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Abstract. Most existing channel pruning approaches utilize the mag-
nitude of network parameters to guide the pruning process. However,
these methods suffer from some limitations in modern networks, where
the magnitude of parameters can vary independently of the importance of
corresponding channels. To recognize redundancies more accurately and
therefore, accelerate networks better, we propose a novel channel pruning
criterion based on the Pearson correlation coefficient. The criterion pre-
serves the features that are essentially informative to the given task and
avoids the influence of useless parameter scales. Based on this criterion,
we further establish our channel pruning framework named Feature Vari-
ance Ratio-guided Channel Pruning (FVRCP). FVRCP prunes channels
globally with little human intervention. Moreover, it can automatically
find important layers in the network. Extensive numerical experiments
on CIFAR-10 and ImageNet with widely varying architectures present
state-of-the-art performance of our method.

1 Introduction

Deep convolutional neural networks (CNNs) have achieved state-of-the-art per-
formance in various computer vision tasks [1-4]. One essential foundation of
such great success lies in the deep and wide architectures, which are always ac-
companied by the expensive computational costs. As a result, deploying these
models on resource-constrained devices (e.g., smartphones and IoT systems)
becomes extremely difficult. To address this issue, various model acceleration
methods [5-9] have been proposed to improve the computational efficiency of
CNNs. Among them, channel pruning [10-15] becomes a prevalent one due to
its hardware-friendly implementation and surprising ability to reduce a large
amount of computation overhead without compromising model performance.
Channel pruning aims to remove redundant channels in the convolutional lay-
ers. Existing practices in this field for identifying unimportant channels mainly
resort to the magnitude of parameters, e.g., the norm of channel weights [16,
17], the norm of filters [10, 13], and the absolute value of scaling factors of batch
normalization (BN) layers [12, 14]. These methods hypothesize that the channels
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Fig. 1. Illustration of two equivalent transformations for a typical network: (a) scale
a filter by a1 (a1>0); (b) scale a pair of affine parameters of BN by as (a2>0) and
inversely scale the corresponding channel weights in the next convolutional layer.
and B are scaling and shifting factors, respectively. These transformations change the
magnitude of parameters but do not change the function of any channels.

with small magnitude parameters contribute little to the network and then are
less important. However, it can be shown that the parameter magnitude can-
not faithfully characterize the channel importance in modern networks. For the
typically used convolutional network with BN and rectified linear unit (ReLU)?
as shown in Fig. 1, there are two equivalent transformations [19,20] by which
we can change the magnitudes of network parameters arbitrarily without chang-
ing the information flow (and therefore the importance of each channel) in the
network: 1) scale the filters in an intermediate layer by a positive factor, since
BN normalizes convolutional output and the scaling effect of filters is canceled;
2) scale the affine parameters of BN by a positive factor and simultaneously
inversely scale the corresponding channel weights in the next layer, as ReLLU is
positively homogeneous which satisfies ReLU(ax) = aReLU(x) for all a>0. A
robust channel importance metric should be invariant to these transformations
while the conventional magnitude-based ones do not. This suggests that despite
good acceleration ratios achieved, existing pruning methods are still suboptimal.
The magnitudes of parameters are less relevant to the identification of channel
importance. Useful features may be falsely discarded with the approaches based
on them, which severely impair model performance.

In this paper, with the goal of recognizing redundancies more accurately and
therefore, accelerating networks better, we propose a novel channel pruning cri-
terion based on the Pearson correlation coefficient. Specifically, we exploit the
Pearson correlation coefficient to assess the information loss of convolutional
output feature maps resulted from pruning. The feature variance ratio is then
constructed as an importance metric to guide the pruning process. Different
from the conventional magnitude-based metrics, the new metric avoids the in-
fluence of the scale of the convolutional filters and the scale of the affine param-
eters of BN layers. It is interpretable from the feature-correlation perspective
and easy to calculate. With proposed metric, we can directly prune channels
for a pre-trained network in a single-shot (i.e., globally prune once) with little
fine-tuning while still preserving its high performance. After that, we further

! ReLU can be replaced with other positively homogeneous functions like PReLU [18].
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establish our channel pruning framework, named Feature Variance Ratio-guided
Channel Pruning (FVRCP). In contrast to prior works [11,21,22] that require
handcrafted layer-wise pruning ratios, FVRCP prunes channels globally with
little human intervention. It automatically finds the important layers for the
network, which inspires us to design better architectures.

The numerical experiments on CIFAR-10 and ImageNet with widely varying
architectures present state-of-the-art performance of FVRCP. For example, on
the large-scale ImageNet dataset, when pruning 40% FLOPs of PreResNet-50,
FVRCP improves the original PreResNet model by 0.05% in top-1 accuracy;
when pruning 43% FLOPs of MobileNets, FVRCP causes zero accuracy drop,
exceeding the uniform baseline [23] by 2.2%.

The major contributions of this paper are summarized as follows: First, we
propose a novel interpretable channel importance metric based on the Pearson
correlation coefficient. The new metric avoids the influence of parameter scales
and identifies the channels that are essentially informative to the given task.
Second, we propose FVRCP framework to prune channels for CNNs globally
with little human intervention. FVRCP automatically finds compact structures
in the network and reduces the overwhelming computational burden.

2 Related Work

Weight Pruning. Convolutional neural network acceleration has been exten-
sively studied in recent years. Weight pruning [24,9,25-28] tries to find and
remove unimportant connections in the network. Early work [29] in the 1990s
uses the Hessian of loss function to determine the importance of connections.
Recently, Han et al. [9,25] propose an iterative method that prunes connections
with small weights. Dong et al. [28] prune the parameters of each layer based on
a layer-wise error function. Though these methods achieve high compression ra-
tios, they result in irregular networks, of which the speedup can only be achieved
in specialized software or hardware that supports sparse matrix operation.
Channel Pruning. To be free of customized platforms and extra operations,
many approaches [10,21,11,13,12,14, 30, 31, 16, 32] directly prune regular chan-
nels for the network. Li et al. [13] prune channels based on the ¢;-norm of filters.
He et al. [10] select unimportant channels with an ¢3-norm criterion. Liu et al.
[12] leverage the scaling factors in batch normalization layer to remove insignif-
icant channels. Liu and Sun [31] employ an evolutionary algorithm with a meta
network to search for the best channel pruning strategies. In these works, the
magnitudes of network parameters are always utilized to establish their prun-
ing frameworks [10, 21,13, 12, 14]. However, as shown in Fig. 1, the information
transmitted by the magnitude of parameters about the importance of network
channels can be extremely limited. Besides, most approaches [10,21, 11,13, 22,
15] require human experts to design layer-wise pruning ratios. Determining these
layer-wise pruning ratios not only requires specialized knowledge but also greatly
reduces the search space of pruning under which we cannot achieve the optimal
compression ratio.
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Fig. 2. Feature variance ratio-guided channel pruning. The channel with small sum of
FVRs (red dotted elements in the right side) will be pruned.

Other Methods. Apart from pruning, there are many other excellent works
for CNN accelerations, such as knowledge distillation [8,33], quantization [34, 7,
35, 36], and low-rank decomposition [5,6]. All these approaches are orthogonal
to our work, and one can combine them to accelerate networks further.

3 Methodology

We first introduce some notations that will be used throughout this paper. Let
X eREOHinxWin and Y € RV *HourxWour he g standard convolutional input and
output feature maps, respectively. C' and N denote the number of input and
output channels. Moreover, let X; be the i-th feature map in X, Y; be the j-th
feature map in Y, and Kj; be the Dy x D,, kernel corresponding to X; and Y;.

Batch normalization [19] enables faster training and better generalization of
deep CNNs and now is becoming a standard component in deep learning. We fo-
cus on the batch normalized networks in this paper, but it should be noted that
our method can be extended to the general networks (see supplementary). Recall
that BN is normally inserted immediately after convolution, which normalizes
convolutional outputs by subtracting the mean and dividing the standard devi-
ation, and then rescale and re-shift them.

3.1 Construction of Feature Variance Ratio

To facilitate the investigation of the importance of each channel, we first consider
the convolution with a single filter K;.. The corresponding output is:

C C
Y; = Zlel = ;Km * Xi,

where * denotes 2D convolution operation and M;; = Kj; * X; denotes the
filtered input feature map.

(1)
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Channel pruning tries to pick up some channels to discard. If the pruning
of a channel does not hurt the inherent information encoded in the output Y7,
then this channel is redundant and can be removed. Instead of the Mean Square
Error (MSE) that prior works [22,11] used, we employ the Pearson correlation
coefficient to measure the information loss caused by pruning. This comes from
the fact that the scale and bias of output feature maps are normalized by the
following BN. The inherent information of Y; is substantially encoded in its
normalized version, or more specifically, the direction of the vector represented
by the normalized version in high-dimensional feature space. Pearson correla-
tion coefficient, which characterizes the linear correlation between two variables
or equivalently the geometrical angle between two zero-mean vectors, is more
precise to describe this loss.

Suppose that we prune the ig-th channel from the input tensor X. Then the
output feature map becomes:

C

i=1,iio

The Pearson correlation coefficient between Y; and Y is defined as:

2pa (ygmq ~ g/j) (Yjpg — Uj)
Tjio = ; — —, (3)
\/Zznq (Y0 = '5) \/Zp,q (Ysp.q = U5)

y;mq represent the (p, ¢)-th elements of Y; and Yj’ respectively, and
Yj, y'; are their corresponding average values. Larger absolute value of the Pear-
son correlation coefficient indicates more linear association between Y; and Yj’
and thus less information loss caused by the pruning of 7g-th channel. When the
Pearson correlation coefficient has the value r;;, = %1, there is no information
loss. In other words, the distance between 1 and ng',io can be exploited to deter-
mine the information richness of ig-th input channel (and thus its importance).

However, the most widely recognized disadvantage of the Pearson correla-
tion coefficient is that it is computationally intensive. Especially here we should
compute it for the thousands of channels in the network. We hope to have a
metric that not only reflects the channel importance effectively but also is com-
putationally efficient. To this end, we propose the Feature Variance Ratio (FVR)
indicator. Specifically, it is the variance ratio of the filtered feature map of X,

where y; 5 4,

i.e., Mj;,, to the output feature map Y}, and can be calculated as:
2 1 y —m )2
FVR. . — OMjio  HowWour Zp,q(mj,zo,p,q My i) (@)
Jio T T 2 T 1 — 2
Y} HoutWout Zp,q (ij’aq - yﬂ)

where m; i, p.q epresents the (p,g)-th element of M;;, and m, ;, is the average
value. Intuitively, FVR; ;, implies the strength of X;; to Y;. When FVR;;, is
small, X;, becomes an offset component of Y}, and pruning it will not destroy
the inherent feature structure of output feature map. More importantly, it can
be shown that FVR is highly correlated with Pearson correlation coefficient.
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Proposition 1 Let x, y be two n-dimensional data vectors with elements {x;}
and {y;}, respectively. Assume their Pearson correlation coefficient is 4, i.e.,

AR ()
Tey = 3 2; (5)
Vi - 22/ - 9)

where T =Y, x;i/n, g =, yi/n. Let e; = y; — x;,i =1,2,...,n, be the residuals
of data elements, forming a vector €. Suppose that the variances of € and y are

o2, 05 respectively, and 05 >0, 02 £ 05, Then we have:

2/ 2

2 ooy

Ogl—rmyﬁm'
/0y

We provide the proof in the supplementary material. By Proposition 1 and
the fact that Y; = Y, + M ;,, we obtain:

(6)

,309

FVR;;
0<1-7r3, < 2o . 7
- 70T (1= /FVRy,,)? @

Eq. 7 reveals the relationship between FVR;;, and 7"]2',1'0' The right side of this
equation is monotonically increasing with increasing FVR; ;, in [0, 1], and tends
to zero as FVR;;, — 0. This implies that smaller FVR;;, corresponds to the
smaller 1 — 7"]2»,1»0, and in the limit case we have:

pppm 1 55, =0 (8)

3rig—0

From the above, we conclude that FVR; ;, is an effective alternative metric for
measuring importance of X;; to Y;. The smaller FVR; ;, is, the less information
loss caused by pruning X;,, and thus the less important the ip-th channel is.

3.2 Channel Importance Based on FVR

The importance metric FVR mentioned in Section 3.1 is constructed on a single
output feature map. In fact, there is more than one filter in a convolutional
layer. An input feature map engages in the formation of multiple output feature
maps. To completely measure the importance of a channel in the network, we
take the sum of its corresponding FVRs across all output feature maps, as Fig.

2 illustrated:
N 2

N o3,
SFVR,, = > FVR;;, =3 fz 9)
j=1

j=1 Y

We define SFVR (omit iq for clarity) as the channel importance and prune the
channels that have small ones. Indeed, the essence of this pruning philosophy
is similar to that of Principal Component Analysis (PCA) for dimensionality
reduction. PCA discards the principal components that have small variances in
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the original data to reduce dimensions, since these components possess little
energy and disposing of them will not lead to great loss. Here we also discard
the components (input channels) that have small variances because they are less
informative to the given task. Dividing by the variances of output feature maps
can be regarded as a normalization technique for output dimensions.

Despite the different numbers of output channels, which affects the summa-
tion, the channel importance defined in Eq. 9 is comparable across all layers.
Consider a situation where the filtered input feature maps M;;,i =1,...,C,
are orthogonal each other with the same variance o3, , and the number of in-
put channels is equal to that of output channels, i.e., C = N. Then we have
SFVR,, = Z;V:1 012\/11_ / 032/]_ = Z;vzl 1/C =1, which is a constant independent of
layers. It illustrates that if the channels of all layers are utilized fully and equally,
the pruning criterion will not prefer to prune any layers, which is consistent with

our intuition. Moreover, if the filtered input feature maps M;;,i=1,...,C, are

identical to each other with the variance 012\4],, then SFVR,;, = Z;vzl 0]2\4], / 0?,7, =

Z;VZI 1/C? = 1/C, which implies that the layer with more channels will be
pruned first. It is also natural since in this case the layers that have more chan-
nels are more redundant. All these suggest that SFVR can be compared across
different layers, and it will automatically find important layers in the network.
More details can be seen in Section 4.4.

Linear Transformation Invariance. A key mathematical property of SFVR
is that it is invariant under separate changes in bias and scale in output feature
maps. That is, for any scalar a; (a; # 0) and b;, Y; = a;Y; + b;, we have:

N I3 N ?0%/1 ; N 12\4 i
ZUQJO Za0507z 02107 (10)
Y; j=1 Yy j=1 Y

where ]\/4\”0 = a;M; i, + dj, (22021 dj; = b;) is the transformed feature map
of Mj;,. The property implies that SFVR is insensitive to the scale and bias of
output feature maps, which is not surprising since we have considered that the
influence of scale and bias of convolutional output feature maps will be canceled
by the following BN transform and they do not encode any information.
Network Equivalent Transformation Invariance. As mentioned earlier,
due to the positively homogenous property of ReLLU and normalization process
of BN, there exist two equivalent transformations by which we can change the
magnitude of network parameters without altering the function of correspond-
ing channels. A robust channel importance metric should be invariant to these
changes while the conventional magnitude-based ones do not. In contrast, it can
be easily verified that our proposed SFVR is not affected by these transforms
(detailed in the supplementary). It is more effective in identifying redundant
channels in modern networks.

3.3 Implementation via Moving Average Statistics

The proposed channel importance metric SEVR is composed of two parts, namely,
af,j and aﬁ/[j .o~ To apply in practice, we need to estimate them.
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Algorithm 1 Algorithm Description of FVRCP

1: Initialize: planned pruning ratio r = 0

2: gradual pruning schedule Ty %= (+)

3: for epoch =1 to N do

4: Update parameters and moving average statistics
5: Compute SFVR for each channel as Eq. 12
6: Let r < Tar,r (epoch)

7 while (pruned FLOPs ratio < r) do

8: Remove the channel with smallest SFVR
9: end while

10: end for

11: Fine-tune the pruned model until it converges

Given the fact that BN normalizes convolutional outputs, we can directly
leverage the statistical information provided by BN to estimate 032,], without any
additional computation. Instead of batch sample statistics, we employ moving
average statistics of BN for the stability and reliability of estimate. However,
since the mainstream implementation of convolution is im2col, which transforms
whole convolution into matrix multiplication [37, 38], we cannot directly compute
012%_11,0. Although we can decompose the regular convolution into several fine-
grained operations such as depthwise convolution with summation, it will greatly
affect the speed of forward computation of the model on modern computing
devices like GPUs. To address this issue, we consider the following relaxation:

0'2 = # E — M )2
M; ; Mjio,p,q Jyio
Jro HoutWout ’

p.q

- outWout Z | foopd ) *KJ 10| (11)

IN

1 — 2
||Kj,1ioH?r m ; ||Rio,p,q - Rio ||F ’

where ||| denotes the Frobenius norm, R;, ,, denotes the receptive field of
Mjig.p.q ON Xy, and R;, = Zp,q Riy p.q/ (HoutWour). The right side of Eq. 11
is an upper bound for O'JQWJ_J_ . It contains only two terms. One is the Frobe-
nius norm of kernel weights, and the other is the statistic of input feature map
Xi,. Both of them can be conveniently computed without any modification to
the network architecture. We use this bound to approximate JJQMNU. Same with
U%,j , to stabilize the estimation, we retain the moving average statistics of input
feature maps in each training iteration and employ them when pruning.

By the approximation of 012\43_%, the channel importance then we calculate
for the ip-th input channel becomes:

. 1 || ||
SFVRZ-O = mpzq: ||Ri07p7q ZOHFZ 310 172 5%llF (12)
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Table 1. Comparison of pruning results on CIFAR-10. “Global” indicates whether the
method is a global channel pruning algorithm.

Baseline Pruned FLOPs

Model Method Global Acc. Acc. Acc. | FLOPs 1 (%)
Li et al. [13] No 93.04 93.06 -0.02 90.9M  27.6

NISP [30] Yes - - 0.03 - 436

ResNet-56 - p 11 No 928 918 10 - 500
FVRCP-50 Yes 93.41 93.64 -0.23 62.6M 50.1

Li et al. [13] No 9353 0330 023 155M  38.6

NISP [30] Yes - - 0.8 - 438

ResNet-110° a1, 4] Yes 9350 92.74 0.76 130.2M 485
FVRCP-70 Yes 94.06 93.86 0.20 75.8M  70.0

Liu et al. [12]  Yes 93.89 9435 -0.46 120M  57.6

C-SGD [32] No 9381 9456 -0.75 113.0M  60.1
DenseNet.40 GAL [40] Yes 94.81 93.23 1.58 80.9M  71.4
FVRCP-60 Yes 94.83 94.60 0.23 113.0M  60.1

FVRCP-75 Yes 94.83 93.91 0.92 70.6M 75.0

From Eq. 11, we see that SFVR* puts more emphasis on the channels that
are filtered by the larger kernels, which is acceptable since larger kernels have
stronger learning abilities.

3.4 Channel Pruning Framework

With a well-trained convolutional network, our proposed Feature Variance Ratio-
guided Channel Pruning (FVRCP) procedures are illustrated in Algorithm 1.

We employ the gradual pruning technique in [39]. During pruning, the FLOPs
pruning ratio is increased quadratically from zero to the preset target ratio (R
in Algorithm 1), and at the end of each epoch, we globally select the channels
that have small importance to remove until achieving the planned pruning ratio
at that epoch. The gradual pruning technique helps smooth the pruning process
and prevents the algorithm from degradation. The final fine-tuning is also an
important technique to recover pruned accuracy.

4 Experiments

In this section, we evaluate our channel importance metric and channel pruning
framework on CIFAR-10 [41] and ImageNet [42] with several popular architec-
tures. All the experiments are implemented using TensorFlow [43] on NVIDIA
TITAN V GPUs.

4.1 Experimental Settings

On CIFAR-10, we conduct gradual pruning for 40 epochs with a mini-batch size
of 128 and a fixed learning rate of 0.01. The standard data augmentation is
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Table 2. Comparison of pruning results on ImageNet.

Baseline Baseline Pruned Pruned FLOPs
Model Method Global Top1 Top5 Topl Top5 FLOPs 1 (%)
SEP [10] No 70.28 89.63 67.10 87.78 1.06B 41.8

FPGM [21] No 70.28 89.63 68.34 88.53 1.06B 41.8

ResNet-18  pyRCcP42  Yes 70.23 89.36 68.88 88.39 1.05B  42.0
ThiNet [22] No  72.88 91.14 72.04 90.67 2.59B  36.8
C-SGD [32] No 7533 9256 7527 92.46 259B  36.8
SFP [10] No 76.15 9287 7461 92.06 2.38B 418
HRank [44] No  76.15 92.87 74.98 92.33 2.30B  43.8
ResNet-50  CP [11] No - 922 - 908 - 500
FPGM [21] No 76.15 92.87 74.83 92.32 1.90B  53.5
Hinge [47] Yes - 74.70 - 1.90B 535

FVRCP-40 Yes 76.09 92.90 76.04 92.92 2.45B 40.0
FVRCP-50 Yes 76.09 92.90 75.42 92.52 2.04B 50.0
PreResNet-50 FVRCP-40 Yes 76.01 92.86 76.06 92.82 2.45B 40.0
FVRCP-50 Yes 76.01 92.86 75.49 92.47 2.04B 50.0

FVRCP-60 Yes 76.01 92.86 74.93 92.33 1.63B 60.0

Table 3. Comparison of pruned MobileNet V1 on ImageNet. The latency is tested on
TITAN V GPU and Intel Xeon E3-1230 CPU with a batch size of 32.

Topl Latency
Model FLOPs Ace.  GPU CPU
Baseline [23] 569M  70.6% 1.23ms 17.27ms
0.75x MobileNet V1 [23]| 325M 68.4% 0.95ms 12.23ms
FVRCP-43 324M 70.6% 0.91ms 11.18ms
NetAdapt [48] 284M  69.1% - -
FVRCP-50 284M 69.8% 0.88ms 10.28ms
0.5x MobileNet V1 [23] | 149M 63.7% 0.71lms  7.48ms
FVRCP-74 149M 65.5% 0.69ms 6.35ms

adopted including padding and random cropping. After that, we fine-tune the
model for 40 epochs with a learning rate of 0.001. On ImageNet, we conduct
gradual pruning for 20 epochs. The mini-batch size is 256. The learning rate
during pruning is 0.01. The fine-tuning is for 20 epochs with an initial learning
rate of 0.001 and decayed by 0.1 at 10 epochs. All networks are trained using
stochastic gradient descent (SGD) with Nesterov momentum 0.9.

4.2 Comparison with State-of-the-Art Methods

Table 1 shows our channel pruning results on CIFAR-10 dataset. As we see,
FVRCP method achieves state-of-the-art performance. With 50.0% FLOPs re-
duction for ResNet-56, CP [11] causes 1.0% loss in accuracy while FVRCP
improves 0.23%. With almost zero performance loss on ResNet-110, FVRCP
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Fig. 3. Single-shot pruning without fine-tuning (left) and with 10 fine-tuning epochs
(right) on pre-activation ResNet-20 on CIFAR-10. All experiments are repeated 5 times
with different random seeds. + standard derivation is reported with shaded region.

achieves a 70.0% FLOPs reduction, much higher than the 38.6% reduction by
Li et al. [13] who use ¢;-norm of filters to guide the pruning process.

We further evaluate FVRCP on the large-scale ImageNet dataset, as shown
in Table 2. Again, FVRCP presents outstanding performance. On ResNet-18,
FVRCP achieves the same theoretical speedup with FPGM [21] and SFP [10],
but its top-1 accuracy surpasses FPGM by more than 0.5% and significantly
exceeds 67.1% obtained by SFP which is heuristically based on the fs-norm
of filters. For ResNet-50, FVRCP reduces 50% FLOPs with only 0.38% top-5
accuracy drop, outperforming CP [11] by 1.02%. Moreover, note that almost
all compared methods cannot prune channels globally for the network. These
approaches require human experts to carefully design layer-wise pruning ratios
(e.g., sensitive analysis [13]), which is laborious in practice.

MobileNets use the depthwise separable convolution instead of common con-
volution, which has greatly reduced the redundancy, but our method can fur-
ther compress it. As demonstrated in Table 3, with 43% FLOPs reduction, the
pruning of FVRCP causes zero performance degradation, exceeding the 0.75x
uniform baseline [23] by 2.2%. Under the same FLOPs constraints, FVRCP sig-
nificantly outperforms the AutoML method NetAdapt [48] by 0.7% but uses
much less memory and computational resources.

4.3 Effect of Channel Importance Metric

To demonstrate the effectiveness of the proposed channel importance metric,
which avoids the influence of redundant parameter scales, we perform the prun-
ing experiments with it as well as some parameter magnitude-based ones. For the
fair comparison, we conduct pruning at single-shot without any fine-tuning. The
compared metrics include commonly used absolute value of BN scales [12,14],
£y, £a-norm of channel weights [16,17] and their variants (¢; + ¢3)/2-norm and

ly1-norm || K. ;]| :Zj,v:l | K;ill » (group Lasso regularizer [17]). The statistics
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Fig.4. (a) Comparison of uniformly scaled ResNet-56 and FVRCP-pruned ones on
CIFAR-10. The accuracy and FLOPs of pruning baseline are 93.65% and 125.5M,
respectively. (b) ImageNet top-1 accuracies of FVRCP-pruned ResNet-18 with different
numbers of pruning epochs. (c) FVRCP pruning results of ResNet-32 with five different
baseline accuracies (shown in the legend) on CIFAR-10. Each trial is repeated 5 times.
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Fig.5. Pruned architectures of ResNet-56 (left) and ResNet-18 (Right) with 50%
FLOPs reduction.

of input feature maps for SFVR have been calculated on the training set during
model training.

The left graph of Fig. 3 shows the comparison results. The pruned accura-
cies of pre-activation ResNet-20 of SF'VR are significantly better than that of
parameter magnitude-based ones. It is not surprising since the magnitude of pa-
rameters contains redundant information (recall that ResNets employ BN and
ReLU activation), and the metrics that are directly based on it cannot assess
channel importance accurately. The curve of SFVR which drops slowly at first
and then rapidly also illustrates that SFVR can better characterize channel im-
portance (prunes unimportant channels first). The right graph of Fig. 3 compares
the single-shot pruning with few fine-tuning epochs with a fixed learning rate of
0.001. As shown, the networks pruned by our metric recover from the pruning
more quickly. Even with few fine-tuning epochs, our pruned network can achieve
high performance. For more comparisons, please refer to the supplementary.

4.4 Comparison with Uniform Channel Reduction

Uniform channel reduction (uniformly reducing filters in each layer) is commonly
used in practice to reduce model size. However, such strategy is based on empiri-
cal analysis, failing to achieve the optimal compression ratios. Fig. 4(a) compares
the accuracy of uniformly scaled ResNet-56 with FVRCP automatically pruned
ones. To ensure the convergence, we train each uniformly scaled ResNet-56 for



Feature Variance Ratio-Guided Channel Pruning 13

600 epochs, much longer than the usually adopted benchmark (160 [1]). The
results show that the pruned ResNet-56 model outperforms the uniformly scaled
one regardless of FLOPs constraints, resulting in a more efficient architecture.
Neural Architecture Search. In network design, people are curious about
what is the best channel allocation policies. Lots of human experts are dedi-
cated to manually designing the channel size of each layer. A recent study [51]
argues that the global channel pruning can be viewed as an architecture search
method and automatically finds good layer-wise channel numbers. We visualize
the pruned architecture by FVRCP, trying to find some design heuristic. Fig. 5 il-
lustrates the pruned architectures of ResNet-56 and ResNet-18 with 50% FLOPs
reduction. Interestingly, we find that the channels in the downsampling layers
are more retained. It is natural since when there is downsampling, the resolution
of feature maps decreases, and thus there should be more channels to prevent
the information loss. The same phenomenon has also been observed in [31] in
pruned MobileNets, but with ResNets we see more interesting things. We note
that the channels in the second layer of the residual block are also more kept.
We argue that this mainly results from the shortcut connections by which the
input feature maps in the first layer of residual block can be losslessly transferred
into later layers while the input feature maps in the second layer cannot (and
therefore becomes more important). Moreover, we observe that the higher layers
in the last two stages of ResNet-56 are pruned more aggressively. We suspect it
is because CIFAR-10 classification is a simple task (only 10 classes) and ResNet-
56 is such a deep network that higher layers are underutilized. In contrast to
this, for the shallow network ResNet-18 on large-scale ImageNet dataset, we do
not observe a similar phenomenon. These facts inspire us to allocate channel
numbers in a better way, on which we would do further study in the future.

4.5 Sensitivity Analysis

Number of Pruning Epochs. We change the number of pruning epochs from
10 to 40 on ImageNet on ResNet-18 to explore its influence. As shown in Fig.
4(b), with small FLOPs pruning ratio (25%), increasing pruning epochs does not
improve pruned accuracy while with the large one (50%), it does. We attribute
this to the smoothness of pruning process. For the large pruning ratio, too few
pruning epochs leads to the sharp pruning at the end of each epoch, which may
result in irreversible damage to the network. When the pruning epochs increases,
pruning process becomes smooth, and the pruned accuracy is then improved.

Pre-trained Model Performance. Fig. 4(c) illustrates FVRCP pruning re-
sults of ResNet-32 with five different baseline accuracies. The higher the baseline
is, the better the pruned ones are. It is not surprising since FVRCP preserves
the principal features in the network and the network that has higher baselines
extracts more general and representative features. Also, we note that FVRCP
maintains the model performance over a wide range of pruning ratios regardless
of original accuracies. It implies that there are indeed a lot of redundancies in
commonly trained networks and with FVRCP we can discover and remove them.
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4.6 Visualization of Feature Maps

Fig. 6 visualizes the randomly selected five output feature maps in the original
and pruned Blockl-Conv2 layer of ResNet-18. The average Pearson correlation
coefficient of each layer after pruning is also reported. Consistent with theoretical
analysis, the output feature maps before and after pruning by our metric are
highly correlated, outperforming Li et al. [13] and Liu et al. [12] significantly. Li
et al. employ the ¢;-norm of filters to guide the pruning. However, the norms
of filters are normalized by the following BN transform. Their values are less
helpful in recognizing redundant channels. Liu et al. leverage the scaling factors
of BN layer to conduct pruning, but the inadequate magnitude of scaling factors
can be completely compensated by the following convolution. Useful features
will be falsely discarded in these two methods, which severely impair model
performance. In contrast, our metric preserves essentially informative channels.
It discovers the compact structure embedded in the original convolutions, which
improves the representation of feature maps as well as the efficiency of networks.
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Fig. 6. Visualization of randomly selected five output feature maps in Block1-Conv2
layer of ResNet-18 as well as those after pruning 50% channels of that layer (left). The
average Pearson coefficient of each layer between original output feature maps and
those after pruning 20%, 50%, and 80% channels of that layer is also reported (right).

Layer Index

5 Conclusions

In this paper, we presented a novel channel importance metric based on the
Pearson correlation coefficient. The new metric identifies essentially informa-
tive channels. Compared with conventional parameter magnitude-based ones, it
avoids the influence of redundant parameter scales resulted from the properties
of batch normalization and activation layers. Further, we established a channel
pruning framework named FVRCP. FVRCP prunes channels globally with little
human intervention. It automatically finds important layers in the network. On
several benchmarks, FVRCP achieves state-of-the-art results.
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