Yao, Y., Luo, Z., Li, S., Fang, T., Quan, L.: Mvsnet: Depth inference for unstruc-

tured multi-view stereo. The European Conference on Computer Vision (ECCV)
(2018) 767-783

Huang, P., Matzen, K., Kopf, J., Ahuja, N., Huang, J.: Deepmvs: Learning multi-
view stereopsis. The IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (2018) 2821-2830

Im, S., Jeon, H., Lin, S., Kweon, I.S.: Dpsnet: End-to-end deep plane sweep stereo.
International Conference on Learning Representations (ICLR) (2019)

Wang, K., Shen, S.: Mvdepthnet: real-time multiview depth estimation neural
network. International Conference on 3D Vision (3DV) (2018) 248-257

Collins, R.T.: A space-sweep approach to true multi-image matching. The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (1996) 358-363
Zheng, E., Dunn, E.; Jojic, V., Frahm, J.: Patchmatch based joint view selection
and depthmap estimation. The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2014) 1510-1517

Schonberger, J.L., Zheng, E., Pollefeys, M., Frahm, J.: Pixelwise view selection for
unstructured multi-view stereo. The European Conference on Computer Vision
(ECCV) (2016) 501-518

He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior.
IEEE Transaction on Pattern Analysis and Machine Intelligence 33 (2011) 2341—
2353

Nishino, K., Kratz, L., Lombardi, S.: Bayesian defogging. International Journal of
Computer Vision 98 (2012) 263-278

Fattal, R.: Dehazing using color-lines. ACM Transactions on Graphics (TOG) 34
(2014)

Berman, D., Treibitz, T., Avidan, S.: Non-local image dehazing. The IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR) (2016) 1674-1682
Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: Dehazenet: An end-to-end system
for single image haze removal. IEEE Transaction on Image Processing 25 (2016)
5187-5198

Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M.: Single image dehazing
via multi-scale convolutional neural networks. European Conference on Computer
Vision (ECCV) (2016) 154-169

Zhang, H., Patel, V.M.: Densely connected pyramid dehazing network. The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2018) 3194-
3203

Yang, D., Sun, J.: Proximal dehaze-net: A prior learning-based deep network for
single image dehazing. The European Conference on Computer Vision (ECCV)
(2018) 702-717

Liu, Y., Pan, J., Ren, J., Su, Z.: Learning deep priors for image dehazing. The
IEEE International Conference on Computer Vision (ICCV) (2019) 2492-2500
Qin, X., Wang, Z., Bai, Y., Xie, X., Jia, H.: Ffa-net: Feature fusion attention net-
work for single image dehazing. The Thirty-Fourth AAAI Conference on Artificial
Intelligence (AAAI-20) (2020) 11908-11915

Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: Aod-net: All-in-one dehazing network.
The IEEE International Conference on Computer Vision (ICCV) (2017) 4770-4778



16

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Y. Fujimura et al.

Narasimhan, S.G., Nayar, S.K., Sun, B., Koppal, S.J.: Structured light in scattering
media. Proceedings of the Tenth IEEE International Conference on Computer
Vision I (2005) 420-427

Tsiotsios, C., Angelopoulou, M.E., Kim, T., Davison, A.J.: Backscatter compen-
sated photometric stereo with 3 sources. The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2014) 2259-2266

Murez, Z., Treibitz, T., Ramamoorthi, R., Kriegman, D.J.: Photometric stereo
in a scattering medium. IEEE Transaction on Pattern Analysis and Machine
Intelligence 39 (2017) 1880-1891

Fujimura, Y., liyama, M., Hashimoto, A., Minoh, M.: Photometric stereo in partic-
ipating media considering shape-dependent forward scatter. The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2018) 7445-7453

Heide, F., Xiao, L., Kolb, A., Hullin, M.B., Heidrich, W.: Imaging in scattering
media using correlation image sensors and sparse convolutional coding. Optics
Express 22 (2014) 26338-26350

Satat, G., Tancik, M., Rasker, R.: Towards photography through realistic fog. The
IEEE International Conference on Computational Photography (ICCP) (2018) 1-
10

Wang, J., Bartels, J., Whittaker, W., Sankaranarayanan, A.C., Narasimhan, S.G.:
Programmable triangulation light curtains. The European Conference on Com-
puter Vision (ECCV) (2018) 19-34

Caraffa, L., Tarel, J.: Stereo reconstruction and contrast restoration in daytime
fog. Asian Conference on Computer Vision (ACCV) (2012) 13-25

Song, T., Kim, Y., Oh, C., Sohn, K.: Deep network for simultaneous stereo match-
ing and dehazing. British Machine Vision Conference (BMVC) (2018)

Li, Z., Tan, P., Tang, R.T., Zou, D., Zhou, S.Z., Cheong, L.: Simultaneous video
defogging and stereo reconstruction. The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2015) 4988-4997

Tan, R.T.: Visibility in bad weather from a single image. The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2008) 1-8

Berman, D., Treibitz, T., Avidan, S.: Air-light estimation using haze-lines. The
IEEE International Conference on Computational Photography (ICCP) (2017)
Ummenhofer, B., Zhou, H., Uhrig, J., Mayer, N., Ilg, E., Dosovitskiy, A., Brox,
T.: Demon: Depth and motion network for learning monocular stereo. The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2017) 5038-
5047

Xiao, J., Owens, A., Torralba, A.: Sun3d: A database of big spaces reconstructed
using sfm and object labels. The IEEE International Conference on Computer
Vision (ICCV) (2013) 1625-1632

Sturm, J., Engelhard, N.; Endres, F., Burgard, W., Cremers, D.: A benchmark for
the evaluation of rgb-d slam systems. The International Conference on Intelligent
Robot Systems (IROS) (2012)

Fuhrmann, S.; Langguth, F., Goesel, M.: Mve: a multi-view reconstruction en-
vironment. Eurographics Workshop on Graphics and Cultural Heritage (2014)
11-18

Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., Yu, F.: Shapenet:
An information-rich 3d model repository. arXiv:1512.03012 (2015)

Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image
using a multi-scale deep network. Twenty-eighth Conference on Neural Information
Processing Systems (NeurIPS) (2014)



38.

39.

40.

41.

Dehazing Cost Volume for Deep Multi-view Stereo in Scattering Media 17

Tateno, K., Tombari, F., Laina, I., Navab, N.: Cnn-slam: Real-time dense monocu-
lar slam with learned depth prediction. The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2017) 6243-6252

Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. The IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR) (2016) 4104-4113

Gur, S., Wolf, L.: Single image depth estimation trained via depth from defocus
cues. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2019) 7683-7692

Maximov, M., Galim, K., Leal-Taixe, L.: Focus on defocus: Bridging the synthetic
to real domain gap for depth estimation. The IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (2020) 1071-1080



