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Abstract. Recently, data augmentation techniques for training conv-
nets emerge one after another, especially focusing on image classification.
They’re always applied to object detection without further careful de-
sign. In this paper we propose COG, a general domain migration scheme
for augmentation. Specifically, based on a particular augmentation, we
first analyze its inherent inconsistency, and then adopt an adaptive strat-
egy to rectify ground-truths of the augmented input images. Next, deep
detection networks are trained on the rectified data to achieve better
performance. Our extensive experiments show that our method COG’s
performance is superior to its competitor on detection and instance seg-
mentation tasks. In addition, the results manifest the robustness of COG
when faced with hyper-parameter variations, etc.

1 Introduction

Over the past two decades, the vision community has made considerable progress
on object perception, including image classification[1], object detection[2] and
instance segmentation[3]. This is mainly due to the emergence of deep convo-
lutional neural networks(CNNs) and massive annotated data. Along with the
increase of CNNs’ capacity (including depth, width etc), accuracies of theses
tasks continue to increase. However, this growth may bring catastrophic over-
fitting phenomenon. In order to improve CNN’s generalization and robustness,
data augmentation strategies are often used to generate data with more diverse
input distribution.

Existing augmentation techniques mainly stem from the image classifica-
tion community. They usually contain three categories: 1). spatial transforma-
tion, such as random scale, flip, rotation; 2). color distortion, such as randomly
changing pixel value in color space like RGB or HSV; 3). information dropping
or stitching, such as randomly dropping regions; These methods try to change
different properties of original images to obtain more training data, and then
achieve considerable accuracy improvement.
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Nevertheless, most augmentation methods are first proposed for the image
classification task. They are always transferred to other tasks with little change.
This direct migration is not quite reasonable. Because image classification just
inputs one image and outputs a single label. The robustness requires that even if
randomly changing input, the output label should be the same. But this require-
ment is not appropriate for other tasks, such as object detection and instance
segmentation, which needs precise localization. For example in the detection
task, if the augmentation randomly removes the half body of one annotated per-
son from the image(please see Fig 2d), we need to figure out which bounding-
box(bbox) matches the augmented input most consistently. The possible choices
contain 1). original person box; 2). the person with half body; 3). the person
disappears. The first choice will force the model trying to detect objects un-
der severe occlusion, but this may be difficult if the whole person is occluded;
The second choice wants to force the model obtaining accurate boundaries of
objects, but this may fetch ambiguity of person category (the whole body and
the half body both belong to the person category); The third choice just goes
over to the opposite side of the first choice, namely deleting the ground-truth of
objects (as ignored when training) which are under severe occlusion. In practice,
the annotator also needs to make choices when meeting crowd scenes with occlu-
sion. As far as we observe, most annotation in COCO[4] and CrowdHuman[5],
characterize the whole outline of each object, namely the 1st choice. It’s because
the occlusion here is mainly from other foreground objects like horses or cars
that can provide context information for predicting occluded targets. However,
this is not the optimal choice for data augmentation. For example, GridMask[6]
also makes the 1st choice as shown in fig 2e, but this will bring inconsistency
if 90% of the object is occluded by the gray areas. The gray areas don’t bring
extra context information. Therefore, more intelligent choices are needed here.

We believe that the key factor of making optimal choices is making the pair,
namely (input image, output box, and label), consistent. If the occlusion is a lit-
tle, the original gt-bbox can be reserved; If the occlusion is not severed but cannot
be ignored, gt-bbox can be rectified; If the occlusion is very severe, the origi-
nal gt-bbox can be removed. In this way, the best strategy is making the choice
adaptively based on the degree of occlusion. Fig 1a shows different choices under
different occlusion levels. To validate our hypothesis, we start from one augmen-
tation method (GridMask) originated from the classification domain, and then
point out the inconsistency when migrating to the detection domain directly.
Next, we propose the COG method to rectify the inconsistency adaptively. The
general difference are shown in Fig 2. Finally, COG can obtain higher perfor-
mance in detection and instance segmentation tasks, which means that better
choices are made in COG when facing region removal. The performance shown
in fig 1b validates the superiority of COG.

In short, our main contribution can be summarized as follows:

– we analyze the inconsistency between input images and corresponding labels
when encountering data augmentation in the detection task.

– we propose COG to rectify this inconsistency adaptively.
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(1).completely reserved (3).completely removed(2).partially reserved

(a) COG v.s. GridMask: Here the blue
region is the gt-mask of this person. And
the gray region means that GridMask
method occludes some part. The green and
solid line is the gt-bbox of this person used
in GridMask. The yellow and dash line is
the gt-bbox of this person used in COG.
According to the occlusion level, COG pro-
vides gt-bbox adaptively.

(b) mAP on test-dev: For both
Faster R-CNN and RetinaNet, COG
is superior to GridMask.

– we conduct extensive experiments and validate that our method benefits
different detectors under various settings. Besides, comparable improvements
have been achieved in other perception tasks.

The rest of this paper is organized as follows. Section 2 presents some related
works about object detection and corresponding data augmentation. Section 3
analyzes the inconsistency and proposes COG. Experiment studies, including a
comparison of the results and corresponding analysis, are presented in section 4.
Finally, we conclude in section 5.

2 Related Work

We will introduce general data augmentation paradigms used in training CNN
models. Next object detection and specially designed augmentation methods are
also described.

2.1 Data Augmentation

Regularization is an effective technique to prevent CNN from over-fitting. Data
augmentation is a special regularization which only operates on the data. It
aims to increase the diversity of input distribution and is also easy to deploy.
The basic augmentation policy consists of random flipping, random cropping,
and random coloring, etc. Based on these policies, AutoAugment[7] tries to
search the optimal combination of existing augmentations in virtue of rein-
forcement learning. [8,?] accelerates the searching process of AutoAugment. In
addition, there are some methods that focus on deleting information in input
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images through certain policies to strengthen the robustness. For example, ran-
dom erasing[10] and cutout[11] randomly delete one continuous region in the
image. Hide-and-Seek[12] divides the image into small patches and delete them
randomly. GridMask[6] wants to drop and reserve information uniformly in im-
ages. Most methods previously mentioned are effective in training CNN models,
but they are always experimented on the image classification task.

2.2 Object Detection

The object detection task attempts to locate and classify possible targets in the
image at the same time. Benefit from the representation capacity of deep conv-
feature, CNN-based detectors [13,?,?,?,?] have become a dominant paradigm
in the object detection community. The R-CNN series and its variants [2,?,?]
gradually increase the upper bound of the performance on two-stage detectors.
In particular, Faster R-CNN[2] is the principal architecture in these methods. It
adopts a shared backbone network to extract features for subsequent proposal
generation and RoI classification, resulting in real-time detection and rising ac-
curacy. Besides, one-stage methods like RetinaNet[18] also work well.

Together with these efficient detectors, particular augmentation strategies
are also designed for detection applications. Mosaic[19] tries to mix 4 training
images with different contexts. This strategy significantly reduces the need for a
larger mini-batch size. GridMask[6] can be extended to detection without spe-
cial modification. Deep reinforcement learning is also used in [20] to find a set
of best strategies for object detection automatically. InstaBoost[21] boosts the
performance on instance segmentation by probability map guided copy-pasting
techniques.

3 Method

We will formally introduce our COG, namely COnsistent auGmentation, in this
section. To facilitate understanding, 3.1 analyzes the inconsistency in original
GridMask. Then, 3.2 details the COG paradigm and its implementation.

3.1 Inconsistency in GridMask

Original GridMask Original GridMask[6] is a simple, general, and efficient
strategy for data augmentation. Given an input image, GridMask randomly re-
moves some regions which are distributed across the image uniformly. In other
words, the removed regions are neither a continuous region[11] nor random pix-
els in dropout. They are disconnected pixel sets which are aligned to grids, as
illustrated in Fig 2d. These gray regions with grid shape guarantee that both
information deletion and reserve co-exist in augmentation.

In detail, the operation of GridMask can be summarized by eq 1.

x̂ = x×M (1)
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Concretely, x ∈ RH×W×C denotes the original input image, M ∈ {0, 1}H×W

denotes the corresponding binary mask matrix, and x̂ ∈ RH×W×C is the aug-
mentation result generated by GridMask. For the binary mask M, if Mi,j = 1,
we keep the original pixel (i, j) in x; otherwise the pixel value at position (i, j)
will be set to the mean RGB value, namely 0 value after image normalization.

Fig 2c displays the M with grid-shape and corresponding control parameters.
It should be noted that the dark gray areas denote the regions where Mi,j = 0;
while the light white areas denote the regions where Mi,j = 1. The parameters
here contains (r, d, δx, δy), which control the exact appearance of M. Among
them, d means the length of one grid unit; 1 − r means the proportion of the
removed gray square in one grid unit; δx, δy means the start pixel of the first
grid unit in an image.

In order to increase the diversity of M, these hyper-parameters will be gener-
ated randomly for each image. Unless otherwise specified, the d is sampled from
[dl, dh] = [32, 512], δx, δy is sampled from [0, d − 1], and the r is set to 0.5 like
original GridMask[6].

Inconsistency Details Although the original GridMask can increase the ro-
bustness of the detection model and improve the performance by nearly 1.0
points on COCO[4], there also exists inconsistency. The main inconsistency orig-
inates from mismatching between x̂, namely input image after GridMask, and
the adopted ground-truth gt(x) (including category labels and geometry bboxes
in this image). If there is no augmentation, the input image x and correspond-
ing ground-truth gt(x) match perfectly. Because the gt(x) is from the official
annotation. But when GridMask is employed on some x to get x̂, some region
in x is removed. At this moment, parts of some objects may be covered by the
gray regions. Then, the original annotations of these objects don’t match to x̂

well, as shown in Fig 2e. In other words, the original GridMask uses the changed
image x̂ and the original but fixed annotation gt(x) to train the CNN model.
This strategy can be explained as increasing the robustness for occlusion, as the
first choice mentioned in section 1. The CNN model will be trained to infer the
whole object’s category and geometry bbox when given a part of this object.

We argue that this approach may be challenged when the occlusion is severe
in GridMask in both qualitative and quantitive perspectives. Qualitatively, the
occlusion is inevitable as shown in Fig 2e. Even as an annotation worker, such
as MTurk, he/she may feel difficult to give precise bounding-box. Quantitively,
our statistical result shows that about 25.1% area of the foreground gt-masks
are occluded when using default GridMask settings. This occlusion level cannot
be ignored. Because we think that both the object itself and context features
are important for object localization and recognition. If the occlusion is severe,
the available information only stems from context. This may lead to ambiguity
because the same context may contain different objects.

Intuitively, fig 1a illustrates the same gt-bboxes used in GridMask under dif-
ferent occlusion levels. Even if the whole person is almost completely occluded,
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(a) Original image (b) Original image with ground-truth

𝛿𝑦
𝛿𝑥

𝑑
𝑟

(c) Mask used in GridMask/COG

(d) Image after GridMask/COG

(e) GridMask image with ground-truth: all
bboxes are marked by green rectangles.

(f) COG image with ground-truth: changed
bboxes are marked by yellow rectangles.

Fig. 2: Original v.s. GridMask v.s. COG Blue regions represent the gt-mask.
Green rectangles represent the gt-bbox.

GridMask still gives it a bounding-box annotation for training. This is unrea-
sonable and inconsistent.

3.2 Rectifying Ground-Truth

As previously mentioned, there exists inconsistency between changed input im-
age x̂ and the unchanged ground-truth gt(x). We should rectify original ground-
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truth gt(x) to gt(x̂) and try to make the matching degree between x̂ and gt(x̂)
as high as possible. In other words, we should find better choice from the three
candidates adaptively, as section 1 mentioned.

The rectifying procedure in our method is displayed in Algorithm 1 In
detail, for original input image (x, whose corresponding ground-truth is gt(x).
There’re N annotated objects in gt(x). For each annotated object objk, there
exists one category label ck, one bounding box bk, and one mask annotation
GMk. Here, GM means the ground-truth mask for the object. As shown in Fig
2b, the bk andGMk are the green bbox and blue region respectively. Specificly in
COCO dataset, the ck is 0−1 vector with 80 dimension; the bk is (xk, yk, wk, hk),
which represents the (x, y) coordinate of the top-left corner, width and height of
bk; the GMk is also a binary mask matrix which shape is H×W . If the pixel at
(i, j) in x is in fore-ground region of bk, then GMk(i, j) is 1, otherwise 0. When
GridMask operation is adopted, the binary mask M is shown in Fig 2c.

𝑏𝐺𝑀 𝑏𝑅𝐺𝑀

𝐺𝑇 𝑅𝑒𝑐𝑡𝑖𝑓𝑦
 𝐶𝑂𝐺 𝐼𝑚𝑎𝑔𝑒

Fig. 3: Rectifying Procedure: Left fig represents original image and correspond-
ing ground-truth: gtbbox bk and gtmask GMk; Right fig represents image after
GridMask operation and corresponding ground-truth after rectifying(when thresl <
saveRatiok < thresh): new gt-bbox b̂k and gt-mask RGMk.

The core idea of Algorithm 1 is making a perfect tradeoff between object
and context when rectifying. Concretely, COG calculates the reserved region
RGM of each bk under M, and then provide a revised b̂k. As shown in Fig 3,
the blue region at left is original GM, and the blue region at right is RGM. All
b̂k constitute the new ground-truth for x̂. In detail, according to the saveRatio,
namely the ratio between area(RGM) and area(GM), different strategies will
be used.

First, if saveRatiok is higher than thresh, the b̂k is the same as bk. We con-
sider this object as unbroken but just occluded, the object information doesn’t
disappear. Second, if saveRatiok is lower than thresh but higher than thresl,
the b̂k is the minimum enclosing rectangle of RGMk. We consider this object
as broken but still existent, the image has dropped part of the object informa-
tion. The remanent object information and context information can be used to
predict the object category but no precise localization for the original object. So
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Algorithm 1 Rectifying Ground-Truth

Input: M, GT = {(bk,GMk), where k ∈ [1, ..., N ]}
Output: ĜT bbox, ĜTmask

0: ĜT bbox ← ∅, ĜTmask ← ∅,
1: For k ∈ [1, ..., N ] do
2: RGMk = M×GMk

3: saveRatiok = area(RGMk)/area(GMk)
4: if saveRatiok > thresh
5: b̂k = bk
6: ĜMk = GMk

7: elseif saveRatiok > thresl
8: b̂k = minEncloseRectangle(RGMk)
9: ĜMk = RGMk

10: else
11: continue
12: ĜT bbox ← ĜT bbox ∪ {b̂k}
13: ĜTmask ← ĜTmask ∪ {ĜMk}
14:Output {ĜT bbox, ĜTmask} as new ground-truth for augmented image

we acknowledge that the object still exists but the corresponding gt-bbox should
be changed to the truncated version. Third, the b̂k will disappear. We consider
that this object is occluded by M severely. The remanent object information
is too little to predict the object category. Fig 1a illustrates corresponding re-
sults under different occlusion levels, namely saveRatiok. It also explains COG’s
superiority intuitively.

It should be pointed out that the rectifying operation only changes ground-
truth in accordance with the occlusion situation in the current image. So if
thresh and thresl are set to 0.0, then the generated ĜT is the same as GT ,
namely the original GridMask. Besides, although it now uses GMk to calculate
saveRatiok, it can also only use bk to get a course rectification. More details
about this will be described in 4.3.

4 Experiments

Extensive experiments are conducted on object detection and instance segmen-
tation to verify the effectiveness of COG. As described below, we firstly depict
common settings in detail for a fair comparison. Then, the main results and ab-
lation study are provided to validate COG’s advantage over other competitors
and robustness to hyper-parameter variation.

4.1 Common Settings

Dataset Description Experiments are performed on COCO[4] following
the official dataset split. In other words, all models are trained on train2017(118k
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images) and evaluated on val2017(5k images). The results on test-dev(20k+
images) are submitted to the official server for evaluation.

Common Implementation and Hyper-parameters Two-stage Faster
R-CNN[2] is employed for detection, and Mask R-CNN[3] is employed for in-
stance segmentation. We implements our method and competitors based on
MMDetection[22] framework. The details will be described from input images
to outputs. In our experiments, first, input images are always resized to a sin-
gle scale (800, 1333) in both training and testing phases. Second, backbones in
detection models generally include vanilla ResNet[1](abbr. R50 for ResNet-50).
After that, FPN is adopted to extract features of multiple resolutions. For post-
processing, Non-Maximum Suppression (NMS) is substitute by Soft-NMS[23] to
remove possible duplicate bboxes.

Besides, all models are trained on 8 GPUs for 24 epochs. The learning rate is
initialized with0.00125∗batch-size with a gradual warmup strategy, then divided
by 10 at 16-th and 22-th epoch successively.

Hyper-parameters in COG Without specification, the upper bound and
lower bound are set to [0.25, 0.9] in COG. The probability of augmentation
operation is set to a constant value, namely 0.7, for both GridMask and COG.
We also set drange = [32, 512] and r = 0.5 for both COG and GridMask, as 3.1
mentioned.

Competitor methods Except for self-comparison, our proposed COG is
compared with GridMask[6] which belongs to current SOTA methods.

Evaluation metrics Standard COCO metrics[4], including AP (mean AP
over multiple IoU thresholds) for object detection, APmask for instance segmen-
tation are reported. Note that the best results in each table are in boldface.

4.2 Main Results

To verify the effectiveness of COG, we compare COG with GridMask in different
detectors (such as Faster RCNN and RetinaNet), when integrated with FPN.
Table 1 shows the results on COCO val dataset. For baseline Faster RCNN
with R50 backbone, our re-implemented baseline AP is 38.0, which surpasses
that in [22] because all models are equipped with Soft-NMS. Compared with the
baseline , while GridMask improves the AP by 0.6 points, COG boosts additional
0.5 points further. Also for RetinaNet, while GridMask improves the AP by
0.9 points, COG boosts additional 0.4 points further. The same performance
improvement can be observed in the COCO test-dev dataset, as shown in table
2. We can conclude that COG is superior to GridMask in the detection task.

Among them, the accuracy improvement is higher in APM and APL, com-
pared with APS . First, we argue that because the object with a smaller scale
will be occluded by the gray region with higher probability. So more small ob-
jects are removed in the training phase and relatively more medium or large
objects participate in the training process. Second, when more medium or large
objects are reserved, the rectified gt-bbox also diminishes the inconsistency in
the original GridMask.
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Table 1: Detection Results on COCO val
Method Backbone AP APS APM APL

FPN(baseline) R50 38.0 22.0 41.7 49.3
GridMask+FPN R50 38.6(+0.6) 22.7 42.4 49.2
COG+FPN R50 39.1(+1.1) 23.0 43.1 49.7

RetinaNet(baseline) R50 36.3 19.5 39.7 47.6
GridMask+RetinaNet R50 37.2(+0.9) 21.3 41.2 48.5
COG+RetinaNet R50 37.6(+1.3) 21.5 41.7 48.9

Table 2: Detection Results on COCO test-dev
AP APS APM APL

38.3 21.9 41.3 47.6
38.8(+0.5) 22.5 42.0 47.6
39.3(+1.0) 22.9 42.6 48.1

36.6 19.6 39.4 46.1
37.8(+1.2) 21.3 41.1 47.2
38.2(+1.6) 21.5 41.7 47.9

4.3 Ablation Study

Hyperparameter Settings In this section, results of Faster R-CNN with COG
under different hyper-parameters are displayed in table 3.

Firstly, we experiment with the upper and lower bound of saveRatio, namely
thresh and thresl, on COG+FPN. We need to reserve the original annotation
when occlusion is not severe to get robustness, We also need to reserve the visible
section or delete it when occlusion is severe. So the upper bound cannot be very
high or very low. Similarly, the lower bound cannot be very low. According to the
result, the upper bound thresh = 0.9 and lower bound thresl = 0.25 performs
best. Secondly, we experiment with different drange, namely [dl, dh] mentioned
in subsection 3.1, on COG and original GridMask. It seems that the expanded
range for d is not good for GridMask but okay for COG.

These variations show the robustness of the COG paradigm.

Method drange maskratio AP

COG+FPN [32, 512] [0.25, 0.5] 38.7
COG+FPN [32, 512] [0.25, 0.75] 38.8
COG+FPN [32, 512] [0.25, 0.9] 39.1
COG+FPN [32, 512] [0.25, 1.0] 38.8

COG+FPN [32, 512] [0.3, 0.9] 39.0
COG+FPN [32, 512] [0.4, 0.9] 38.7

COG+FPN [2, 800] [0.25, 0.9] 38.9
GridMask+FPN [2, 800] [0.25, 0.9] 38.5

Table 3: Detection Results of COG
under different hyper-parameters. This
demonstrates that COG is robust to dif-
ferent settings. Details are explained in
subsection 4.3.

Method step list prob list AP

COG+FPN [,24] [,0.7] 39.1

COG+FPN [2,24] [0.0,0.7] 39.0
COG+FPN [1,2,4] [0.0,0.7,0.9] 39.0
COG+FPN [23,24] [0.7,0.3] 38.9

Changing loss weight RPN RCNN

COG+FPN True True 38.8
GridMask+FPN True True 38.5

Using bbox ratio drange bboxratio

COG+FPN [32, 512] [0.3, 0.8] 39.0
COG+FPN [32, 512] [0.3, 0.9] 38.8

Table 4: Detection Results of COG with
other variations. This demonstrates that
COG is robust to different training set-
tings. Details are explained in subsec-
tion 4.3.

Variations of COG We also experiment with more variations on COG to
validate its robustness.

The first variation is changing the probability of augmentation. For example
in table 4, step list=[2, 24] and prob list=[0.0, 0.7] means setting COG’s proba-
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bility to 0.0 before the 2-th epoch and setting this probability to 0.7 between 2-th
and 24-th epoch. We can see that the performance of COG is consistent regard-
less of the variation of COG’s probability. The second variation is changing the
loss weight of kth gt-bbox by the saveRatiok adaptively but adopting the orig-
inal ground-truth in training. If the saveRatiok is low, then the corresponding
loss weight also decreases. It can be regarded as a soft version of ground-truth
rectification. From the results in table 4, we can see that adaptively changing
loss weight doesn’t make a difference for COG and GridMask. The third varia-
tion is using bbox save ratio but not mask save ratio. In detail, the save ratio
is saveRatiok = Area(bbresk )/Area(bbk). Here, bbk means the kth gt-bbox, bbresk

means the maximum rectangle that hasn’t been occluded by GridMask in bbk.
From the results in table 4, we can see that only using bbox annotation for
calculating save ratio in COG can also achieve similar performance.

COG on Instance Segmentation We also experiment with COG on the
instance segmentation task to validate its effectiveness on rectifying gt-mask
annotations. As shown in table 5, COG surpasses GridMask 0.4 points on AP
and 0.2 points on Mask AP.

Table 5: Mask RCNN’s results on COCO val
Method Backbone AP APS APM APL APmask APmask

S APmask

M APmask

L

FPN(baseline) R50 39.1 22.3 42.5 51.0 34.8 18.5 37.9 47.8
GridMask+FPN R50 39.2 23.3 43.1 50.2 35.2 18.8 38.7 47.4
COG+FPN R50 39.6 23.3 43.6 50.6 35.4 18.9 38.9 48.0

5 Conclusion

In this paper, we propose COG, an adaptive rectification strategy for data aug-
mentation, which eliminates the inherent inconsistency. The experimental stud-
ies validate that COG can improve data augmentation’s performance on differ-
ent perception tasks. It’s also robust to various settings for hyper-parameters
and training configurations. COG provides a new perspective to migrate data
augmentation from label-based domain(classification) to location-based domain
(detection). Further, we can extend COG to considering both image and current
network’s state simultaneously.
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