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Abstract. In this paper, we propose to learn a powerful Re-ID model
by using less labeled data together with lots of unlabeled data, i.e. semi-
supervised Re-ID. Such kind of learning enables Re-ID model to be more
generalizable and scalable to real-world scenes. Specifically, we design a
two-stream encoder-decoder-based structure with shared modules and
parameters. For the encoder module, we take the original person image
with its horizontal mirror image as a pair of inputs and encode deep
features with identity and structural information properly disentangled.
Then different combinations of disentangling features are used to recon-
struct images in the decoder module. In addition to the commonly used
constraints from identity consistency and image reconstruction consis-
tency for loss function definition, we design a novel loss function of en-
forcing consistent transformation constraints on disentangled features. It
is free of labels, and can be applied to both supervised and unsupervised
learning branches in our model. Extensive results on four Re-ID datasets
demonstrate that by reducing 5/6 labeled data, Our method achieves
the best performance on Market-1501 and CUHK03, and comparable
accuracy on DukeMTMC-reID and MSMT17.

1 Introduction

Person Re-Identification (Re-ID) aims to automatically match the underlying
identities of person images from non-overlapping camera views [1]. As an es-
sential task in video surveillance of distributed multi-cameras, Re-ID is very
important for individual-specific long-term behavior analysis. Due to variations
of view angles, poses and illuminations in different cameras, it’s very challenging
to tackle this task.

In person Re-ID community, many models have been proposed, which mainly
focus on three parts: hand-crafted descriptor design, metric learning and deep
Re-ID models. Hand-crafted person descriptors [2–4] try to design features that
are robust to different view angles, poses, and illuminations. Metric learning
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[5, 6] aims to learn a feature projected space wherein the similarity of same
person is higher than that of different person. With successful application of
deep Convolution Neural Network (CNN), deep Re-ID [7–13], models are able
to straightly learn robust and discriminative features in a compact end-to-end
manner, which have gained more and more attention.

Based on whether identity labels are used, deep Re-ID models can be roughly
divided into supervised and unsupervised ones. The former trains models with
a supervised loss such as classification loss [10] and triplet loss [14]. The latter
solves unsupervised Re-ID with cross-dataset domain-adaptation learning [15–
17], tracklet information [18], or clustering-based pseudo-labels learning [19]. Al-
though the above two kinds of Re-ID methods have achieved promising progress,
they still suffer from their inherent weaknesses. Supervised Re-ID methods re-
quire massive cross-camera identity-labels to avoid over-fitting a training set.
Obtaining such labels can be very time-consuming and expensive. In unsuper-
vised Re-ID methods, domain-adaptation learning also needs source labeled data,
tracklet-based methods rely on accurate tracking results, and pseudo-labels are
sensitive to initial parameters. Besides, existing unsupervised Re-ID methods
are still far from supervised ones in terms of accuracy.

In this paper, we formulate Re-ID problem in a semi-supervised way by
leveraging a few labeled and lots of unlabeled data. Our semi-supervised Re-ID
method enjoys the following two merits. 1) Compared with pure supervised Re-
ID methods, our method requires less labeled data. Besides, auxiliary by mega
unlabeled data, it avoids over-fitting on the training set. 2) Compared with pure
unsupervised Re-ID methods, ours can achieve better accuracy by exhaustively
exploring the limited labeled data.

In order to learn more robust and discriminative deep global features for Re-
ID task, disentangled feature learning (DFL) is introduced in our work. Usually,
DFL requires multi-inputs to disentangle features with different semantics. In
our work, we found that a pair of horizontally flipped images changed the person
structural information while maintaining the identity and attribute characteris-
tics unchanged, and showed a symmetrical distribution. Then, we simply take
the original person image with its horizontal mirror image as two inputs of DFL
module, which does not need extra complicated operations and costs like other
methods [20, 21, 11, 22, 23]. DFL module is designed in an encoder-decoder way
to disentangle identity-aware features and structure-aware features, which has
been applied on the original image and its horizontal mirror image respectively.
With respect to the four disentangled features, two identity-aware features from
the original image and its mirror image should be the same, meanwhile, two
structure-aware features should satisfy mirror symmetry. However, the above
invariance and equivariance constraints are often missing in the normal Re-ID
training process, which only considers image-level identity labels. After that, four
different combinations of disentangling features are used to reconstruct images
in the decoder module.

Our main contributions can be summarised as below:
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(1) We propose a novel semi-supervised Re-ID framework, which consists of
two branches with shared feature disentanglement models, one for supervised
task and the other for unsupervised task. It alleviates limitation of labeled data
by exploiting lots of unlabeled data.

(2) We exploit unsupervised data by disentangling images and its horizon-
tal flipping images into structure-aware and identity-aware features in a self-
supervised way. A consistent transformation constrained loss function including
identity invariance and structure equivariance is defined on disentangled features,
which is free of labels.

(3) Extensive results on four Re-ID datasets demonstrate that by reducing
5/6 labeled data, Our method achieves the best performance on Market-1501
and CUHK03, and comparable accuracy on DukeMTMC-reID and MSMT17.

2 Related Work

2.1 Semi-supervised Person Re-identification

There are a few early semi-supervised work on person Re-ID. Figueira et al.
[24] propose a method that combines multiple semi-supervised feature learning
frameworks to deal jointly with the appearance-based and learning-based Re-ID
problem. Liu et al. [25] propose a semi-supervised coupled dictionary learning
method, which jointly learns two coupled dictionaries in the training phase from
both labeled and unlabeled images. However, these non-deep-learning methods
can only achieve good results on small-scale datasets.

In recent years, with the development of deep CNN, some deep semi-supervised
person Re-ID methods have been presented. The first semi-supervised approach
[26] that performs pseudo-labeling by considering complex relationships between
unlabeled and labeled training samples in the feature space. They adopt a gen-
erative adversarial network to generate additional artificial sample data as un-
labeled data. Huang et al. [27] introduce multi-pseudo regularized labels and
distribute them to the generated data to supplement the real training data in
a semi-supervised manner. Liu et al. [22] design a simple but effective learning
mechanism that merely substitutes the last fully-connected layer with the pro-
posed Transductive Centroid Projection (TCP) module. Fan et al. [28] propose
a simple and progressive unsupervised deep learning framework, whose purpose
is to use k-means clustering to estimate the labels of unlabeled training samples,
and extend it to semi-supervised Re-ID. Xin et al. [29] propose a semi-supervised
method that combines multi-view clustering and deep metric learning to repeat-
edly update the pseudo-labels of unlabeled training samples.

Different from the above methods, our method does not follow the idea of
pseudo labelling and clustering, but construct an encoder-decoder feature disen-
tanglement framework which can be learned not relying on the labels.

2.2 DFL-based Person Re-identification

In recent years, disentangled feature learning(DFL)-based person Re-ID has
gained more and more attention [22, 20, 11, 23, 30–34]. DFL is expected to pro-
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vide gains by separating the underlying structure of data into uncorrelated mean-
ingful variables, which helps determine what types of hidden features are actually
learned [35]. Current DFL-based Re-ID methods usually adopt GAN or auto-
encoder model to separate different attributes (i.e., appearance or pose, etc.)
from multi-inputs of a person. Among them, posture is the most considered at-
tribute. Ma et al. [22] use a complex multi-branch model to decompose the input
person image into the foreground, background, and pose to generate a specific
image, but the model cannot be trained end-to-end. Qian et al. [20] generate a
normalized pose image for each person, but there are only 8 predefined poses. Ge
et al. [11] also guide the network to learn pose-invariant features, but utilizing
human key points to describe pose features, which is time-consuming. Based on
previous work, Li et al. [23] not only extract pose features, but also use additional
key features of human body.

Therefore, most of the current work can be summarized as follows: 1) Ad-
ditional annotations are used, such as human keypoint features. They define
characteristics of human posture information as constraints to guide the net-
work to learn identity-invariant features. 2) Requiring person samples with dif-
ferent postures for learning identity-invariant features. However, both methods
have their shortcomings. The first requires the introduction of additional an-
notations, which increases the complexity of the network. Samples that meet
the conditions of second method are difficult to find. Either you need to select
samples with different poses or using GAN to generate these multi-pose sam-
ples. Even if you find these kinds of samples, different posture images caused by
different perspectives will bring confusion in attributes, resulting ambiguity in
identity. For example, the chaos of carrying school bag due to changes in camera
view, or the chaos of long hair because the person turns around.

In order to avoid the above disadvantages and make full use of existing data,
we simply horizontally flip the original image without introducing extra annota-
tions or complicated GAN model. The horizontal mirror image implicitly reflects
structural information and enjoys several merits: identity and attributes invari-
ance, and structural symmetrical equivariance.

3 Our Approach

In this section, we firstly describe the overall architecture of our network. Then,
we introduce Disentangled Feature Learning for semi-supervised Re-ID task,
followed by loss functions explanation.

3.1 Overall Framework

The overall architecture of the proposed framework is shown in Fig.1. Our semi-
supervised framework consists of two branches: a supervised branch and an un-
supervised branch. For each branch, we design an Encoder-Decoder network to
realize feature disentanglement and reconstruction. We take a pair of original
image IO and its horizontal mirror image IT along with the label Y as three
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Fig. 1. Overview of our framework. Our Semi-supervised framework consists of two
branches with shared feature disentanglement models, one for supervised task and
the other for unsupervised task. The labeled and unlabeled data are simultaneously
adopted to train the whole framework.

inputs for supervised branch, and omit the label for unsupervised branch. The
final loss LTotal equals to the weighted summation of supervised branch loss LS

and unsupervised branch loss LU . Constraints on label consistency Lid, image
reconstruction Lrec, and consistent transformations on disentangled features Lct

are considered for designing supervised loss LS . While only Lct and Lrec are
considered in unsupervised loss LU . The detailed description about feature dis-
entanglement model and loss functions design are referred to next following sub-
sections. Due to sharing parameters and training as a whole, under the strong
label guidance learning in the supervised branch, the unsupervised branch can
effectively make full use of a large amount of unlabeled data.

3.2 Disentangled Feature Learning

For person Re-ID tasks, it is very important to mine person identity information
with different structural information under different views. We hope to guide the
network to learn how to disentangle the mixed global features into independent
structure-aware features and identity-aware features. Previously, some methods
build pairs of images which have same identity but different structures, effectively
disentangling features through Siam network. However, for unlabeled data, we
cannot find samples that have same identity but different structures. Here we are
inspired by data augmentation, and can obtain new mirror structural samples
through flipping and horizontal displacement operations. Mirror samples meet
our requirements for a pair of person samples: 1) the same identity 2) different
structure.

Thus, we design an encoder-decoder-based feature disentanglement network
which requires a pair of inputs, shown in Fig.2(a). DenseNet-121 [36] pretrained
on ImageNet [37] is chosen as our auto-encoder backbone by removing the final
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Fig. 2. Disentangled feature learning network for Re-ID task. (a) Encoder-decoder-
based backbone to disentangle identity-aware features from structure-aware features.
Both self-reconstruction and swap-reconstruction are considered in the reconstruction
loss function. G

{self,swap}

{O,T} denotes the generated reconstruction image after decoder

module in each path, corresponding to operation D(·, ·) in Eqn.(2) and Eqn.(3). The
dotted lines indicate that these parts only exist in supervised branch. (b) Illustration
of consistent transformation constraints on disentangled features.

pooling and fully-connected layers. Please note that, although most existing Re-
ID methods take ResNet-50 as CNN backbone, we choose a smaller DenseNet-121
compared with ResNet-50 (8M params vs. 25.5M params). Taking the original
image input IO as an example, two auto-encoders (Eid and Estruct) with the same
structures but different parameters are respectively applied to encode identity-
aware features fO

id and structure-aware features fO
struct. We define a Horizontal

Flipping Transformation T (·), which is used to generate the horizontal flipped
image IT = T (IO). By analogy, fT

id and fT
struct can be also decomposed from the

horizontal flipped image IT . The superscript O and T denote the original image
and its horizontal flipping image, respectively. Then, we concatenate two disen-
tangled features with different semantics, resulting four different combinations
followed by a decoder network D to reconstruct images. Decoder D consists of
5 transposed convolutional layers followed by batch normalization [38], leaky
ReLU [39] and dropout [40].

In order to guarantee that the disentangled features encoding semantic in-
formation, the reconstructed images should satisfy the following criteria: 1) Self-
reconstruction. if both identity-aware features and structure-aware features are
decomposed from the same image, i.e., (fO

id and fO
struct) or (f

T
id and fT

struct), the
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reconstructions are certainly similar with themselves corresponding input im-
ages, i.e., IO or IT ; 2) Swap-reconstruction. if the decomposed identity-aware
features and structure-aware features are from different input images, i.e., (fO

id

and fT
struct) or (f

T
id and fO

struct), the reconstructions are consistent with the image
from which the structure-aware features are disentangled, i.e., IT or IO.

Therefore, by obeying the above criteria, we define the final reconstruction
loss function Lrec composed of two kinds of reconstructions:

Lrec = Lself
rec + Lswap

rec (1)

The first item Lself
rec follows the first criteria, each reconstruction is similar to

itself, i,e.,

Lself
rec = ||IO −D(fO

id , f
O
struct)||2 + ||IT −D(fT

id, f
T
struct)||2 (2)

where D(·, ·) denotes the reconstructed image by concatenating two decomposed
features, ||·||2 is the pixel-wise L2 loss. The second item Lswap

rec follows the second
criteria. Disentangled identity-aware features and structure-aware features are
expected to be independent of each other. Obviously, identity features do not
change after flipping the image, and the reconstructed image is determined by
the structure-aware features. Thus, the second reconstruction loss can be defined
as follows:

Lswap
rec = ||IO −D(fT

id, f
O
struct)||2 + ||IT −D(fO

id , f
T
struct)||2 (3)

3.3 Consistent Transformation Constraints

Traditional supervised Re-ID frameworks [22, 23, 21] are trained under the iden-
tity label guidance to encode the global person features. Different from them,
in our work we adopt a disentangled feature learning framework to decompose
semantic mixed features into independent features with different characteristic.

As described in subsection 3.2, with respect to a pair of image and its hori-
zontal mirror inputs, four disentangled features are obtained. Among them, two
are identity-aware features, the other two are structure-aware features. Because
horizontal flipping will not change the person identity, these two disentangled
identity-aware features should satisfy invariant properties. At the same time, the
two structure-aware features accordingly presents equivariant transformation as
two images, i.e.,the output feature maps of flipped images are also flipped to
ensure the consistency of structure features. Fig.3 is an illustration of these con-
straints. The left part in Fig.3 displays identity invariance constraint, therein
the generated two identity-aware features fO

id and fT
id should maintain invariant.

The right part in Fig.3 displays structure equivariance constraint, therein two
structure-aware features fO

struct and fT
struct should maintain horizontal symme-

try.
Therefore, following the above ideas we respectively design the identity in-

variance transformation loss function Linv and structure equivariance transfor-
mation loss function Lequ as:

Linv = DKL(f
O
id ||f

T
id) (4)
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Fig. 3. Illustration of consistent transformation constraints on disentangled features.
Identity Invariance Constraint (left) The identity information does not change
as the image is horizontally flipped. Structure Equivariance Constraint (right)
The structure information is flipped equivariantly as the image is horizontally flipped.
Grad-CAM [41] is adopted for feature maps visualization.

Lequ = DKL(f
O
struct||T (f

T
struct)) (5)

where DKL(·) is the Kullback–Leibler divergence distance. With respect to KL
divergence applied on feature maps (fO

id , f
T
id, f

O
struct, f

T
struct), we firstly apply Soft-

max operation along channel dimension to enforce a discrete distribution at each
element location, then element-wise KL divergence loss is applied between pre-
transform and after-transform feature maps.

The overall loss function under these two consistent transformation con-
straints could be defined as:

Lct = Linv + Lequ (6)

These two constraints reflect the intrinsic correlation among disentangled fea-
tures, which guarantees the disentangled feature learning well conducted. This
loss function is free of labels, can be applied both supervised learning and unsu-
pervised learning.

3.4 Semi-Supervised Training and Testing

Annotating person Re-ID datasets is a very time-consuming task. We introduce a
semi-supervised method to train Re-ID model using less labeled data by making
full use of unlabeled data. Our model consists of a supervised branch and an
unsupervised branch, where two branches share the same parameters.

For the unsupervised branch, the disentangled features get the consistent
transformation constrained loss Lct, and then different combinations of features
are concatenated into the decoder to reconstruct images under the reconstruction
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loss Lrec. In this case, the unsupervised training loss LU is defined as:

LU = αLct + βLrec (7)

where α and β control the relative importance of the corresponding objectives.
We empirically set α = 5, β=0.3 in our experiments.

For the supervised branch, in addition to the unsupervised loss mentioned
above, we use the identity label as a strong supervised signal to guide our model
to disentangle identity-aware and structure-aware features more effectively. Here
we use cross-entropy loss function Lid applied on the two identity feature vectors
(fO′

id and fT ′

id ), which are generated by GAP&FC operation based on the disen-
tangled feature maps (fO

id and fT
id). As shown in Fig.1 and Fig.2, Lid denoted

by dashed line is only valid for supervised branch. In this case, the supervised
training loss LS is defined as:

LS = αLct + βLrec + Lid (8)

In our training process, supervised branch and unsupervised branch are
trained as a whole. We define the overall loss function Ltotal as follows:

Ltotal = γLU + LS (9)

where γ is the weighting parameter. The training loss Ltotal is used to optimize
the whole network. The unsupervised branch is trained under the guidance of
supervised branch to make the feature disentangling be more successful and
effective.

During testing, we input each test image in conjunction with its horizontal
flipping image into ID encoder model (Eid in Fig.2) respectively, and take the
mean of two disentangled id-aware feature vectors (fO′

id and fT ′

id ) as the final
global feature vector. Cosine similarity is used for matching with gallery images.

4 Experiments

4.1 Experimental Configurations

We evaluate our proposed method on 4 datasets (Market-1501 [3], DukeMTMC-
reID [13], CUHK03 [42] and MSMT17 [43]) under both semi-supervised and
fully-supervised settings. When using the semi-supervised setting, we split train-
ing set into the labeled and unlabeled data according to identities. Under the
fully-supervised setting, we view all images in training set as labeled ones. Cu-
mulative match curve (CMC) and mean average precision (mAP) are used as
evaluation protocols. The detailed description about 4 datasets are given as
follows. Market-1501 [3] consists of 32,668 labeled images of 1,501 identities
captured by 6 cameras; wherein 12,936 images are for training and 19,732 im-
ages are for testing. DukeMTMC-reID [13] collects from 8 cameras and is
comprised of 36,411 labeled images of 1,404 identities. Especially, 702 identities
are for training and the others are for testing. CUHK03 [42] contains 14,096
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Table 1. Comparison with five state-of-the-art Re-ID methods when labeled data ratio

is set to 1/6. Our method achieves the best performance on Market-1501 and CUHK03,
and comparable accuracy on DukeMTMC-reID and MSMT17.

Methods
Market-1501 DukeMTMC-reID CUHK03 MSMT17
Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

IDE (arXiv) [10] 30.4 18.5 40.1 21.5 11.7 10.5 13.7 6.4
MGN (MM’2018) [45] 75.4 52.0 69.1 50.1 19.5 20.4 55.3 21.6
PCB (ECCV’2018) [7] 74.1 48.2 68.4 45.8 23.2 21.4 23.2 12.4
BoT (CVPRW’2019) [9] 65.6 42.3 60.5 41.0 16.5 16.4 34.6 14.5
ABD-Net (ICCV’2019) [8] 68.0 48.1 68.0 48.2 26.0 25.2 45.4 21.0

Ours 77.8 54.5 69.0 50.5 32.9 29.8 44.5 29.3

images of 1,467 identities, captured by 6 camera views. Among these identities,
767 identities with a total of 7368 images are used for training and 700 identities
with a total of 6728 images are for testing. MSMT17 [43] has 126,441 images
of 4,101 identities captured by a 15-camera network (12 outdoor, 3 indoor). This
large dataset is closer to the real scene in terms of environment diversity and
amount of identities. 1041 identities with 32621 samples are for training and
3060 identities with 93820 samples are for testing.

During training, the input images are resized to 256 × 128 augmented by
random erasing operation [44]. The batch size is set 96. Considering that the
encoders are pre-trained on ImageNet, its initial learning rate is 0.01, which is
smaller than the two fully connected layers and decoder, whose learning rates
are 0.1. The learning rates are decayed to its 0.1× and 0.01× at 70th and 80th
epochs, and end at 90 epochs.

4.2 Comparison with State-of-the-Art under Semi-Supervised

Setting

We denote the proportion of labeled data in the training set as ratio and the
rest are used as unlabeled data. We evaluate the effectiveness of our approach
with different settings of ratio. For example, in the Market-1501 dataset, there
are 751 pedestrians in the training set. If we define ratio is 1/3, we only select
250 identities as the labeled data, and the remaining images of 501 identities as
the unlabeled data.

We compare ours with 5 state-of-the-art Re-ID methods, including IDE [10],
MGN [45], PCB [7], BoT [9] and ABD-Net [8]. Multiple experiments are con-
ducted on different datasets by setting ratio to 1/3, 1/6 and 1/12. Quantitative
comparison results are shown in Fig.4. We found that the lower the percentage
of labeled data, the better our method worked. When the proportion of labeled
data is 1/12, our method has got Rank-1 scores increased by 51.9%, 16.7%, 6.0%,
3.7% and 1.8%, and has got mAP increased by 31.9%, 12.9%, 5.2%, 4.8% and
5.1%, compared with IDE, BoT, MGN, PCB and ABD-Net methods. Among
them, MGN and PCB methods extract stripe-level features of the target, IDE
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Fig. 4. Semi-supervised quantitative comparison results of six methods on Market-
1501, DukeMTMC-reID, CUHK03, MSMT17 under different ratio values.

and BoT directly use global features, and ABD-Net extracts features through
attention mechanism based on channel dimension and spatial dimension.

We especially show the experimental results by setting ratio to 1/6 in Ta-
ble 1. For example, on Market-1501, the global feature-based methods IDE and
BoT have poor results. Their Rank-1 are 30.4% and 65.6%, respectively. Global
features learned in Re-ID task have limited capability of extracting effective and
discriminative features. Stripe-based methods perform well on Market-1501 and
DukeMTMC-reID. For example, MGN achieves 75.4%, 69.1% Rank-1 scores and
52.0%, 50.1% mAP on Market-1501 and DukeMTMC-reID datasets. This shows
that on small datasets, local features help improve performance. Attention-
based ABD-Net perform well in CUHK03, with 26.0% Rank-1 and 25.2% mAP
scores, respectively. This also shows that the attention-based method can ef-
fectively mine deeper features. Through feature disentangling and consistent
transformation constraints, our method only considering global features achieves
the best accuracy on Market-1501 and CUHK03, and comparable accuracy on
DukeMTMC-reID and MSMT17, which demonstrates that our proposed method
is capable of effectively extracting more robust features.

4.3 Comparison with State-of-the-Art under Supervised Setting

In this section, fully supervised setting is applied. The unsupervised branch
is invalid in our method. We report the performance comparisons of ours and
11 state-of-the-art Re-ID models including hand-crafted methods [3], attention-
based methods [8], stripe-based methods [45, 7], global feature methods [10, 9,
47], and GAN-based methods [46, 20, 21, 11]. The quantitative comparison results
are shown in Table 2.

As we can see, the hand-crafted features has got the worst accuracy on all
four datasets. For example, on Market-1501, its Rank-1 is 44.4%, much lower
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Table 2. Comparison with state-of-the art Re-ID methods under supervised setting,
i.e. using all training images as labeled ones. Unsupervised branch is invalid in our
method.

Methods
Market-1501 DukeMTMC-reID CUHK03 MSMT17
Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

BoW (ICCV’2015) [3] 44.4 20.8 25.1 12.2 6.4 6.4 - -
IDE (arXiv) [10] 72.5 46.0 65.2 44.9 - - - -

Cam-GAN (CVPR’2018) [46] 89.5 71.5 78.3 57.6 - - - -
Pose-Normalized (CVPR’2018) [20] 89.4 72.6 73.6 53.2 - - - -

MGN (MM’2018) [45] 95.7 86.9 88.7 78.4 66.8 66.0 - -
PCB (ECCV’2018) [7] 92.3 73.3 81.7 66.1 63.7 57.5 68.2 40.4

DG-Net (CVPR’2019) [21] 94.8 86.0 86.6 74.8 65.6 61.1 77.2 52.3
BoT (CVPRW’2019) [9] 94.5 85.9 86.4 76.4 - - - -

FD-GAN (NIPS’2019) [11] 90.5 77.7 80.0 64.5 - - - -
VCFL (ICCV’2019) [47] 89.3 74.5 - - 61.4 55.6 - -
ABD-Net (ICCV’2019) [8] 95.6 88.2 89.0 78.6 - - - -

Ours 95.0 86.7 88.9 78.0 68.8 64.9 78.8 55.9

than deep Re-ID methods, which achieve around 90%. Among deep Re-ID meth-
ods, GAN-based methods [46, 20, 21, 11] are not so satisfying. The reasons may
be that GAN import some noise to the generated images, and attention mech-
anism is not so useful for well-cropped images. For example, Cam-GAN and
Pose-Normalized perform less than 90% on Market-1501. Compared with the
above two kinds of methods, global feature-based methods [10, 9, 47] achieve
very good performance. For example, BoT achieves 94.5% and 86.4% Rank-1
scores, and 85.9% and 76.4% mAP scores on Market and DukeMTMC-reID,
respectively. Unsurprisingly, stripe-based methods achieve better accuracy than
the global feature-based methods. Take MGN as an example, it gets 95.7% and
88.7% Rank-1 scores, and 86.9% and 78.4% mAP scores on Market-1501 and
DukeMTMC-reID, respectively. Finally, our method uses only global features
and achieves comparable performance with stripe-based methods on Market-
1501 and DukeMTMC-reID, even better accuracy on CUHK03 and MSMT17.
The analysis above demonstrates the effectiveness of our proposed methods un-
der supervised setting.

4.4 Ablation Analysis and Effect of Hyper-parameters γ, α and β

Our method introduces two main parts, namely, disentangling feature learning
(DFL) and the Consistent Transformation loss (CT loss), which are systemat-
ically analyzed through experiments. The performance of each component in
fully-supervised task and semi-supervised task are shown in Fig.5.

Baseline If CT loss and DFL are disabled, our model degenerates into a classi-
fication model containing only one DenseNet-121 branch. Since our model only
uses the cross entropy loss function, our baseline model also uses the cross en-
tropy loss function.
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Fig. 5. Ablation analysis of three components on Market-1501. DFL refers to disentan-
gled feature learning. CT means Consistent Transformation loss. LS represents label
smooth adopted as a trick in our method. The first column is for fully-supervised case,
and the last three columns are for semi-supervised cases with different labeled ratio

values.

Baseline+DFL We simultaneously input a pair of structure mirror images and
add a DFL module.

Baseline+DFL+CT loss Consistent transformation constraints are intro-
duced for disentangled identity-aware features and structure-aware features.

As each component is applied one by one, we can observe significant perfor-
mance improvements from Fig.5. For the fully-supervised case (the first column
in Fig.5), Rank-1 is 88.9% when no strategies are used. When incrementally
applying DFL, CT, SL, Rank-1 is increased to 93.9%, 94.7% and 95.0%, respec-
tively. When reducing the proportion of labeled data in semi-supervised case,
the effect of adding these strategies to the model is becoming more and more
obvious. For example, when the ratio is 1/12, after adding DFL and CT, Rank-1
increases by 26.2%, and mAP increases by 19.8% compared with baseline. These
three modules also have different impacts on model performance. As the results
showing, DFL has the greatest impact on model performance. It also verifies
that the combination of these components is complementary and conducive to
achieve better performance.

The effect of hyper-parameters γ, α and β in the loss function In the
total loss function, we set a parameter γ for unsupervised loss. The performance
of our model is also related to this parameter. As can be seen from Fig. 6, when
the parameter γ is 0.01, the performance of the model is the best. Particularly,
when γ = 0 means only the supervised branch of the framework is valid. There-
fore, it has verified that by utilizing the labeled data together with unlabeled
data can bring performance improvement. Fig.7 shows the performance analysis
on α and β. We choose α = 5 and β = 0.3 because of their better performance.
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Fig. 6. Analysis on hyper-parameter γ of unsupervised loss

Fig. 7. Analysis on hyper-parameters α and β.

5 Conclusion

In this paper, we proposed a novel semi-supervised Re-ID framework, which
consists of two branches with shared feature disentanglement models, one for
supervised task and the other for unsupervised task. It alleviates limitation
of labeled data by exploiting lots of unlabeled data. Furthermore, we design
a free-of-label loss function to enforce consistent transformation constraints on
disentangled features, which can be applied to both supervised and unsupervised
learning branches. We have shown in ablation analysis experiments, the combi-
nation of above components play a very important role in performance improve-
ment. A series of comparison results with stat-of-the-art methods have shown the
good performance of ours in both semi-supervised and supervised tasks, and also
demonstrated that our method can make full use of labeled data and unlabeled
data. In the future, we plan to establish deeper connections between supervised
and unsupervised branches and design a better training strategies.
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