
Feedback Recurrent Autoencoder for

Video Compression
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Abstract. Recent advances in deep generative modeling have enabled
efficient modeling of high dimensional data distributions and opened up a
new horizon for solving data compression problems. Specifically, autoen-
coder based learned image or video compression solutions are emerg-
ing as strong competitors to traditional approaches. In this work, We
propose a new network architecture, based on common and well stud-
ied components, for learned video compression operating in low latency
mode. Our method yields competitive MS-SSIM/rate performance on the
high-resolution UVG dataset, among both learned video compression ap-
proaches and classical video compression methods (H.265 and H.264) in
the rate range of interest for streaming applications. Additionally, we
provide an analysis of existing approaches through the lens of their un-
derlying probabilistic graphical models. Finally, we point out issues with
temporal consistency and color shift observed in empirical evaluation,
and suggest directions forward to alleviate those.

1 Introduction

With over 60% of internet traffic consisting of video [1], lossy video compression
is a critically important problem, promising reductions in bandwidth, storage,
and generally increasing the scalability of the internet. Although the relation
between probabilistic modelling and compression has been known since Shannon,
video codecs in use today are only to a very small extent based on learning and
are not end-to-end optimized for rate-distortion performance on a large and
representative video dataset.
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The last few years have seen a surge in interest in novel codec designs based
on deep learning [2,3,4,5,6,7,8,9], which are trained end-to-end to optimize rate-
distortion performance on a large video dataset, and a large number of network
designs with various novel, often domain-specific components have been pro-
posed. In this paper we show that a relatively simple design based on standard,
well understood and highly optimized components such as residual blocks [10],
convolutional recurrent networks [11], optical flow warping and a PixelCNN [12]
prior yields competitive rate-distortion performance among the learned methods.

We focus on the online compression setting, where video frames can be com-
pressed and transmitted as soon as they are recorded (in contrast to approaches
which require buffering several frames before encoding), which is necessary for
applications such as video conferencing and cloud gaming. Additionally, in both
applications, the ability to finetune the neural codec to its specific content holds
promise to further significantly reduce the required bandwidth [6].

There are two key components to our approach beyond the residual block
based encoder and decoder architecture. Firstly, to exploit long range temporal
correlations, we follow the approach proposed in Feedback Recurrent AutoEn-
coder (FRAE) [13], which was shown to be effective for speech compression, by
adding a convolutional GRU module in the decoder and feeding back the recur-
rent state to the encoder. Secondly, we apply a motion estimation network at
the encoder side and enforce optical flow learning by using an explicit loss term
during the initial stage of the training, which leads to better optical flow output
at the decoder side and consequently much better rate-distortion performance.
The proposed network architecture is compared with existing learned approaches
through the lens of their underlying probabilistic models in Section 3.

We compare our method with the state-of-the-art traditional codecs and
learned approaches on the UVG 1080p [14] and HEVC [15] video datasets by
plotting rate-distortion curves. We show that our method performs competitively
on the MS-SSIM [16] distortion metric in the low to high rate regime for the
high-resolution data, and particularly in the 0.09-0.13 bits per-pixel (bpp) region,
which is of practical interest for video streaming [17].

To summarize, our main contributions are as follows:

1. We develop a simple feedback recurrent video compression architecture based
on widely used building blocks (Section 2).

2. We study the differences and connections of existing learned video compres-
sion methods by detailing the underlying sequential latent variable models
(Section 3).

3. Our solution achieves competitive rate-distortion performance when com-
pared with other learned video compression approaches as well as traditional
codecs under equivalent settings (Section 4).
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2 Methodology

2.1 Problem setup

Let us denote the image frames of a video as x = {xi}i∈N. Compression of
the video is done by an autoencoder that maps x, through an encoder fenc, into
compact discrete latent codes z = {zi}i∈N. The codes are then used by a decoder
fdec to form reconstructions x̂ = {x̂i}i∈N.

We assume the use of an entropy coder together with a probabilistic model
on z, denoted as PZ(·), to losslessly compress the discrete latents. The ideal
codeword length can then be characterized as R(z) = − logPZ(z) which we refer
to as the rate term4.

Given a distortion metric D : X × X → R, the lossy compression problem
can be formulated as the optimization of the following Lagrangian functional

min
fenc,fdec,PZ

LRD , min
fenc,fdec,PZ

∑

x

D(x, x̂) + βR(z), (1)

where β is the Lagrange multiplier that controls the balance of rate and dis-
tortion. It is known that this objective function is equivalent to the evidence
lower bound in β-VAE[19] when the encoder distribution is deterministic or has
a fixed entropy. Hence PZ is often called the prior distribution. We refer the
reader to [6,8,20] for more detailed discussion. Throughout this work we use
MS-SSIM [16] measured in RGB space as our distortion metric for both training
and evaluation.

2.2 Overview of the proposed method

In our work, we focus on the problem of online compression of video using a
causal autoencoder, i.e. one that outputs codes and a reconstruction for each
frame on the fly without the need to access future context. In classic video codec
terms, we are interested in the low delay P (LDP) setting where only I-frames5

(Intra-coded; independent of other frames) and P-frames (Predictive inter-coded;
using previously reconstructed past but not future frames) are used. We do not
make use of B-frames (Bidirectionally interpolated frames).

The full video sequence is broken down into groups of pictures (GoP) x =
{x0,x1, . . . ,xN−1} that starts with an I-frame and is followed by N−1 P-frames.
We use a separate encoder, decoder and prior for the I-frames and P-frames. The
rate term is then decomposed as

R(z) = − logPI
Z
(z0)− logPP

Z
(z1, . . . , zN−1|z0), (2)

where a superscript is used to indicate frame type.

4 For practical entropy coder, there is a constant overhead per block/stream, which
is negligible with a large number of bits per stream and thus can be ignored. For
example, for adaptive arithmetic coding (AAC), there is up to 2-bit inefficiency [18].

5 We refer the reader to [21], [22] and Section 2 of [4] for a good overview of frame
structures in classic codecs.
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Fig. 1: Base architecture of our video compression network. I-frame x0 is com-
pressed using a stand-alone image compression autoencoder. The subsequent P-
frames are compressed with previous reconstructed frame as input and decoded
with optical flow based motion compensation plus residual.

2.3 Network architecture

I-frame compression is equivalent to image compression and there are already
many schemes available [23,24,25,26,20]. Here we applied the encoder and de-
coder design of [25] for I-frame compression. Subsequently, we only focus on the
design of the P-frame compression network and discuss how previously transmit-
ted information can be best utilized to reduce the amount of information needed
to reconstruct subsequent frames.

Baseline architecture

One straightforward way to utilize history information is for the autoencoder
to transmit only a motion vector (e.g., block based or a dense optical field) and
a residual while using the previously decoded frame(s) as a reference. At the
decoder side, decoded motion vector (in our case optical flow) is used to warp
previously decoded frame(s) using bilinear interpolation [27] (referred to later as
warp function), which is then refined by the decoded residual. This framework
serves as the basic building block for many conventional codecs such as AVC
and HEVC. One instantiation of such framework built with autoencoders is
illustrated in Fig. 1. Here an autoencoder based image compression network,
termed I-frame network, is used to compress and reconstruct the I-frame x0

independent of any other frames. Subsequent P-frames xt are processed with a
separate autoencoder, termed P-frame network, that takes both the current input
frame and the previous reconstructed frame as encoder inputs and produces the
optical flow tensor f̂t and the residual r̂t as decoder output. The architecture
of our P-frame network’s encoder and decoder is the same as the I-frame. Two
separate prior models are used for the entropy coding of the discrete latents in
I-frame and P-frame networks. The frame is eventually reconstructed as x̂t ,

warp(f̂t, x̂t−1) + r̂t.
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(a) (b)

Fig. 2: (a) Video compression network with feedback recurrent module. Detailed
network architecture for the encoder and decoder is described in Appendix A
(b) Encoder equipped with MENet, an explicit optical flow estimation module.
The switch between x̂t−1 and xt−1 is described at the end of Section 2.

For the P-frame network, the latent at each time t contains information about
(f̂t, r̂t). One source of inefficiency, then, is that the current time step’s (f̂t, r̂t)

may still exhibit temporal correlation with the past values (f̂<t, r̂<t), which is not
exploited. This issue remains even if we consider multiple frames as references.

To explicitly equip the network with the capability to utilize the redundancy
w.r.t. (f̂t−1, r̂t−1), we would need to expose (f̂t−1, r̂t−1) as another input, besides
xt−1, to both the encoder and the decoder for the operation at time step t. In this
case the latents would only need to carry information regarding the incremental
difference between the flow field and residual between two consecutive steps, i.e.
(f̂t−1, r̂t−1) and (f̂t, r̂t), which would lead to a higher degree of compression. We
could follow the same principle to utilize even higher order redundancies but it
inevitably leads to a more complicated architecture design.

Feedback recurrent module

As we are trying to utilize higher order redundancy, we need to provide both
the encoder and the decoder with a more suitable decoder history context. This
observation motivates the use of a recurrent neural network that is meant to
accumulate and summarize relevant information received previously by the de-
coder, and a decoder-to-encoder feedback connection that makes the recurrent
state available at the encoder [13] – see Fig. 2(a). We refer to the added compo-
nent as the feedback recurrent module.
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This module can be viewed as a non-linear predictive coding scheme, where
the decoder predicts the next frame based on the current latent as well as a
summary of past latents. Because the recurrent state is available to both encoder
and decoder, the encoder is aware of the state of knowledge of the decoder,
enabling it to send only complementary information.

The concept of feedback recurrent connection is present in several existing
works: In [13], the authors refer to an autoencoder with the feedback recurrent
connection as FRAE and demonstrate its effectiveness in speech compression
in comparison to different recurrent architectures. In [28,29], the focus is on
progressive coding of images, and the decoder to encoder feedback is adopted for
an iterative refinement of the image canvas. In the domain of video compression,
[5] proposes the concept of state-propagation, where the network maintains a
state tensor St that is available at both the encoder and the decoder and updated
by summing it with the decoder output in each time step (Fig. 5 in [5]). In
our network architecture, we propose the use of generic convolutional recurrent
modules such as Conv-GRU [11] for the modeling of history information that
is relevant for the prediction of the next frame. In Appendix E, we show the
necessity of such feedback connection from an information theoretic perspective.

Latent quantization and prior model

Given that the encoder needs to output discrete values, the quantization
method applied needs to allow gradient based optimization. Two popular ap-
proaches are: (1) Define a learnable codebook, and use nearest neighbor quan-
tization in the forward pass and a differentiable softmax in the backward pass
[25,6], or (2) Add uniform noise to the continuous valued encoder output dur-
ing training and use hard quantization at evaluation [23,24,8]. For the second
approach, the prior distribution is often characterized by a learnable monotonic
CDF function f , where the probability mass of a single latent value z is evaluated
as f(z + 1/2)− f(z − 1/2). In this work we adopt the first approach.

As illustrated in Fig. 2(a), a time-independent prior model is used. In other
words, there is no conditioning of the prior model on the latents from previous
time steps, and PP

Z
(z1, . . . , zN−1|z0) in Eq. (2) is factorized as

∏N−1
i=1 PP

Z
(zi). In

Section 3 we show that such factorization does not limit the capability of our
model to capture any empirical data distribution.

A gated PixelCNN [12] is used to model PP
Z
, with the detailed structure of

the model built based on the description in Fig. 10 of [6]. The prior model for
the I-frame network PI

Z
is a separate network with the same architecture.

Explicit optical flow estimation module

In the architecture shown in Fig. 2(a), the optical flow estimate tensor f̂t
is produced explicitly at the end of the decoder. When trained with the loss
function LRD in Eq. (1), the learning of the optical flow estimation is only in-
centivized implicitly via how much that mechanism helps with the rate-effective
reconstruction of the original frames. In this setting we empirically found the
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decoder was almost solely relying on the residuals r̂t to form the frame recon-
structions. This observation is consistent with the observations of other works
[2,5]. This problem is usually addressed by using pre-training or more explicit
supervision for the optical flow estimation task. We encourage reliance on both
optical flow and residuals and facilitate optical flow estimation by (i) equipping
the encoder with a U-Net [30] sub-network called Motion Estimation Network
(MENet), and (ii) introducing additional loss terms to explicitly encourage op-
tical flow estimation.

MENet estimates the optical flow ft between the current input frame xt

and the previously reconstructed frame x̂t−1. Without MENet, the encoder is
provided with xt and x̂t−1, and is supposed to estimate the optical flow and the
residuals and encode them, all in a single network. However, when attached to
the encoder, MENet provides the encoder directly with the estimated flow ft and
the previous reconstruction warped by the estimated flow warp(x̂t−1, ft). In this
scenario, all the encoder capacity is dedicated to the encoding task. A schematic
view of this explicit architecture is shown in Fig. 2(b) and the implementation
details are available in Appendix A.

When MENet is integrated with the architecture in Fig. 2(a), optical flow
is originally estimated using MENet denoted as ft and later reconstructed in
the decoder denoted as f̂t. In order to alleviate the problem with optical flow
learning using rate-distortion loss only, we incentivize the learning of ft and f̂t
via two additional dedicated loss terms,

Lfe = D(warp(x̂t−1, ft),xt),Lfd = D(warp(x̂t−1, f̂t),xt).

Hence the total loss we start the training with is L = LRD+Lfe+Lfd where LRD

is the loss function as per Eq. (1). We found that it is sufficient if we apply the
losses Lfe and Lfd only at the beginning of training, for the first few thousand
iterations, and then we revert to using just L = LRD and let the estimated flow
be adapted to the main task, which has been shown to improve the results across
variety of tasks utilizing optical flow estimation [31].

The loss terms Lfe and Lfd are defined as the distortion between xt and the
warped version of x̂t−1. However, early in the training, x̂t−1 is inaccurate and as
a result, such distortion is not a good choice of a learning signal for the MENet
or the autoencoder. To alleviate this problem, early in the training we use xt−1

instead of x̂t−1 in both Lfe and Lfd. This transition is depicted in Fig. 2(b) with
a switch. It is worth to mention that the tensor fed into the encoder is always a
warped previous reconstruction warp(x̂t−1, ft), never a warped previous ground
truth frame warp(xt−1, ft).

3 Graphical Model Analysis

Recent success of autoencoder based learned image compression [23,24,25,26,20,9]
(see [32] for an overview) has demonstrated neural networks’ capability in mod-
eling spatial correlations from data and the effectiveness of end-to-end joint rate-
distortion training. It has motivated the use of autoencoder based solution to
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Fig. 3: Different combinations of sequential latent variable models and inference
models proposed in the literature. (a) with the solid lines only is used in Lu et al.
[2]. (a) with both solid and dashed lines is used in Liu et al. [7]. (a) with the solid
and dotted lines is used in M-LVC (presented is a model for a buffer size of 2
past frames) [9]. (b) is used in both Rippel et al. [5] and our approach. (c) is used
in Han et al. [8]. (d) is used in Habibian et al. [6]. The blue box around nodes
x1:4 means that they all come from a single joint distribution Qdata

X
(x1:4) and

that we make no assumptions on the conditional structure of that distribution.
See Appendix F for detailed reasoning about these graphical models.

further capture the temporal correlation in the application of video compression
and there has since been many designs for learned video compression algorithms
[13,5,2,7,6,8]. These designs differ in many detailed aspects: the technique used
for latent quantization; the specific instantiation of encoder and decoder archi-
tecture; the use of atypical, often domain-specific operations beyond convolution
such as Generalized Divisive Normalization (GDN) [33,23] or Non-Local Atten-
tion Module (NLAM) [34]. Here we leave out the comparison of those aspects and
focus on one key design element: the graphical model structure of the underlying
sequential latent variable model [35].

As we have briefly discussed in Section 2.1, the rate-distortion training ob-
jective has strong connections to amortized variational inference. In the special
case of β = 1, the optimization problem is equivalent to the minimization of
DKL

(
Qdata

X QZ|X||PZPX|Z

)
[36] where PZPX|Z describes a sequential generative

process and Qdata
X QZ|X can be viewed as a sequential inference process. PX|Z de-

notes the decoder distribution induced by our distortion metric (see section 4.2
of [6]), Qdata

X denotes the empirical distribution of the training data, and QZ|X
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denotes the encoder distribution induced on the latents, in our case a Dirac-δ
distribution because of the deterministic mapping from the encoder inputs to
the value of the latents.

To favor the minimization of the KL divergence, we want to design PZ, PX|Z,

QZ|X to be flexible enough so that (i) the marginalized data distribution PX ,∑
Z PZPX|Z is able to capture complex temporal dependencies in the data, and

(ii) the inference process QZ|X encodes all the dependencies embedded in PZPX|Z

[37]. In Fig. 3 we highlight four combinations of sequential latent variable models
and the inference models proposed in literature.

Fig. 3(a) without the dashed line describes the scheme proposed in Lu et al.
[2] (and the low latency mode of HEVC/AVC) where prior model is fully fac-
torized over time and each decoded frame is a function of the previous decoded
frame x̂t−1 and the current latent code zt. There are two major limitations of
this approach: firstly, the marginalized sequential distribution PX is confined to
follow Markov property PX(x1:T ) = PX1

(x1)
∏T

t=2 PXt|Xt−1
(xt|xt−1); secondly,

it assumes that the differences in subsequent frames (e.g., optical flow and resid-
ual) are independent across time steps. To overcome these two limitations, Liu
et al. [7] propose an auto-regressive prior model through the use of ConvLSTM
over time, which corresponds to Fig. 3(a) including dashed lines. In this case, the
marginal PX(x1:T ) is fully flexible in the sense that it does not make any con-
ditional independence assumptions between x1:T , see Appendix F.1 for details.
With a similar goal in mind, in a work concurrent to ours, Lin et al. [9] propose
M-LVC which utilizes temporal correlations between consecutive frames’ optical
flows by explicitly predicting the flow of the currently coded frame using pre-
vious flows. In contrast our approach aims to extract the same optical flow (as
well as higher order) redundancy implicitly via a learned recurrent state.

Fig. 3(b) describes another way to construct a fully flexible marginalized se-
quential data distribution, by having the decoded frame depend on all previously
transmitted latent codes. Both Rippel et al. [5] and our approach fall under this
category by introducing a recurrent state in the decoder which summarizes in-
formation from the previously transmitted latent codes and processed features.
Rippel et al. [5] use a multi-scale state with a complex state propagation mech-
anism, whereas we use a convolutional recurrency module (ConvGRU) [11]. In
this case, PX(x1:T ) is also fully flexible, details in Appendix F.1.

The latent variable models in Fig. 3(c) and (d) break the causality constraint,
i.e. the encoding of a GoP can only start when all of its frames are available. In
(c), a global latent is used to capture time-invariant features, which is adopted
in Han et al. [8]. In (d), the graphical model is fully connected between each
frame and latent across different time steps, which described the scheme applied
in Habibian et al. [6].

One advantage of our approach (as well as Rippel et al. [5]), which corre-
sponds to Fig. 3(b), is that the prior model can be fully factorized across time,

PZ(z1:T ) =
∏T

t=1 PZ(zt), without compromising the flexibility of the marginal
distribution PX(x1:T ). Factorized prior allows parallel entropy decoding of the
latent codes across time steps (but potentially still sequential across dimensions
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of zt within each time step). On the inference side, in Appendix E we show that
any connection from x<t to zt, which could be modeled by adding a recurrent
component on the encoder side, is not necessary.

4 Experiments

4.1 Training setup

Here we provide the key information about the training setup, while the com-
prehensive description of the details of the architecture, training and datasets
used (and how they were processed) are in Appendix A. Our training dataset
was based on Kinetics400 [38], and we evaluate on UVG 1080p [14] and HEVC
Classes BCDE [15]. The distortion metric used was 1−MS-SSIM [16]. The GoP
size of 8 was used during training.

4.2 Comparison with other methods

Comparison with learning-based methods In Fig. 4(a), we compare the
performance of our solution with several learned approaches on UVG 1080p
dataset in terms of MS-SSIM versus bitrate where MS-SSIM was first averaged
per video and then averaged across different videos. The figures for the HEVC
Classes BCDE datasets and comparison using PSNR metric are in Appendix H.
When comparing using MS-SSIM metric, on UVG and HEVC-E, our method
outperforms all the compared ones in MS-SSIM across the range of bitrates
between around 0.05bpp to around 0.13bpp. For 1080p resolution this is the
range of bitrates of interest for practitioners, e.g., Netflix uses the range of about
0.09−0.13bpp for their 1080p resolution video streaming [17]. On HEVC-BD, our
method is outperformed by M-LVC and DVC, whereas on HEVC-C our method
outperforms other methods for bitrate below < 0.13bpp. When comparing using
PSNR metric, our method is outperformed by most other methods. This effect
is expected since our method was not trained using MSE distortion metric,
however we note that when compared on PSNR metric the performance drop of
our method is larger than for the DVC(MSSSIM) model.

DVC [2,3], Liu et al. [7] and M-LVC [9] are all causal solutions, and they are
trained and evaluated with GoP size of 12(UVG)/10(HEVC), 12, 16, respectively.
Habibian et al. and Wu et al. are non-causal solutions and their results are
reported based on GoP sizes of 8 and 12, respectively. Our results are evaluated
at GoP of 8, same as in training.

We omit comparisons to Han et al. [8] because they provide results only for
low resolution videos, and to Rippel et al. [5] because we lack the licensing rights
to use all the Xiph dataset videos [39] they evaluate their method on.

Comparison with traditional video codecs We compared our method with
the most popular standard codecs i.e. H.265 [22] and H.264 [40] on UVG 1080p
dataset. The results are generated with three different sets of settings (more
details are provided in Appendix C):
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(a)
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M
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ffmpeg default (H.264)
ffmpeg GoP12 low-delay (H.265)
ffmpeg GoP12 low-delay (H.264)

(b)

Fig. 4: Results on UVG dataset. (a) Comparison to the state-of-the-art learned
methods. The DVC [3] results are presented for both models trained with MSE
and MSSSIM distortion metrics. (b) Comparison with classic codecs.

– ffmpeg [41] implementation of H.264 and H.265 in low latency mode with
GoP size of 12.

– ffmpeg [41] implementation of H.264 and H.265 in default mode.
– HM [42] implementation of H.265 in low latency mode with GoP size of 12.

The low latency mode was enforced to H.264 and H.265 to make the problem
settings the same as our causal model. GoP size 12 on the other hand, although
different from our GoP size 8, was consistent with the settings reported in other
papers and provided H.264 and H.265 an advantage as they perform better with
larger GoP sizes.

The comparisons are shown in Fig. 4(b) in terms of MS-SSIM versus bitrate
where MS-SSIM was calculated in RGB domain. As can be seen from this fig-
ure, our model outperforms the HM implementation of H.265 and the ffmpeg

implementation of H.265 and H.264 in both low latency and default settings, at
bitrates above 0.09bpp which, again, is the bpp range of interest for 1080p reso-
lution videos. We note there are also computational aspects one should consider
when comparing to these traditional codecs, see a discussion in Appendix I.

Qualitative comparison In Fig. 6 we compare the visual quality of our lowest
rate model with ffmpeg implementation of H.265 at in low latency mode a
similar rate. We can see that our result is free from the blocking artifact usually
present in H.265 at low bitrate – see around the edge of fingers – and preserves
more detailed texture – see structures of hand veins and strips on the coat. In
Appendix D, we provide more examples with detailed error and bitrate maps.

As noted in Section 2.3, the dedicated optical flow enforcement loss terms
were removed at a certain point and the training continued using LRD only. As
a result, our network learned a form of optical flow that contributed maximally
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to LRD and did not necessarily follow the ground truth optical flow (if such were
available). Fig. 7 compares an instance of the optical flow learned in our network
with the corresponding optical flow generated using a pre-trained FlowNet2 net-
work [43]. The optical flow reconstructed by the decoder f̂ has larger proportion
of values set to zero than the flow estimated by FlowNet2 – this is consistent
with the observations by Lu et al. [2] in their Fig. 7 where they argue that it
allows the flow to be more compressible.

4.3 Ablation study

To understand the effectiveness of different components in our design, in Fig. 5
we compare the performance after removing (a) decoder to encoder recurrent
feedback, or (b) the feedback recurrent module in Fig. 2(a), or (c) the explicit
optical flow estimation module. We focus the comparison on low rate regime
where the difference is more noticeable.

Empirically we find the explicit optical flow estimation component to be quite
essential – without it the optical flow output from the decoder has very small
magnitude and is barely useful, resulting in consistent loss of at least 0.002 in
MS-SSIM score for rate below 0.16 bpp. In comparison, the loss in performance
after removing either the decoder to encoder feedback or the recurrent connection
all together is minor and only show up at very low rate region below 0.1 bpp.

Similar comparisons have been done in existing literature. Rippel et al. [5] re-
port large drop in performance when removing the learned state in their model
(Fig. 9 of [5]; about 0.005 drop in MS-SSIM at bpp of 0.05), while Liu et al.
[7], which utilizes recurrent prior to exploit longer range temporal redundan-

0.04 0.06 0.08 0.10 0.12 0.14 0.16
Rate (bits per pixel)

0.950

0.955

0.960

0.965

0.970

0.975

M
S-

SS
IM

complete model
(a) w/o recurrent feedback
(b) w/o recurrent connection
(c) w/o explicit optical 
flow estimation module

Fig. 5: Ablation study on UVG dataset. All models were evaluated at GoP of 8.
Model (a) is obtained by removing the decoder to encoder feedback connection
in Fig. 2(a). Model (b) removes the the feedback recurrent module. Model (c)
removes the explicit optical flow estimation module in Fig. 2(b).
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(a) Original

(c) Our method (0.041/0.973/32.3dB) (d) HEVC H.265 (0.041/0.966/34.2dB)

(b) Original closeup (BPP/MS-SSIM/PSNR)

Fig. 6: An illustration of qualitative characteristics of our architecture versus
H.265 (ffmpeg) at a comparable bitrate. (a) and (b) are the original frame and
its closeup, (c) and (d) are the closeup on the reconstructed frames from our
method and H.265. To make the comparison fair, we used HEVC with fixed GoP
setting (min-keyint=8:scenecut=0) at a similar rate, so both methods are at
equal bpp and show the 4th P-frame of a GoP of 8. Frame 229 of Tango video
from Netflix Tango in Netflix El Fuente; see Appendix B for license information.

Fig. 7: An example of the estimated optical flow, left to right: two consecutive
frames used for estimation, FlowNet2 results, our decoder output f̂ . Note that the
flow produced by our model is decoded from a compressed latent, and is trained
to maximize total compression performance rather than warping accuracy. See
Appendix B for license information.
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Fig. 8: Average MS-SSIM and rate as a function of frame-index in a GoP of 8.
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cies, reports relatively smaller degradation after removing their recurrent module
(about 0.002 drop in MS-SSIM in Fig. 9 of [7]).

We suspect that the lack of gain we observe from the feedback recurrent
module is due to both insufficient recurrent module capacity and receptive field,
and plan to investigate further as one of our future studies.

4.4 Empirical observations

Temporal consistency We found, upon visual inspection, that for our low
bitrate models, the decoded video displays a minor yet noticeable flickering ar-
tifact occurring at the GoP boundary, which we attribute to two factors.

Firstly, as shown in Fig. 8, there is a gradual degradation of P-frame quality
as it moves further away from the I-frame. It is also apparent from Fig. 8 that the
rate allocation tends to decline as P-frame network unrolls, which compounds
the degradation of P-frame quality. This shows that the end-to-end training of
frame-averaged rate-distortion loss does not favor temporal consistency of frame
quality, which makes it difficult to apply the model with larger GoP sizes and
motivates the use of temporal-consistency related losses [44,45]. For a figure
investigating generalization of the model trained with GoP of 8 to evaluation
with a GoP of 10, see Appendix J.

Second part of the problem is due to the nature of the MS-SSIM metric and
hence is not reflected in Fig. 8. This aspect is described in the following section.

Color shift Another empirical observation is that the MS-SSIM metric seems
to be partially invariant to uniform color shift in flat regions and due to that the
low bitrate models we have trained are prone to exhibit slight color shift, similar
to what has been reported in [46]. This color change is sometimes noticeable
during I-frame to P-frame transitioning and contributes to the flickering artifact.
One item for future study is to find suitable metrics or combination of metrics
that captures both texture similarity and color fidelity. Details in Appendix G.

5 Conclusion

In this paper, we proposed a new autoencoder based learned lossy video compres-
sion solution featuring a feedback recurrent module and an explicit optical flow
estimation module. It achieves competitive performance among learned video
compression methods and delivers comparable or better rate-distortion results
when compared with classic codecs in low latency mode. In future work, we plan
to improve its temporal consistency, solve the color fidelity issue, and reduce
computational complexity, paving the way to a practical learned video codec.
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