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Abstract. Gaze is the essential manifestation of human attention. In
recent years, a series of work has achieved high accuracy in gaze estima-
tion. However, the inter-personal difference limits the reduction of the
subject-independent gaze estimation error. This paper proposes an un-
supervised method for domain adaptation gaze estimation to eliminate
the impact of inter-personal diversity. In domain adaption, we design
an embedding representation with prediction consistency to ensure that
linear relationships between gaze directions in different domains remain
consistent on gaze space and embedding space. Specifically, we employ
source gaze to form a locally linear representation in the gaze space for
each target domain prediction. Then the same linear combinations are
applied in the embedding space to generate hypothesis embedding for
the target domain sample, remaining prediction consistency. The devia-
tion between the target and source domain is reduced by approximating
the predicted and hypothesis embedding for the target domain sample.
Guided by the proposed strategy, we design Domain Adaptation Gaze
Estimation Network(DAGEN), which learns embedding with prediction
consistency and achieves state-of-the-art results on both the MPIIGaze
and the EYEDIAP datasets.

1 Introduction

Gaze servers as an important visual cue of human attention. Accurate gaze
estimation can provide critical support for many applications, such as human-
computer interaction [1], virtual reality [2], and driver monitoring systems [3].
Although eye tracker can provide a precise gaze estimation [4], the high price and
the demand for specific equipment limit its applications in the real world and
more flexible environments. Unconstrained appearance-based gaze estimation
methods can predict 2D gaze target position or 3D gaze angles based on patches
cropped from RGB images. Thanks to the advancement of convolutional neural
networks (CNN) and a large number of publicly available high-quality datasets,
the error of gaze estimation has been dramatically decreased in recent years.
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Fig. 1. Scatter plot of the groundtruth (X-axis) and the network gaze estimation (Y-
axis) of the yaw and pitch angles in an evaluation set from the MPIIGaze dataset. The
results are estimated by (a) Regression from eye region based on CNN and (b) DAGEN
(Ours).

Appearance-based gaze estimation can decouple gaze direction from high-
dimension images with various noises, but some challenges still restrict the fur-
ther improvement of estimation precision. Obtaining gaze groundtruth requires
specific equipment, a well-defined collection strategy, and highly concentrated
attention of participants [5–10]. Under these strict conditions, current datasets
violate the identical independent distribution(i.i.d) nature, that is, only tens of
persons participating in the collection of thousands of gaze direction data per
subject [11]. For gaze estimation that requires open set testing [12], the devia-
tion between the distribution of the training set and the test set is reflected in
the prediction as a person-specific bias. As shown in Fig. 1(a), the bias between
the network regression and the groundtruth can often be observed, which is
also mentioned in [13]. Some methods perform a person-specific gaze estimation
through several new subject’s labeled data to eliminate the bias [12,13]. However,
in practice, even a bit of accurately labeled data is challenging to acquire.

In this work, we propose an unsupervised method for domain adaptation
(DA) gaze estimation to eliminate the impact of inter-personal differences and
fit new subject’s data without groundtruth labels. In domain adaption, we design
an embedding representation with prediction consistency to ensure that linear
relationships between gaze directions remain consistent on gaze space and em-
bedding space. We then build the Domain Adaptation Gaze Estimation Network
(DAGEN) using EPC loss devised to measure this consistency. Moreover, a new
training strategy is employed for domain adaptation.

The most crucial element of DAGEN is the embedding with prediction con-
sistency (EPC), which is expected to eliminate the deviation between domains.
Following the Locally Linear Embedding (LLE) representation method [14], the
hypothesis label predicted on the target domain is linearly interpreted by its
neighbor gaze directions from the source domain. Such linear combinations in
gaze space would be migrated to embedding space to obtain hypothesis embed-
ding, which ensures locally linear consistency between the embedding and pre-
diction space. For the same gaze directions, we demand the embedding features
encoding gaze should also be similar. However, due to the deviation between
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domains, the embedding also retains some domain-specific features unrelated to
gaze direction, which causes a fixed bias in the test. So EPC loss, which weighs
the distance between target hypothesis embedding and predicted embedding for
each target domain sample, can be used to illustrate the deviation between do-
mains. We optimize the EPC loss to eliminate the deviation between domains,
thus achieving domain adaptation. We present our DAGEN estimation results
in Fig. 1(b) to exhibit the consequence of domain adaptation.

We evaluate our proposed method on two commonly used gaze datasets and
indicate that our DAGEN can effectively improve the accuracy of gaze estima-
tion. On both datasets, our estimation results exceeding the current state-of-
the-art method. Specifically, the DAGEN achieves a 9.66% improvement (4.14◦

to 3.74◦) on MPIIGaze, and an 18.9% improvement (5.3◦ to 4.3◦) on EYEDIAP.
Note that the input only uses the eye region patch, and the source and target
domain are the train and evaluation set, respectively.

The major contributions of our work are summarized as follows:
1). We propose a new representation for the target domain embedding with

prediction consistency, as a linear combination of neighbors from the source
domain.

2). We design an innovative embedding with prediction consistency (EPC)
loss for unsupervised domain adaptation gaze estimation, enabling it to measure
the shift between the source and target domain.

3). Our method achieves state-of-the-art performance on MPIIGaze and
EYEDIAP with only eye region as input.

2 Related Work

Gaze estimation methods are typically divided into appearance-based and model-
based methods [15]. Model-based methods rely on the biological structure and
reflection characteristics of the eyeball, and usually require high-resolution im-
ages with homogeneous illumination [16, 17]. Appearance-based methods can
robustly decouple gaze angles from high-dimensional images with various noises.
Recently, due to the application of many large data sets [6, 7, 10, 18] and the
development of CNNs, the accuracy of appearance-based gaze estimation meth-
ods has been continuously improved. Zhang et al. first use LeNet [19] structure
based on CNN and MPIIGaze dataset to process gaze estimation [7]. Subse-
quently, many works have improved the accuracy of gaze estimation through
different methods. For example, multi-modal input was utilized in [18]; the key
role of face was proved in [20]; a new convolution paradigm especially for gaze
estimation was devised in [21]; timing information was used in [22]; the four
models ensemble method was used to increase estimation accuracy in [8]; and a
coarse-to-fine estimation strategy was designed in [23] .

However, recent work has discovered the fixed deviation in gaze estimation
caused by person-specific diversity, as shown in Fig. 1(a). The diversity is re-
duced by learning gaze differences and applying calibration sets in [12]. Random
effects, which actively learns the differences among-subjects during training, was
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introduced in [11]. And a meta-learning method, performing person-specific cali-
bration for each new subject and generating a person-specific network, is utilized
in [13] to eliminate deviations.

Domain adaptation improves prediction performance in the target domain by
aligning the distribution from the source domain [24,25]. Some work attempts to
minimize the discrepancy between domains to obtain domain-invariant features
directly [26, 27]. Recently, some methods found that aligning targets in both
domains could significantly increase prediction performance. For instance, [28]
uses the correlation between classes to perform domain adaptation by predicting
the target hypothesis label and source groundtruth. For the gaze estimation
problem, discriminator is applied to distinguish the source and target domains,
thereby aligning the domains [9]. The differences was taken advantage in pairs
of gaze directions and performs domain adaptation through gaze redirection and
cycle consistency [29].

However, these methods do not address the deviations caused by subject-
difference. We propose an unsupervised domain adaptation method to eliminate
the inter-personal differences by introducing embedding with prediction consis-
tency.

3 Proposed Method

Domain Adaptation (DA) is applied to solve the inter-personal differences re-
flected in the domain shift in the data distribution. Our method takes an eye
region image I as input, regressing g = (y, p) through a feature extractor and
a linear mapping, where y and p means yaw and pitch in gaze direction. Given
a source domain S = {(Is

1
, gs

1
), · · · , (IsNs

, gsNs
)} with several participants and

groundtruth, and a target domain T = {It
1
, · · · , ItNt

} using test set data with-
out groundtruth, the proposed network adopts Domain Adaptation (DA) as the
training strategy to align the embedding between S and T to increase its esti-
mation performance.

Figure 2 provides an architecture of our Domain Adaptation Gaze Estima-
tion Network (DAGEN). The feature extractor φ(·) contains an ImageNet [30]
pre-trained ResNet-18 [31] followed a multilayer perceptron. The embedding fea-
ture φ(I) will be constrained to keep consistency with predicted gaze direction
during DA training. Finally, as the restrained prediction consistency embedding
could decouple gaze-related information from the high-dimension image, the gaze
direction ĝ is calculated through a simple linear mapping operation h.

3.1 Target Domain Gaze Representation

We propose a Locally Linear Representation (LLR) for Target Domain Gaze
that employs source domain gaze to represent the target hypothesis label in gaze
space G linearly. For each sample in the target domain, the network prediction is
considered as a hypothesis label. We linearly combine k source domain samples
in its neighborhood in the G to describe it.



Domain Adaptation Gaze Estimation 5

Target Domain

Source Domain
Gaze Loss

EPC Loss

ω

I
s

g
s

g
s

I
t

 (I
t
)

 (I
s
)

 

h

h

g s

g t

 (I
s
)

LLR

 (I
t
)

{I
t
}

{I
s
, g
s
}

Fig. 2. The architecture of our proposed DAGEN. ResNet-18 and a fully connected
layer are employed as feature exactor φ. A linear mapping h maps embedding feature
φ(I) to gaze prediction ĝ. During DA training, LLR is utilized to generate linear weight
w by source groundtruth and target prediction. Besides gaze loss for source domain,
we apply EPC loss for unsupervised learning embedding features.

We first define the neighborhood for each target domain prediction in G to
ensure the correct representation. Only when both angles in target hypothesis

label ĝtj and source gaze direction gsi are not much different (less than µ), would

gsi be set as a neighborhood of ĝtj . We describe the set of all neighbors of ĝtj as
Nj , defined as,

Nj =
{

gsi |max (|ysi − ŷtj |, |p
s
i − p̂tj |) < µ

}

. (1)

Every target domain prediction ĝtj in a mini-batch having over k neighbors
would be randomly selected k neighbors to regenerate Nj , which is employed to

reconstruct the ĝtj . We define the weight wij to summarize the contribution of

the ith data in Nj to the ĝtj reconstruction, and the purpose is to find a suitable
solution of each wij .

For 2D gaze direction g, the slightly larger number of neighbors means that it
is challenging to find a suitable solution to minimize the reconstruction loss E (w)
during training. We consider involving more neighbors in the reconstruction of

ĝtj and introduce an L2 regularization term to ensure a unique solution. So an
L2 regularization term is suitable to solve this problem. The reconstruction loss
E (w) is formally expressed as,

E (Wj) = ‖ĝtj −
k

∑

i=1

wjig
s
i ‖

2

2
+ λ

k
∑

i=1

w2

ji, s.t. gsi ∈ Nj and

k
∑

i=1

wji = 1, (2)

where Wj = [wj1, · · · , wjk]. The Eq. (2) can be written in matrix form as,

E (Wj) = WT
j (Ĝt

j −Gs
i )

T (Ĝt
j −Gs

i )Wj + λWT
j Wj ,

= WT
j (Sj + λI)Wj ,

(3)
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Fig. 3. Embedding with prediction consistency. The linear combination relationship in
G is inherited to E to generate a hypothesis embedding φ̂(It) for each target sample.
The distance between φ̂(It) and the target predicted embedding φ(It) measures the
deviation between the source and target domain.

where Ĝt
j = [ĝtj , · · · , ĝ

t
j ]1×k, G

s
i = [gs

1
, · · · , gsk], and Sj is regarded as a local

covariance matrix, defined as,

Sj = (Ĝt
j −Gs

i )
T (Ĝt

j −Gs
i ). (4)

The solution W ∗

j that minimizes E (Wj) obtained by the Lagrange multiplier
method is,

W ∗

j =
(Sj + λI)−11k

1Tk (Sj + λI)−11k
. (5)

With the optimized weight W ∗

j = [w∗

j1, · · · , w
∗

jk], LLR is formally described
as,

ĝtj =

k
∑

i=1

w∗

jig
s
i , gsi ∈ Nj . (6)

3.2 Embedding with Prediction Consistency

Here we propose Embedding with Prediction Consistency (EPC) for domain
adaptation. EPC transfers the same linear combination relationship in gaze space
G to embedding space E to generate target hypothesis embeddings. For target
domain sample Itj , the hypothesis embedding is declared as,

φ̂(Itj) =
k

∑

i=1

w∗

jiφ(I
s
i ), gsi ∈ Nj . (7)

As shown in Fig. 3, the LLR weight in gaze space G are inherited to the
embedding space E. For each target predicted embedding in E, we generate the
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target hypothesis embedding φ̂(It) by Eq. (7). The linear relationship between
target hypothesis embedding and source predicted embedding is the same as
that between target and source gaze directions, which is the embedding with
prediction consistency.

3.3 Loss Function

With the purpose of domain adaptation between the source and target domain,
we propose DA loss consisting of two items, as shown in Eq. (8). Specifically,
LEPC measures the deviation between the source and target domain. Meanwhile,
Lgaze supervises the predicted gaze directions of the source domain to guarantee
that the network is always optimized towards reducing gaze estimation error.

LDA = λEPCLEPC + λgazeLgaze, (8)

where we empirically setλEPC = 1 and λgaze = 1.

We introduce an embedding with prediction consistency (EPC) loss for do-
main adaptation gaze estimation, which ensures same gaze directions should
have the same embedding features unrelated to any interferences like appear-
ance. Typically this constraint requires pairs of images in totally same gaze
directions from different subjects. However, it is nearly unreachable to meet this
condition for continuous gaze direction. As mentioned in section 3.1, for each
target gaze hypothesis label, we employ LLR of adjacent source gaze to indicate
it. The combination relationships in G are transferred to E to generate target
hypothesis embedding remaining prediction consistency.

Given a batch of Bs source image samples and Bt target image samples
during training, we formally compute the LEPC using,

LEPC =
1

Bt

Bt
∑

j=1

d(φ
(

Itj
)

,

k
∑

i=1

w∗

jiφ(I
s
i )), h(φ(Isi )) ∈ Nj , (9)

where L1 distance is employed as the function d. LEPC measures the distance
between the hypothesis and predicted embedding. Furthermore, since target
hypothesis embedding is a linear combination of source predicted embedding,
LEPC also evaluates the deviation between the source and target domains. Dur-
ing training, as target hypothesis embedding and predicted embedding get closer
and closer, the offset between domains is gradually eliminated.

Besides preserving LEPC for domain adaptation, the source domain with
groundtruth should also take part in parameter updating to guide training op-
timizing. The Lgaze is calculated based on cosine similarity as,

Lgaze

(

ĝs, gs
)

= arccos
ĝs × gs

∥

∥ĝs
∥

∥ · ‖gs‖
. (10)
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Algorithm 1 Training Procedure

Input:

Source Domain: S = {(Is1 , g
s
1), · · · , (I

s
Ns

, gsNs
)}

Target Domain: T = {It1, · · · , I
t
Nt

}
Output:

Model parameter θ∗

1: # First Step: Pre-training in the Source Domain

2: for m in [1, Ns] do
3: for (Isi , g

s
i ) in S do

4: Forward Isi and obtain prediction ĝsi .
5: Back-propagation with Eq.(10) and update network parameters θ.
6: end for

7: end for

8: # Second Step: Joint Optimization

9: for m in [1,Mt] do
10: Sample a mini-batch Bs and Bt from S and T .
11: Obtain prediction ĝs and ĝt with forwarding Is and Is.
12: for b in [1, Bt] do

13: Select qualified sample set Nb from Bs for ĝbt . (Eq. (1))
14: if ‖Nb‖< k then

15: Continue
16: else

17: Randomly choosing k samples from Nb.
18: Obtain LLR representation W ∗ of ĝb using k samples (Eq.(5))
19: Calculate hypothesis embedding φ̂(Itb) by Eq.(7)
20: Compute LEPC using Eq.(9)
21: end if

22: Compute Lgaze for Bs using Eq.(10)
23: Back-propagation with Eq.(8) and update network parameters θ.
24: end for

25: end for

3.4 Training

Since the network prediction decides the neighborhood and locally linear gaze
representation in LEPC , a well-trained model is necessary to generate credible
target hypothesis labels. We pre-train the network using only source domain
with groundtruth and the Lgaze for Ns epochs at first.

In the joint training procedure, we need to optimize the Lgaze and LEPC

simultaneously for Mt iterations. We employ an alternative optimization strat-
egy [28] to perform each iteration. Specifically, we first update target hypothesis

labels ĝt with network parameters fixed in each loop and meanwhile estimate
the prediction of the source domain. Then given the target label ĝt, we construct
Nj and estimate LEPC . It is worth mentioning that we use the source domain
groundtruth for LLR to obtain higher estimation accuracy. Furthermore, net-
work parameters are updated by back-propagation to minimize LEPC and Lgaze

finally.
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Fig. 4. Performance of gaze estimation on (a)MPIIGaze and (b)EYEDIAP using a
leave-one-subject-out strategy. Bars represent the MAE, and the specific value in de-
grees is on the bottom of each bar; error bars indicate standard deviations.

Algorithm 1 summarizes the entire optimization precessing of our DAGEN.
First step performs the essential pre-training, and Second step shows the joint
optimization procedure. We asynchronously update the target label and optimize
the network to ensure the effectiveness and efficiency during training. We use
SGD with momentum = 0.9 as the optimizer and a base learning rate of 0.001, l2
weight regularization of 5× 10−4. Bs and Bt are both set to 64 during training.

4 Experiments

4.1 Datasets

We implement the proposed Domain Adaptation Gaze Estimation Network on
two current gaze datasets: MPIIGaze [7] and EYEDIAP [6].

MPIIGaze is a very challenging dataset for appearance-based in-the-wild gaze
direction estimation, because it has high within-subject variations in facial ap-
pearance and environments, for instance, make-up, hair change, illumination in-
tensity and direction. We only use the standard evaluation subset MPIIFaceGaze
provided by MPIIGaze, which contains 37667 images captured from 15 subjects
and has facial keypoints label for image pre-processing.

EYEDIAP contains 94 video sequences of 16 subjects, who were looking at
screen targets or physical targets in the collection. Only the videos collected
with screen target sessions are used in our training and evaluation set. Note that,
since two participants lack the videos in the screen target session, we sample one
image every fifteen frames from the other 14 subjects.

4.2 Data Pre-processing

We manipulate the pre-processing procedure similar to [10, 20, 32] to normalize
two datasets, and utilize the Surrey Face Model as the reference 3D face model.



10 Guo et al.

Table 1. Comparison of Appearance-Based Gaze Estimation Methods.

Methods Input Data GT MPIIGaze EYEDIAP

GazeNet [7] left eye + head pose × × 6.7◦ 8.3◦

SWCNN [20] face × × 4.8◦ 6.0◦

RT-GENE [8] two eyes + face × × 4.8◦ 6.4◦

Dilated-Net [21] two eyes + face × × 4.8◦ 5.9◦

MeNet [11] face × × 4.9◦ —

CA-Net [23] two eyes + face × × 4.14◦ 5.3◦

FAZE (3-shot) [13] eye area X X 4.1◦ —

FAZE (256-shot) [13] eye area X X 3.75◦ —

DAGEN (ours) eye area X × 3.74◦ 4.30◦

In the appearance-based gaze estimation task, the head pose has a significant
influence on the accuracy since its six freedoms bring calculational complexity
and time-consuming. Consequently, we select four eye corners and two mouth
corners described in [10] for PnP-based head pose estimation. Then transfer and
rotate the virtual camera according to the head pose to eliminate the impact of
position and roll angle.

In our work, considering applying a single image as input cover both eyes,
we select the mean of four 3D eye corner landmarks as the gaze origin point
to produce groundtruth for source domain. We normalize the camera’s intrinsic
parameters with a focal length of 960 mm, and a distance of 410 mm from the
face to generate image patches of size 256 × 64 as input for training. In each
test period, in order to better verify the effect of domain adaptation, we use the
newcomer’s entire data without groundtruth as the target domain.

4.3 Comparison with Appearance-Based Methods

We first compare the performance of the proposed method with the state-of-art
appearance-based gaze estimation methods. The experiment is carried out in
both MPIIGaze and EYEDIAP. For the evaluation protocol, we use leave-one-
subject-out strategy on both MPIIGaze and EYEDIAP.

We choose several CNN-based methods proposed from 2015 to 2020 as com-
parisons, including GazeNet [7], Spatial weights CNN (SWCNN) [20], RT-GENE
[8], Dilated-Net [21], MeNet [11], Faze [13] and CA-Net [23].

Although four models ensemble can increase the accuracy of RT-GENE, we
do not show the result of that for fairness. Since initializing the model pre-
trained on ImageNet can effectively improve accuracy, we apply this strategy for
GazeNet, Spatial weights CNN and Dilated-Net refer to [21]. We only present
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the results in the author’s paper for cases where source codes are not provided,
or the evaluation protocol is different from us.

Fig. 4(a) shows the results of MPIIGaze. The Mean Angular Error (MAE) of
most work in recent years has become about 4.8◦ without any person calibration.
These methods all have characteristics, such as the use of multi-modal input,
the introduction of attention mechanism, the implementation of new training
methods, or a new convolution strategy suitable for gaze estimation. CA-Net
more cleverly used the coarse-to-fine information from faces to eyes to achieve
a breakthrough of about 0.66◦. Our method achieves 9.66% to 3.74◦ comparing
to state-of-the-art method CA-Net with only eye area as input.

Fig. 4(b) shows the results in EYEDIAP. Due to the lower image resolution,
the performance of EYEDIAP is generally worse than that of MPIIGaze. Many
innovations in recent years still bring a significant breakthrough in performance,
and the best accuracy obtained in [23] has reached 5.3◦. We get an 18.9% increase
with the state-of-the-art method to 4.3◦.

Table 1 summarizes some differences and results of recent methods for ref-
erence, including that not illustrated in Fig. 4. The header Data and GT show
whether the methods need data or groundtruth for a new subject before evalu-
ation. It is noteworthy that some person-specific methods like few-shot (FAZE)
have achieved a great improvement for gaze estimation. We show the result of
FAZE [13] based on 3-shot and 256-shot within-MPIIGaze leave-one-person-out
evaluation. With test images without labels, our method can obtain results close
to 256-shot Faze, proving the effectiveness of domain adaptation.

4.4 Ablation Study

We further evaluate our method under different settings to better demonstrate
the effectiveness of our various design choices in the DAGEN. For all ablation
experiments, the source domain and test set’s selection follows the leave-one-
subject-out strategy on the MPIIGaze dataset.

Contribution of Domain Adaptation We first perform an ablation study to
demonstrate the effect of domain adaptation. Specifically, we evaluate the conse-
quence of adding domain adaptation, the impact of different target domain data,
and the influence of domain adaptation objects. Table 2 shows the experimental
results and the only change is DA is the choice of target domain.

Without DA shows the baseline model supervised by the Lgaze during train-
ing, having the MAE of 4.84◦. In order to better assess the impact of target
domain data on accuracy, we compare the estimation accuracy using GazeCap-
ture [18] as the target domain. For GC, we randomly sample 20 images for each
participant in GazeCapture. With a total of 1366 subjects and 27320 images, we
get the MAE of 4.17◦. Moreover, we randomly select 100 participants to discuss
the influence of diversity in the target domain, named GCsubset. Eval uses the
evaluation set as the target domain. The results show that utilizing diverse and
targeted samples as the target domain can effectively improve the estimation
performance, which may have reference significance for practical application.
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Table 2. Comparison on different DA configurations.

Without DA
DA

GCsubset GC Pred Eval

4.84◦ 4.66◦ 4.17◦ 3.99◦ 3.74◦

For our proposed method described in Section 3, we use the target hypothesis
label and the source groundtruth as the domain adaptation targets. Pred takes
the source predicted value instead of groundtruth as the domain adaptive target,
with the MAE of 3.99◦. Since in this case, errors in the source domain data would
also affect the domain adaptation process. In other words, using groundtruth as
the DA target produces more substantial constraints for the updating direction
of the parameters.

Effect of Feature Representation LLR utilizes k source groundtruth to
represent a target hypothesis label. We evaluate the different choices of k, shown
in Fig. 5(a). Generally, a higher k means more stable and robust LLR. However,
because we select the appropriate sample from a mini-batch, a higher k brings
a smaller probability of reaching the selection condition. In our experimental
protocol, the calculating speed of EPC loss is from 32.17− 32.53ms/iter in one
Nvidia 1080Ti for different k, and the training speed is 76.5ms/iter in training.

Our embedding φ (I) has the dimension of Fg. Considering φ(I) perform pre-
diction consistency, different Fg would lead to changes in characterization ability
and robustness. We evaluate the accuracy of DAGEN for different dimensions
Fg = {8, 16, 32, 64} to select the most suitable one. Fig. 5(b) shows the result
of dimension selection. In our experiments, our method is not sensitive to Fg,
indicating that our method is very robust for Fg.
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Fig. 5. Impact of different Feature Representation choice

Empirically we find k = 4 and Fg = 16 to be optimal hence select it.

Effect of Pre-trained Model We use ResNet-18 pre-trained on ImageNet
as the backbone. And before the domain adaptation training, the network is
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Table 3. Impact of Pre-trained Methods.

ImageNet Source MAE

× × 4.63◦

X × 4.2◦

× X 4.51◦

X X 3.74◦

Table 4. Impact of Selection Interval µ.

µ MAE

0.05 4.04◦

0.15 3.74◦

0.3 3.84◦

all 3.86◦

first trained for five epochs in the source domain. We evaluated the estimation
accuracy of whether the two pre-trainings participate, shown in Table 3, to show
the contribution of the two pre-training strategies.

For the model pre-trained on ImageNet, it can effectively avoid the parame-
ters falling into the local optimum, thereby improving the gaze estimation accu-
racy. In the case of pre-training in the source domain, obtaining a more accurate
hypothesis label can significantly improve prediction accuracy. However, while
the parameters fall into the local optimum, the quality of the hypothesis label
is not improved, so the error is not substantially reduced.

Impact of Selection Range µ The target hypothesis label needs to be rep-
resented by the appropriate source groundtruth. We have defined this selection
strategy in Eq. (1), where parameter µ indicates the select interval. We perform
the impact of different choices of µ on estimation accuracy, shown in Table 4.

We can see that the estimation accuracy has not changed much when µ ≥
0.15. The results reveal that although we established a locally linear relationship
in the gaze space G and the embedding space E, due to the linear mapping h,
the network tends to exhibit a global linear relationship in G and E. For the
case where µ is small, few target samples can participate in DA training. There-
fore, the network is straightforward to fall into overfitting, which significantly
increases estimation error and even is challenging to converge.

4.5 Visual Results

We display some results in Fig. 6 to show the effectiveness of our method. Fig.
6(a-b) performs the scatter plot and linear fit of the pitch angles, which are
predicted by the baseline model and our proposed DAGEN method on the eval-
uation set. Obviously, the fixed bias between the prediction and the groundtruth
is significantly reduced in our method. Furthermore, We randomly pick several
samples close to the fitted line (yellow points in Fig 6(a-b) in the baseline re-
sults and visualize the result of both baseline and DAGEN models in Fig 6(c-d).
We can see that our DAGEN can produce accurate gaze directions with tiny
deviations for the evaluated subject in different appearances and illumination.
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Pitch Groundtruth Pitch Groundtruth

(a) Baseline Model (b) DAGEN (Ours)

(c) Baseline Model

(d) DAGEN (Ours)

Fig. 6. Visible results of the evaluation set. (a) and (b) show the scatter (red) and linear
fit line of pitch angles predicted with the baseline and our DAGEN. Yellow points in (a-
b) are samples randomly selected from the linear fit line in (a). The groundtruth(blue)
and prediction(green) of the chosen samples are displayed orderly in (c) and (d).

5 Conclusion

In this paper, we propose an unsupervised method for domain adaptation gaze es-
timation by embedding with prediction consistency. We utilize source groundtruth
to perform a locally linear representation for target gaze estimation. The linear
relationships are then inherited from gaze space to embedding space to perform
prediction consistency. Moreover, we minimize the distance between the target
hypothesis embedding and predicted embedding, which measures the deviation
between the source and target domain. We experimentally showed that our ap-
proach dramatically reduces the impact of inter-personal differences and achieves
state-of-the-art performance in MPIIGaze and EYEDIAP.
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