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Abstract. As existing low-light color imaging suffers from the unreal-
istic color representation or blurry texture with a single camera setup,
we are motivated to devise a dual camera system using a high spatial
resolution (HSR) monochrome camera and another low spatial resolu-
tion (LSR) color camera for synthesizing the high-quality color image
under low-light illumination conditions. The key problem is how to ef-
ficiently learn and fuse cross-camera information for improved presen-
tation in such heterogeneous setup with domain gaps (e.g., color vs.
monochrome, HSR vs. LSR). We have divided the end-to-end pipeline
into three consecutive modularized sub-tasks, including the reference-
based exposure compensation (RefEC), reference-based colorization (Re-
fColor) and reference-based super-resolution (RefSR), to alleviate do-
main gaps and capture inter-camera dynamics between hybrid inputs.
In each step, we leverage the powerful deep neural network (DNN) to
respectively transfer and enhance the illuminative, spectral and spatial
granularity in a data-driven way. Each module is first trained separately,
and then jointly fine-tuned for robust and reliable performance. Exper-
imental results have shown that our work provides the leading perfor-
mance in synthetic content from popular test datasets when compared
to existing algorithms, and offers appealing color reconstruction using
real captured scenes from an industrial monochrome and a smartphone
RGB cameras, in low-light color imaging application.

1 Introduction

Low-light color imaging is a challenging task which plays a vital role in auto
driving, security surveillance, and professional photography. Insufficient illumi-
nation which may come from the under-exposure acquisition or low-light ra-
diation, would lead to very low signal-to-noise ratio (SNR) and corresponding
severely degraded imaging quality.

Classical histogram equalization or gamma correction [1–3] was applied to
directly enhance the luminance component without taking the chrominance part
into account. On the other hand, as suggested in Retinex theory [4], color image
could be represented by the product of its illuminance and reflectance map,
where the reflectance map captures intrinsic “color” (spectral) information of
the object under varying lighting conditions, and the illuminance component
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describes the energy intensity of light radiation. Thus, a number of explorations
had been made to decompose the illuminance and reflectance components from
observed images for synthesizing better image reconstruction at a different (e.g.,
higher) illumination condition, where these components can be represented with
either hand-crafted [5, 6] or learning-based [7–9] features. These works assumed
the single camera setup in low-light condition. Though color image quality could
be enhanced to some extent in this category, its reconstruction often suffered
from the unrealistic color presentation, blurry texture, etc.

Recently, we have witnessed explosive advancements of multi-camera system,
by which we can significantly improve the imaging capacity in various dimen-
sions, such as gigapixel photography [10], high-speed video acquisition [11], light-
field imaging [12], etc. Besides, as reported in neuronal science studies [13, 14],
rods are responsible for illumination changes, especially in low-light condition,
without color perception (e.g., scotopic vision), while cones are mainly for color
sensation (e.g., photopic vision). Especially, the human visual system exhibits
higher sensitivity to luminance variations than to chrominance under low illumi-
nation condition, since rod cells are dominantly activated (e.g., much more than
cones) in such scenario [15]. All above have motivated us to apply the hetero-
geneous dual camera setup for low-light color imaging, where one monochrome
camera is used to mimic the rod cells for capturing the monochromic image at
higher spatial resolution (HSR), and the other color camera emulates the cone
cells by inputting the regular color image at lower spatial resolution (LSR). Note
that without requiring the color filter arrays (CFA) such as the Bayer CFA [16],
monochromic imaging often provides better energy preservation of light radiance
that can be leveraged to enhance corresponding color image.

Recalling the color image decomposition in Retinex theory, we have at-
tempted to apply cross-camera synthesis by transferring the colors captured via a
LSR color camera to the monochromic image acquired with a HSR monochrome
camera. Because of the domain gaps in the camera pair, e.g., LSR vs. HSR, color
vs. monochrome, we have proposed to divide the entire task into three consecu-
tive sub-tasks, i.e., reference-based exposure compensation (RefEC), reference-
based colorization (RefColor), and reference-based super-resolution (RefSR).
Herein, RefEC downscales the HSR monochromic image to the same size of
the corresponding LSR color image, and transfers the illumination level from
its downscaled version to brighten the LSR color image; while RefColor module
resolves the parallax between HSR and LSR cameras, and migrates the bright-
ened LSR image colors to downscaled HSR monochromic image; In the end,
re-colored and downscaled HSR image is super-resolved with the guidance of the
native HSR monochromic sample in RefSR for final output. All modules, i.e.,
RefEC, RefColor and RefSR, are implemented using stacked convolutions to effi-
ciently characterize and learn the illumination-, spectrum (color)- and resolution-
dependent dynamics between proposed hybrid inputs. We first train each mod-
ularized component individually, and then fine-tune the end-to-end pipeline for
robust and reliable low-light imaging.
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Experimental results have demonstrated that our method shows leading per-
formance in each task using popular datasets when compared with relevant al-
gorithms. Simulations have also revealed appealing image reconstruction using
camera-captured real scenes under low-light illumination conditions. Overall,
main contributions of this work are summarized below:

– We are motivated to devise a dual camera system for low-light color imaging,
where a HSR monochromic image and a LSR color image from respective
cameras are synthesized for final enhanced color image under low-light il-
lumination condition; Such heterogeneous camera setup is inspired by the
non-uniform light responses of retinal rods and cones for luminance and
chrominance.

– We have divided the entire system into three consecutive sub-tasks, i.e.,
RefEC, RefColor and RefSR, by implicitly enforcing the cross-camera ref-
erence to alleviate domain gaps and capture cross-camera dynamics (e.g.,
illumination, spectrum, spatial resolution) for synthesizing the final high-
quality output.

– Our method shows competitive performance on both public datasets and the
real captured scenes, promising the generalization in practical applications.

2 Related work

This work is closely related to the multi-camera imaging, low-light image en-
hancement, colorization and super-resolution. A brief review is given below.

Multi-camera Imaging. As aforementioned, multi-camera system could
significantly improve the imaging capacity by computationally synthesizing in-
put sources for gigapixel photography, high-speed videography, light-fields, hy-
perspectral imaging, etc. Wang et al. [17] have proposed to register a pair of
RGB and NIR-G-NUV image for addressing the motion blur and temporal de-
lay of dark flash photography. Trinidad et al. [18] have applied an end-to-end
feature fusion from multiple misaligned images for high-quality image genera-
tion in color transferring, high dynamic range imaging, texture restoration, etc.
Dong et al. [19] have imposed a monochrome and color dual-lens setup to shoot
high-quality color images. Recently, multi-camera system becomes a commodity
and is widely adopted in mobile platforms for super-resolution [20, 21], denois-
ing [22] and quality enhancement [23].

Low-light Image Enhancement. In this category, classical approaches
include the histogram equalization (HE) and gamma correction [1, 3]. However,
they fail to retain the local details and suppress noise. Leveraging the charac-
teristics of low-light image, dehazing model [24, 25] assumes that the low-light
image resembles the haze image after inversion, and Retinex model [26–29, 9,
8] decomposes the reflectance map from the observed image for synthesizing it
at a higher illumination condition. For example, Wei et al. [29] reconstruct the
high-quality image with the decomposed reflectance map and enhanced illumi-
nance map using an end-to-end learning approach. And Zhang et al. [8] assume
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the histogram consistency after equalization for low-light image enhancement.
Besides, Guo et al. [30] impose a non-reference enhancement for dynamic range
adjustment via high-order polynomial function-based pixel-wise processing.

Colorization.Automatic colorization, scribble-based colorization and exemplar-
based colorization are the main types of colorization methods. Abundant auto-
matic proposals [31–34] benefit from the supervised colorization training on large
datasets. Scribble-based methods [35, 36] focus on propagating local user hints
to the entire monochrome image. These methods are prone to produce visual
artifacts such as chromatic aberration since the color priors heavily depend on
the training dataset or user preference. Exemplar-based colorization provides a
similar reference for the input monochrome image from pixel [37] or semantic
level [38, 39], to generate more plausible colors without manual effort. Dong et

al. [37] have utilized weighted average of colors of all potential pixels in the ref-
erence image to approximate correct color. He et al. [38] have proposed to use
VGG-19 feature of gray-scale image to measure the semantic similarity between
the reference and target image for color propagation while Zhang et al. [39]
have added contextual loss to semantically constrain the region re-sampling in
intra-colorization.

Super-resolution. Super-resolution techniques have been widely utilized
in applications. Learning-based methods have been dominantly leveraged for
single image super-resolution (SISR) because of its superior performance, such
as [40–42]. Recent explorations have then introduced another reference image
(e.g., often from an alternative camera or from a semantically similar scene)
as the prior to further improve SR performance. This is so-called Reference-
based super-resolution (refSR). CrossNet [12] and AWnet [11] use the refSR to
generate high-quality images in light-fields imaging and high-speed videography.
Additionally, Yang et al. [43] suggest the SR improvement with finer texture
reconstruction by learning the semantic priors from the high-definition reference.

3 Method

3.1 Framework

Our system is generally shown in Fig. 1, where we input a HSR monochrome
image and another LSR color image for final HSR color image reconstruction.
To efficiently characterize the cross-domain variations (e.g., illumination, spec-
tra and resolution) for better synthesis, we have divided the entire pipeline into
modularized RefEC, RefColor and RefSR consecutively. Each module is imple-
mented with DNNs for massively exploiting the power of data-driven learning
methodology.

Let l be the light energy or illumination intensity, s as the spatial resolution,
v as the viewpoint, and Y, U, V as respective color/spectral components1. The

1 Here, Y and UV represent the luminance and chrominance components in YUV color
space that is widely adopted in image/video applications.
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Concatenate

Input color image: 𝐼𝑣1 ,𝑠𝐿 ,𝑙𝐿YUV  

Input monochrome image: 𝐼𝑣2 ,𝑠𝐻 ,𝑙𝐻Y  

 𝐼 𝑣2 ,𝑠𝐿 ,𝑙𝐻Y  

𝐼 𝑣1 ,𝑠𝐿 ,𝑙𝐻YUV  

 𝐼 𝑣2 ,𝑠𝐿 ,𝑙𝐻YUV  

Final image: 𝐼 𝑣2 ,𝑠𝐻 ,𝑙𝐻YUV  

Downsampling

RefEC RefColor RefSR

Fig. 1. Framework. A cascaded workflow inputs a HSR monochrome image and a
LSR color image for final HSR color image reconstruction using modularized RefEC,
RefColor and RefSR to characterize, learn and fuse cross-camera information (e.g.,
illumination, spectra, and resolution). The intermediate outputs are also provided using
dash lines for step-wise illustration.

input LSR color image is formulated as IYUV
v1,sL,lL

, while the HSR monochromic im-

age from another camera is IYv2,sH ,lH
. Normally, monochrome camera offers better

light radiance preservation with higher illumination intensity, and higher spatial
resolution without Bayer sampling than corresponding color camera. Thus, we
simply use subscripts H and L (a.k.a., high and low) to indicate the difference.

In low-light condition, it is an ill-posed problem to reconstruct high-quality
color information from a single image due to insufficient exposure prior. Recent
learning-based computational imaging [44] motivates us to fuse cross-camera
characteristics for high-quality color image reconstruction under low-light illu-
mination condition. Considering that the human visual system is less sensitive
to the chrominance than the luminance component, we suggest to transfer the
colors from a LSR color image to anther HSR monochrome image in a dual
camera system. First, RefEC learns the light radiation level from downscaled
monochromic image IYv2,s̃L,lH

that is the same size scale of IYUV
v1,sL,lL

, and compen-

sates IYUV
v1,sL,lL

to ĨYUV
v1,sL,lH

with brighter color; And in RefColor module, the color

information is transferred from ĨYUV
v1,sL,lH

at v1 to IYv2,s̃L,lH
at v2 assuming that

the similar luminance component shall have close chrominance intensity [37],
resulting in ĨYUV

v2,sL,lH
. Nevertheless, it often incurs the missing regions due to the

parallax induced occlusion; Thus an additional post refinement block is included
in RefColor to improve warped chrominance components. Finally, ĨYUV

v2,sL,lH
is

interpolated to native higher resolution as the raw HSR monochromic input,
leading to the final output ĨYUV

v2,sH ,lH
. Our pipeline stepwisely learns and aggre-

gates the dynamics of input LSR color and HSR monochromic images for robust
and reliable reconstruction. More details are introduced in the following sections.
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Input color image: 𝐼𝑣1 ,𝑠𝐿 ,𝑙𝐿YUV  

Downsampled monochrome image 𝐼 𝑣2 ,𝑠𝐿 ,𝑙𝐻Y  
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Conv

k9n64

Conv+ReLU

(k3n64) x 5

Conv

k3n3

Sigmoid

+Bias

𝐼 𝑣1 ,𝑠𝐿 ,𝑙𝐻YUV  

Fig. 2. RefEC. k9n64 indicates a kernel size of 9×9 and a feature map channel number
of 64. Similar conventions are applied to k3n64, k3n3.

3.2 RefEC Net

Retinex Theory [4] is widely used in the image enhancement task to reconstruct
real scenes. It assumes the captured color image I could be represented with the
element-wise product of illuminance and reflectance map, denoted as below,

I = L ·R (1)

Here, the illuminance map L describes the overall light condition which de-
pends on light source, sensor quantum efficiency and integration time. ( To
distinguish the illuminance map here with the luma component in YUV color
space, we describe the Y channel feature with the brightness or intensity. ) The
reflectance map R depicts the object’s intrinsic color information which keeps
constant in various light condition. Commonly, R consists of spectral components
like RGB channels for color representation. When I denotes a monochrome im-
age, the decomposition could be in the following form.

I = L ·

∑

i∈C

Ri (2)

According to Eq. (1), (2), to enhance the image which obtained with pool pho-
ton conversion, the L component of ĨYUV

v1,sL,lH
could draw on that of IYv2,s̃L,lH

which shares similar perspective. Inspired by the decomposition module in [7],
we handle this problem with stacked CNN modules. Instead of separating ex-
act illuminance and reflectance map, we directly obtain the predicted images
following the reference’s light condition.

As shown in Fig. 2, the input of RefEC net is a dual color-monochrome image
pair at the lower resolution, namely, IYUV

v1,sL,lL
and the downscaled IYv2,s̃L,lH

on the

basis of IYv2,sH ,lH
. RefEC module is made up of one 9×9 and six 3×3 convolutional

layers. Most convolutional layers are followed by a ReLU layer with the exception
of the first and last ones. The first convolutional layer extracts features with a
large receptive field. Successive layers exploit the non-linearity to establish high
dimension characteristics. And a sigmoid function and constant bias follows the
last convolutional layer to limit ĨYv1,sL,lH

∈ [0, 1] and ĨUV
v1,sL,lH

∈ [−0.5, 0.5].
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𝐼 𝑣1 ,𝑠𝐿 ,𝑙𝐻YUV  
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 𝐼 𝑣2 ,𝑠𝐿 ,𝑙𝐻YUV  
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Fig. 3. RefColor. Resblock consists of a k3n64 convolutional layer followed by a batch
norm and ReLU layer. PWCNet is used for flow-based color correlation measurement.

3.3 RefColor Net

The goal of the RefColor module is to colorize the coarse monochromic image
IYv2,s̃L,lH

based on ĨYUV
v1,sL,lH

. As the input dual pairs share the similar perspec-
tive, conventional methods commonly adopt hand-crafted features like Gabor
features, SURF descriptors or DCT tansformation [45, 46] to perform a long
match with spatial priors, while optical flow could quickly record pixel-level mo-
tion in frame prediction and stereo matching tasks [47–50]. Hence, we measure
the color correlation based on the optical flow between IYv2,s̃L,lH

and ĨYv1,sL,lH
.

Here, we empirically take PWCNet [51] as optical flow estimation backbone
due to its compact and efficient feature representations. Even though warping
ĨYUV
v1,sL,lH

to the viewpoint v2 could restore most color information, there are still
no appropriate matches for some occluded areas. To fill these holes in the rough
result, we add residual-block modules to fuse all reference images and predict
each pixel’s color information in an end-end way.

As illustrated in Fig. 3, the Y channel of ĨYUV
v1,sL,lH

and IYv2,s̃L,lH
are fed into

PWCNet module for reference pixel prediction. To make the best of features
at different granularity, PWCNet progressively links different pyramid-level fea-
tures with the warping layer to estimate large displacement flow. The coarse-
to-fine concept could weaken the effect of large parallax but there still exists
some missing areas. After warping ĨYUV

v1,sL,lH
to v2, the rough color mapĨYUV

v2,sL,lH

is fused with the monochrome image IYv2,s̃L,lH
and the referenced color image

ĨYUV
v1,sL,lH

through residual blocks to directly predict each pixel’s color informa-

tion ĨYUV
v2,sL,lH

. Note that sigmoid activation and constant bias are also applied
here to make the results follow the YUV space limitation.

3.4 RefSR Net

On the strength of convolution kernel’s efficient feature representation, the coarse
color information ĨYUV

v2,sL,lH
is obtained via tranferring ĨYUV

v1,sL,lH
’s chrominance to

IYv2,s̃L,lH
. To reconstruct the high-definition color images, we need to interpolate

ĨYUV
v2,sL,lH

to the higher resolution. The HSR monochromic input IYv2,sH ,lH
reserves
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 𝐼 𝑣2 ,𝑠𝐿 ,𝑙𝐻YUV  

Input monochrome image: 𝐼𝑣2 ,𝑠𝐻 ,𝑙𝐻Y  

Final image: 𝐼 𝑣2 ,𝑠𝐻 ,𝑙𝐻YUV  

Conv

k3n8s2

Conv

k3n16s2

Conv

k3n32s2

Conv

k3n64s2

Conv

k3n64s1

Conv, w/o ReLU

k3n64s1

Conv

k3n64s2

Conv

k3n64s2

FC:256

FC:128

FC:64

Conv

k3n16s1

Conv,Tanh

k1n1s1

U S AUpsampling Slicing layer Applying coefficients layer

Conv, w/o ReLU

k1n96s1

Fig. 4. RefSR. k3n8s2 indicates the convolutional layer with a kernel size of 3×3, a
feature map channel number of 64 and a stride of 2. FC,256 denotes the full connec-
tion layer with the output channel size of 256. Most convolutional layers are followed
by ReLU and the exceptions are clearly annotated. Slicing layer is a tri-linear inter-
polation operator considering space and intensity effect proposed in [53]. And in the
applying coefficients layer, the monochrome image is element-wisely multiplied with
the upsampled color coefficients.

the complete structure information which could suppress oversoomth effect in
the chrominance interpolation although without color decomposition. Since the
trainable slicing layer in [52] shows impressive performance in edge preservation,
we take the similar network as HDRNet [52] to reconstruct finer chrominance
information.

As shown in Fig. 4, RefSR net extracts color and structure representations
from the LSR color image and HSR monochromic image respectively. Instead
of directly interpolating ĨYUV

v2,sL,lH
with the guidance of IYv2,sH ,lH

pixel by pixel,
this module decomposes the scene’s chrominance at the low resolution and then
interpolates the color coefficients to the high resolution in a bilateral-grid up-
sampling way with the IYv2,sH ,lH

’s guidance. In the low-resolution branch, the

input ĨYUV
v2,sL,lH

is firstly converted into the representation of multiple channels
at lower resolution after cascaded convolutional layers’ processing, which de-
cides the channel granularity for successive bilateral grid. The following local
and global stream take the surrounding pixels and the overall consistency into
consideration and combine with each other for coarse color coefficients to alle-
viate large variations in the flat region. To reconstruct finer color coefficients
at the high resolution, the HSR monochrome image is projected into the chan-
nel space to guide the bilateral-grid upsampling of coarse color coefficients. For
better chrominance interpolation, we impose two convolutional layers in the UV
space following the fusion of color coefficients and the monochrome image. Af-
terwards, we add the color residual to the upsampled coarse one for high-quality
color images.



Low-light Color Imaging via Dual Camera Acquisition 9

4 Experiments

We divide the low light image enhancement task into three independent subtasks.
We randomly crop image patches from various datasets for different subtask.
And in our task, the dual monochromic-color image pair is simulated via images
at different specification as shown in Table 1. The input of our models are
converted into the YUV color space [54] and the Y channel feature is chosen
as the monochromic input. Besides, to imitate the capture noise in real scenes,
various amount of noises to are added to both training and test image pairs as
recommended in [55, 56]. Due to the page limitation, we provide more training
details in the supplementary.

Table 1. Details on the training data setup

Task Datasets Viewpoint Scale Light energy numbers

RefEC Middleburry2006 (v1, v2) (sL, sL) (lL, lH) 45K

RefColor FlyingThings3D (v1, v2) (sL, sL) (lH , lH) 26K

RefSR DIV2K (v2, v2) (sL, sH) (lH , lH) 15K

Overall Middleburry2006 (v1, v2) (sL, sH) (lL, lH) 1596

Description

The parameters in (·, ·) denote the specification of input color

and monochromic image respectively. (v1, v2) represents different

viewpoints. sL denotes the spatial resolution at 256× 256 while

sH = 1024× 1024. lL, lH means different light energy obtained by

different sensors. Here we leverage various exposure time to imitate

light efficiency diversity between monochrome and color sensors [56].

Moreover, we also evaluate our model in other datasets and compared with
different proposals. Our work is also validated in the monochrome-color smart-
phone camera module. More details are shown in the following section 4.2.

4.1 Implementation

Our framework is implemented in PyTorch on NVIDIA GTX1080 GPU. All
models are optimized with Adam [57]. L1, MSE and Cosine similarity loss are
used to supervise the information reconstruction in the YUV space. We pretrain
three subtasks with different datasets and than finetune the whole pipeline with
Middleburry2006 dataset for more robustness. L1 and Cosine similarity loss for
refEC and refColor task at the lower resoltuion are beneficial to sharp details
preservation. And MSE loss dominates in the refSR task for faster convergence.
The initial learning rate (lr) of refEC and refSR module is set to 1e−4. As we ex-
ploit the officially pretrained PWCNet model for refColor module initialization,
the lr for the gray correlation and refinement module decay from 1e−5 and 5e−5,
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respectively. Afterwards, we finetune the whole pipeline with batchsize = 24, lr
= 5e−5 ( except 1e−5 for the gray correlation module) based on each module’s
pretrained model. The weight ratio for L1 and Consine similarity is 1 and 0.1
for the finetune procedure.

4.2 Comparison

In this part, we compare our individually-trained modules with other public
works in each subtask and then give the performance of the whole pipeline on
the simulated and real-captured scenes. Further user study and ablation study
are introduced in the supplementary.

RefEC As the previous work introduced, low light image enhancement and his-
togram equalization (HE) both can adjust the image’s intensity to the normal
level. We pick up HE, Retinex Net [7], SSIE Net [8], Zero-DCE [30] methods as
the reference result since we leverage different dimension information to handle
this problem. Middleburry2014 [58] and S7 ISP Dataset [59] are chosen as test
datasets which contain the indoor and outdoor underexposure cases. As shown
in Table 2, our work shows great performance above other methods. Note that
other methods only use a single frame to enhance image light condition and it
is a tough problem to estimate good illumination level. Fig. 5 presents qualita-
tive results of these methods. HE only adjusts the brightness to uniformly dis-
tribute among the whole range and couldn’t compensate for chroma information.
Retinex net reconstructs sharp textures but loses realistic gloss on the captured
surface. Based on Retinex Net, SSIE Net still suffers from the absence of real-
istic surface gloss even though it shows high brightness. Zero-DCE takes color
constancy as well as local exposure into consideration for good reconstruction,
but suffers from some ringing artifacts around the edge due to the smooth illu-
minance constraint. Our work exploits the monochromic image’s illumination as
the guidance to adjust the underexposure image to the normal light level, which
preserves sharpness and compensate chrominance meanwhile. It is manifested
via the increase on PSNRUV in contrast to the input. But the reconstructed
highlight areas are relatively dim due to the global intensity consistency.

RefColor In this task, we collect different proposals from automatic coloriza-
tion [34] (IAIC), exemplar colorization [38] (DEC) and conventional image patch
match [60] (PM) to illustrate our work. The test datasets consist of indoor and
outdoor scenes from Middleburry2014 and Cityscapes [61]. Since the input im-
ages are captured from different viewpoint, it imposes huge pressure to find the
appropriate reference patch with global traversal, especially in the strong con-
trast region like the third scene in Fig 6. The performance of automatic ICIA
depends on the instance segmentation and it may fails to reconstruct colors
when the instance is not accurately detected. DEC leverages semantic features
to search the potential match in the reference. But this match may lose the
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Table 2. Quantitative average results of exposure compensation models on Mid-
dleburry2014 and S7 ISP datasets.

Model PSNRY UV PSNRUV MS-SSIM PSNRY UV PSNRUV MS-SSIM

HE 15.1593 29.31 0.6991 20.7308 28.5491 0.858

Retinex Net [7] 17.74 24.51 0.719 20.58 25.689 0.76

SSIE Net [8] 16.5245 24.6488 0.8422 18.2423 22.1694 0.8473

Zero-DCE [30] 26.86 34.7532 0.9327 24.3149 32.7543 0.9271

Ours 33.38 38.45 0.981 26.81 32.97 0.95

input-label 17.301 29.42 0.655 14.99 28.64 0.700

Dataset Middleburry2014 S7 ISP

(a) Dual input pair (b) HE (c) RetinexNet (d) SSIENet (e) Zero-DCE (f) Ours (g) GT

Fig. 5. Qualitative results of different image enhancement algorithms:(a) are the input
color image with low luminance and the reference monochrome image. (g) is the ground
truth with normal luminance.

awareness of the object structure and result in color distortion around the ob-
ject boundary. In our work, Y channel features which preserve complete struc-
ture information are exploited to calculate the correlation between the target
and reference image and shows better performance in colorizing details. How-
ever, similarly, when the gray channel correlation is not well measured , color
bleeding will affect the colorization’s quality.

RefSR There are many proposals in the field of the super resolution. The usage
of deep learning benefits texture reconstruction in both single frame or multiple
frame super resolution. Most of them show the impressive performance and we
list some typical models like RCAN [42], TTSR [43] for the comparison. Here,
we use the captured low-high resolution image datasets City100 [62] to validate
the models’ performance. We adopt the pretrained model in their origin work
to process the low resolution color image. Note that we use TTSR model which
is trained with only reconstruction loss for higher quantitative performance and
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Table 3. Quantitative average results of colorization models on Middle-
burry2014 and Cityscapes datasets. We randomly choose 100 cases from
Cityscapes dataset for test due to PM’s low computation efficiency.

Model PSNRY UV PSNRUV MS-SSIM PSNRY UV PSNRUV MS-SSIM

PM [60] 29.6468 29.0148 0.9272 33.7849 35.6041 0.9796

IAIC [34] 28.8133 27.0774 0.9455 - - -

DEC [38] 37.0040 36.0793 0.9825 39.2985 38.7194 0.9927

Ours 41.0477 39.48 0.9924 42.1154 40.791 0.9968

Dataset Middleburry2014 Cityscapes

(a) Dual input pair (b) PM (c) ICIA (d) DEC (e) Ours (f) GT

Fig. 6. Colorization results of different proposals.

slice the test image into small patches as the input of TTSR due to GPU memory
shortage. Table 4 demonstrates the results of various super resolution methods.
In the sharp edges or stripe structure regions, RCAN’s result is more blurry
than others since it only takes the single low resolution frame as the input. It is
also demonstrated that our proposal preserves more clear textures within color
interpolation when compared to the information alignment with soft and hard
attention mechanism in TTSR.

Table 4. Quantitative results of super resolution models on City100 datasets.

Model PSNRY UV PSNRUV MS-SSIM PSNRY UV PSNRUV MS-SSIM

RCAN [42] 29.1734 38.226 0.8924 31.4657 36.3924 0.9099

TTSR-rec [43] 29.365 38.2135 0.8965 32.7906 35.4508 0.9234

Ours 40.52 39.066 0.9870 38.6833 37.0752 0.9755

Dataset City100-iphone City100-Nikon
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(a) (b)

Mono Low-res GT

RCAN TTSR Ours

Fig. 7. Qualitative results of super resolution proposals: (a) represents the input
monochrome image at the high resolution. And another color image is at the 14 × 14
scale of it. (b) illustrates the details of corresponding green and yellow patches in re-
spectively, monochrome image, color image (×4 for display), ground truth, RCAN,
TTSR and our method.

Overall pipeline For robustness validation, we execute the test on the ex-
tra simulated datasets and some monochrome-color pairs captured via the dual
cameras. We resize the image pairs of Middleburry2014 into 256 × 256 and
the corresponding 1024 × 1024 scale. And in this simulated datasets, the av-
erage PSNRY UV , PSNRUV and MS-SSIM of overall model reach to 38.604dB,

36.906dB and 0.9804 respectively, while the corresponding performances of
the cascaded separative model are 38.444dB, 36.816dB and 0.9802. Besides, we
also use the monochrome-color industrial pair cameras and HuaweiP20 to cap-
ture the real scenes. In the industrial cameras case, we turn the aperture to the
minimum (F = 16) and capture the objects in the normal light condition with
the shutter speed of 30ms. We pre-crop the captured images to generate the 4×-
1× monochrome-color image pair. While in HuaweiP20 case, the smartphone
automatic exposures with the only color or monochrome sensor. As shown in
Fig. 8, our proposal successfully transfers the chrominance of the LSR image to
the HSR monochromic image with the noise suppressed.

As we finally refine the overall enhancement in an end-to-end way with the
only supervision of re-colored HSR monochromic image, performance on each
subtask is affected by global optimization which is shown in Fig.9, when com-
pared with cascaded individually-trained models. And error accumulation be-
comes severe due to the cascaded mechanism, especially when color transfer fails
from the color viewpoint to the monochrome viewpoint at the low resolution.
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(a) (b) (c) (d)

Fig. 8. The performance on the real scenes: Here, we only display partial regions due
to space shortage. (a) denotes the LSR color image (×4 scale). (b) and (c) are the HSR
monochromic image as well as its color reconstruction. (d) is the value-amplified LSR
image for showing noise and blur (×4 scale).

Overall

RefEC RefColor RefSR(×¼) DetailLSR Color

Separative

Fig. 9. The performance of the separative and overall model: In the overall model, the
result of each subtask has obvious color aberration without hidden supervision but the
final generation does well in details. We enlarge the green patch in 4th column to show
the difference.

5 Conclusion

We present a cost-effective dual-camera system for low-light color imaging with a
HSR monochromic camera and a LSR color one. Such end-to-end cross-camera
synthesis is decomposed into consecutive reference-based exposure compensa-
tion, reference-based colorization and reference-based super resolution, by which
we can effectively capture, learn and fuse hybrid inputs for high-quality color im-
age with improved granularity of illumination, spectra and resolution. Extensive
experiments using both synthetic images from public datasets and real captured
scenes evidence that our work offers the encouraging low-light imaging efficiency
with such dual camera setup.
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