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Abstract. Multiple Object Tracking (MOT) is a long-standing task in
computer vision. Current approaches based on the tracking by detection
paradigm either require some sort of domain knowledge or supervision
to associate data correctly into tracks. In this work, we present a self-
supervised multiple object tracking approach based on visual features
and minimum cost lifted multicuts. Our method is based on straight-
forward spatio-temporal cues that can be extracted from neighboring
frames in an image sequences without supervision. Clustering based on
these cues enables us to learn the required appearance invariances for
the tracking task at hand and train an AutoEncoder to generate suit-
able latent representations. Thus, the resulting latent representations
can serve as robust appearance cues for tracking even over large tempo-
ral distances where no reliable spatio-temporal features can be extracted.
We show that, despite being trained without using the provided anno-
tations, our model provides competitive results on the challenging MOT
Benchmark for pedestrian tracking.

1 Introduction

The objective of multiple object tracking is to find a trajectory for each individ-
ual object of interest in a given input video. Specific interest has been devoted
to the specific task of multiple person tracking [1–5]. Most successful approaches
follow the Tracking-By-Detection paradigm. First, an object (pedestrian) detec-
tor is used in order to retrieve the position of each person within each frame.
Secondly, the output detections of same persons across video frames are asso-
ciated over space and time in order to form unique trajectories. Since objects
might get occluded during the video sequence or the detector might simply fail
on some examples, successful approaches are usually based not solely on spatial
but also on appearance cues. These are learned from annotated data, for exam-
ple using Siamese networks for person re-identification [4].

Motivation. Supervised approaches for person re-identification require large
amounts of sequence specific data in order to achieve good performance. For this
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Fig. 1: Given an image sequence, many data associations can be made reliably
from pure spatio-temporal cues such as the intersection over union of bounding
boxes. These associations are injected into a convolutional AutoEncoder to en-
force detections with the same, spatio-temporally determined label to be close
to one-another in the latent space. Thus, the learned appearance features will
generalize over viewpoint and pose variations.

reason, multiple object tracking benchmarks such as MOT [6] are providing a
training sequence recorded in a sufficiently similar setting for every test sequence.
The results of our experiments in table 1 confirm this dependency and show the
high variance in the quality of supervised approaches, depending on the data
used for training. The standard approach to solve this problem is to incorporate
additional annotated training data. For example, [7, 8] showed that additional
data is key to improving the overall tracking performance.

Thus, publicly available, annotated training data currently seems not to be
sufficient for training reliable person re-identification networks. Furthermore,
recording and labeling sufficient data in a setting close to a final test scenario
usually comes at a high price. Hence, the need for methods with a low amount
of supervision becomes obvious and motivates us to propose a multiple object
tracking method based on self-supervision.
While self-supervised learning methods [9] have been successfully exploited in
other vision tasks [10–15], a direct application to tracking is non-trivial: Learning
suitable object appearance metrics for object tracking in a self-supervised way
is challenging since, compared to classical clustering problems, visual features of
the same person may change over time due to pose and viewpoint changes and
partial occlusion. Other issues, such as frequent and long range full occlusion or
background noises, makes pedestrian tracking even more challenging.

In this paper, we propose an approach for learning appearance features for
multiple object tracking without utilizing human annotations of the data. Our
approach is based on two observations: I) given an image sequence, many data
associations can be made reliably from pure spatio-temporal cues such as the
intersection over union (IoU) of bounding boxes within one frame or between
neighboring frames. II) Resulting tracklets, carry important information about
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Train (Supervised)
MOT-02 MOT-04 MOT-05 MOT-09 MOT-10 MOT-11 MOT-13

T
es
t

MOT-02 100.0 -0.3 -0.3 -19.2 -9.1 -12.5 -9.5
MOT-04 0.0 100.0 0.0 -19.3 -4.9 -11.5 -4.9
MOT-05 -0.6 -1.2 100.0 -3.2 -5.1 -3.4 -5.1
MOT-09 -0.2 -0.4 -0.2 100.0 -2.9 -0.5 -2.5
MOT-10 0.8 0.6 1.2 0.6 100.0 0.6 0.4
MOT-11 0.0 -0.2 -0.2 0.2 -1.2 100.0 -1.4
MOT-13 0.4 -1.1 -0.4 -3.8 -0.8 -2.7 100.0

Table 1: Results for training with one training sequence using GT annotations1

for the tracklet generation, and evaluating on other training sequences with differ-
ent viewpoints and resolutions. This table shows the relative MOTA changes for non-
matching sequences on MOT17, FRCNN in comparison to the baseline (bold). Columns
represent the training sequence, rows the test sequence. The tracking performance heav-
ily depends on the employed training data and can become unstable across domains.

the variation of an object’s appearance over time, for example by changes of the
pose or viewpoint. In our model, we cluster the initial data based on simple spa-
tial cues using the recently successful minimum cost multicut approach [3]. The
resulting clustering information is then injected into a convolutional AutoEn-
coder to enforce detections with the same, spatio-temporally determined label
to be close to one-another in the latent space (see Fig.1). Thus, the resulting
latent data representation is encoding not only the pure object appearance, but
also the expected appearance variations within one object ID. Distances between
such latent representations can serve to re-identify objects even after long tem-
poral distances, where no reliable spatio-temporal cues could be extracted. We
use the resulting information in the minimum cost lifted multicut framework,
similar to the formulation of Tang [4], whose method is based on Siamese net-
works trained in a fully supervised way.

To summarize, our contributions are:

– We present an approach for multiple object tracking, including long range
connections between objects, which is completely supervision-free in the
sense that no human annotations of person IDs are employed.

– We propose to inject spatio-temporally derived information into convolu-
tional AutoEncoder in order to produce a suitable data embedding space for
multiple object tracking.

– We evaluate our approach on the challenging MOT17 benchmark and show
competitive results without using training annotations.

The rest of the paper is structured as follows: Section 2 discusses the related work
on multiple object tracking. Our self-supervised approach on multiple object
tracking is explained in Section 3. In Section 4, we show the tracking performance
of the proposed method in the MOT Benchmark [6] and conclude in Section 5.

4 Specifically, we mine GT tracklets from the detections with IoU > 0.5 with the GT
as e.g. done in [16].
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2 Related Work

Multiple Object Tracking. In Multiple Object Tracking according to the
Tracking by Detection paradigm, the objective is to associate detections of indi-
vidual persons, which may have spatial or temporal changes in the video. Thus
re-identification over a long range remains a challenging task. Multiple object
tracking by linking bounding box detections (tracking by detection) was studied,
e.g., in [17–23, 23–25]. These works solve the combinatorial problem of linking
detections over time via different formulations e.g. via integer linear program-
ming [26, 27], MAP estimation [17], CRFs [28], continuous optimization [18]
or dominant sets [29]. In such approaches, the pre-grouping of detections into
tracklets or non-maximum suppression are commonly used to reduce the compu-
tational costs [19–24,30,31]. For example Zamir et al. [22] use generalized mini-
mum clique graphs to generate tracklets as well as the final object trajectories.
Non-maximum suppression also plays a crucial role in disjoint path formulations,
such as [32–34]. In the work of Tang et al. [3], local pairwise features based on
DeepMatching are used to solve a multicut problem. The affinity measure is in-
variant to camera motion and thus makes it reliable for short term occlusions.
An extension of this work is found in [4], where additional long range informa-
tion is included. By introducing a lifted edge in the graph, an improvement of
person re-identification has been achieved. Similarly, [35] uses lifted edges as an
extension to the disjoint path problem. [36] exploits the tracking formulation
using a Message Passing Networks (MPNs). In [37], low-level point trajectories
and the detections are combined to jointly solve a co-clustering problem, where
dependencies are established between the low-level points and the detections.
Henschel et al. [38] solves the multiple object tracking problem by incorporat-
ing additional head detecion to the full body detection while in [39], they use
a body and joint detector to improve the quality of the provided noisy detec-
tions from the benchmark. Other works that treat Multiple Object Tracking as
a graph-based problem can be found in [2], [40–42] and [1]. In contrast, [43]
introduces a tracklet-to-tracklet method based on a combination of Deep Neural
Networks, called Deep Siamese Bi-GRU. The visual appearance of detections
are extracted with CNNs and RNNs in order to generate a tracklet of individ-
uals. These tracklets are then split and reconnected such that occluded persons
are correctly re-identified. The framework uses spatial and temporal information
from the detector to associate the tracklets. The approach in [44] exploits the
bounding box information by learning from detectors first and combined with a
re-identification model trained on a siamese network. While the state of the art
approaches in MOT17 Challenge are all based on supervised learning [38,45–47],
there are similar works in [48–50], which attempt to solve person re-identification
(ReID) problems in an unsupervised manner.

Self-supervised learning aims to generate pseudo labels automatically from
a pretext task, and then employs these labels to train and solve for the actual
downstream task. This is especially useful when no labeled data is available. Thus
self-supervised approaches can be applied to many specific real-world problems.
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An extensive review of recent methods is presented in [51]. For instance [52]
uses a motion-based approach to obtain labels to train a convolutional neural
network for semantic segmentation problems. Another work on self-supervision
based on motion can be found in [11] The idea of Doersch et al. [53] is to
predict the position of eight spatial configurations given an image pair. In [54]
semantic inpainting task is solved using a context encoder to predict missing
pixels of an image. Hendrycks et al. [12] use a self-supervised method to improve
the robustness of deep learning models. Lee et al. [55] propose an approach
to improve object detection by recycling the bounding box labels while Ye et
al. [56] use a progressive latent model to learn a customized detector based on
spatio-temporal proposals.

3 AutoEncoder-Based Multicut Approach

The proposed approach is based on the idea to learn, from simple spatial data
associations between object detections in image sequences, which appearance
variations are to be expected within one object for the task of multiple object
tracking. An overview of our workflow implementing this idea is given in Fig. 2.

Stage 1. The object detection bounding boxes are extracted along with
their spatial information such that spatial correspondences between detections in
neighboring frames can be computed. Based on these simple spatial associations,
detections can be grouped into tracklets in order to obtain cluster labels using
clustering approaches such as correlation clustering, also referred to as minimum
cost multicuts [57].

Stage 2. A convolutional AutoEncoder is trained to learn the visual features
of detections. The objective is to learn a latent space representation which can
serve to match the same object in different video frames. Thus, the information
about spatial cluster labels from the first stage is used as the centroid of latent
features. Distances between latent representations of data samples and their
centroids are minimized in the convolutional AutoEncoder using a clustering
loss.

Lastly, the data are transformed into the latent space of the trained AutoEn-
coder to extract pairwise appearance distances which are expected to encode
the desired invariances. Such pairwise appearance distances are used to not only
provide additional grouping information between nearby detections, but also for
detections with long temporal distance. The final detection grouping is computed
using minimum cost lifted multicuts [58].

This section is divided into three subsections: Section 3.1 describes the min-
imum cost (lifted) multicut approach employed for obtaining the initial spatial
cluster labels (e.g. tracklets), as well as for the generation of the final tracking
result. Section 3.2 describes the feature learning process using a convolutional
AutoEncoder and cluster labels, and section 3.3 describes the computation of
the joint spatial and appearance metrics used in the final data association step
within the minimum cost lifted multicut framework.
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Fig. 2: Summary of our approach in two steps: 1. First, weak cluster labels
(tracklets) are obtained from spatio-temporal vicinity using minimum cost mul-
ticuts [59]. 2. Then, visual features are learned by an AutoEncoder, with an
additional data association loss within the tracklets. The AutoEncoder provides
a stable appearance embedding while the additional loss forces detections within
one tracklet to have similar embeddings. This facilitates to extract affinities be-
tween detections to compute the final tracking with re-identification using lifted
multicuts [4].

3.1 Multicut Formulation

We follow Tang [4] and phrase the multiple target tracking problem as a graph
partitioning problem, more concretely, as a minimum cost (lifted) multicut prob-
lem. This formulation can serve as well for an initial tracklet generation process,
which will help us to inject cues learned from spatial information into the ap-
pearance features, as it can be used to generate the final tracking result using
short- and long-range information between object detections.

Minimum Cost Multicut Problem. We assume, we are given an undirected
graph G = (V,E), where nodes v ∈ V represent object detections and edges
e ∈ E encode their respective spatio-temporal connectivity. Additionally, we are
given real valued costs c : E → R defined on all edges. Our goal is to determine
edge labels y : E → {0, 1} defining a graph decomposition such that every
partition of the graph corresponds to exactly one object track (or tracklet). To
infer such an edge labeling, we can solve instances of the minimum cost multicut
problem with respect to the graph G and costs c, defined as follows [57,59]:

min
y∈{0,1}E

∑

e∈E

ceye (1)

s.t. ∀C ∈ cycles(G) ∀e ∈ C : ye ≤
∑

e′∈C\{e}

ye′ (2)
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Here, the objective is simply to cut those edges with negative costs ce such that
the resulting cut is a decomposition of the graph. This condition is formalized
by the cycle inequalities in Eq. (2), which make sure that, for every cycle in
G, if one of its edges is cut, so is at least one other. Thus, no two nodes can
remain connected via some path of the graph if an edge is cut between them
along any other path. In [59], it was shown to be sufficient to enforce Eq. (2) on
all chordless cycles, i.e. all cycles.

Typically, if cut probabilities between pairs of nodes are available, the costs
are computed using the logit function logit(p) = log p

1−p
to generate positive

and negative costs. With these costs set appropriately, the optimal solution of
minimum cost multicut problems not only yields an optimal cluster assignment
but also estimates the number of clusters (e.g. objects to track) automatically.

While the plain minimum cost multicut problem has shown good perfor-
mance in multiple object tracking scenarios with only short range information
available [3], the cost function actually has a rather limited expressiveness. In
particular, when we want to add connectivity cues between temporally distant
bounding boxes, we can only do so by inserting a direct edge into the graph. This
facilitates solutions that directly connect such distant nodes even if this link is
not justified by any path through space and time. This limitation is alleviated
by the formulation of minimum cost lifted multicuts [58].

Minimum Cost Lifted Multicut Problem. For a given, undirected graph
G = (V,E) and an additional edge set F ⊆

(

V
2

)

\ E and any real valued cost
function c : E ∪ F → R, the 01 linear program written below is an instance of
the Minimum Cost Lifted Multicut Problem (LMP) w.r.t. G, F and c [58]:

min
y∈YEF

∑

e∈E∪F

ceye (3)

with YEF ⊆ {0, 1}E∪F the set of all y ∈ {0, 1}E∪F with

∀C ∈ cycles(G) ∀e ∈ C : ye ≤
∑

e′∈C\{e}

ye′ (4)

∀vw ∈ F ∀P ∈ vw-paths(G) : yvw ≤
∑

e∈P

ye (5)

∀vw ∈ F ∀C ∈ vw-cuts(G) : 1− yvw ≤
∑

e∈C

(1− ye) (6)

The above inequalities Eq. (4) make sure that, as before, the resulting edge
labeling is actually inducing a decomposition of G. Eq. (5) enforces the same
constraints on cycles involving edges from F , i.e. so called lifted edges, and Eq.(6)
makes sure that nodes that are connected via a lifted edge e ∈ F are connected
via some path along original edges e′ ∈ E as well. Thus, this formulation allows
for a generalization of the cost function to include long range information with-
out altering the set of feasible solutions.
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Optimization. The minimum cost multicut problem (1) as well as the mini-
mum lifted multicut problem (3) are NP-hard [60] and even APX-hard [57, 61].
Nonetheless, instances have been solved within tight bounds, e.g. in [62] using
a branch-and-cut approach. While this can be reasonably fast for some, easier
problem instances, it can take arbitrarily long for others. Thus, primal heuristics
such as the one proposed in [58] or [63] are often employed in practice and show
convincing results in various scenarios [4, 58, 64,65].

Spatio-Temporal Tracklet Generation. Since the proposed approach is self-
supervised in a sense that no annotated labels from the dataset are used in
the training process, it is challenging to effectively learn such probabilities. To
approach this challenge, we first extract reliable point matches between neigh-
boring frames using DeepMatching [66] as done before e.g. in [3,4,37]. Instead of
learning a regression model on features derived from the resulting point matches,
we simply assume that the intersection over union (IoU) of retrieved matched
within pairs of detections (denoted by IoUDM) is an approximation to the true
IoU. Thus, when IoUDM > 0.7, we can be sure we are looking at the same object
in different frames. While this rough estimation is not suitable in the actual
tracking task since it clearly over-estimates the cut probability, it can be used to
perform a pre-grouping of detections that definitely belong to the same person.
The computation of pairwise cut probabilities used in the lifted multicut step
for the final tracking task is described in section 3.3.

3.2 Deep Convolutional AutoEncoder

A convolutional AutoEncoder takes an input image, compresses it into a latent
space and reconstructs it with the objective to learn meaningful features in an
unsupervised manner. It consists of two parts: the encoder fθ(.) and a decoder
gφ(.), where θ and φ are trainable parameters of the encoder and decoder, re-
spectively. For a given input video, there are in total n detections xi ∈ Xn

i=1,
the objective is to find a meaningful encoding zi, where the dimension of zi is
much lower than xi. The used convolutional AutoEncoder first maps the input
data into a latent space Z with a non-linear function fθ : X → Z, then decodes
Z to its input with gφ : Z → X. The encoding and reconstruction is achieved
by minimizing the following loss equation:

min
θ,φ

N
∑

i=1

L(g(f(xi)), xi) (7)

where L is the least-squared loss L(x, y) = ‖x − y‖2. Similar to the work
of [67], we add an additional clustering term to minimize the distance between
learned features and their cluster center c̃i from the spatio-temporal tracklet
labels.

min
θ,φ

N
∑

i=1

L(g(f(xi)), xi)λ+ L(f(xi), c̃i)(1− λ) (8)
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Fig. 3: Nearest neighbor of the query detection (left most detection) within 46
frames with a step size of 5 frames of the sequence MOT17-09-SDP without
(top) and with (bottom) the self-supervised clustering loss. Without this loss,
the detections on the girl are spread over several clusters and a false association
is made by the nearest neighbor. These mistakes are corrected by the clustering
loss.

The parameter λ ∈ [0, 1] balances between reconstruction and clustering loss.
When choosing 0 < λ < 1, the reconstruction part (Eq. (7)) can be considered to
be a data-dependent regularization for the clustering. To compute the centroid
ci, the whole dataset is passed through the AutoEncoder once:

c̃i =
1

N

N
∑

i=1

f(xi) (9)

We use a deep AutoEncoder with five convolutional and max-pooling layers
for the encoder and five up-convolutional and upsample layers for the decoder,
respectively. Furthermore, batch normalization is applied on each layer and ini-
tialized using Xavier Initialization [68]. The input image size is halved after each
layer while the number of filters are doubled. The size of latent space is set to
32. The input layer takes a colored image with dimension 128 × 128 in width
and height and we applied ReLu activation functions on each layer.

3.3 AutoEncoder-based Affinity Measure

We use the trained AutoEncoder to estimate the similarity of two detections xi

and xj of a video sequence based on the Euclidean distance in the latent space:

di,j = ‖f(xi)− f(xj)‖ (10)

Figure 3 shows the nearest neighbor of a selected frame t (left box marked in
red) from the sequence MOT17-09 and frame t+5·k. The example illustrates that
the location of detections with the same ID are close to one another in the latent
space even over a long distance of up to 40 frames. Yet, false positives can appear.
The example also shows that change in appearance affects the AutoEncoder
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Fig. 4: TSNE Visualization of the latent space of the trained AutoEncoder for
the sequence MOT17-04 FRCNN. The colors represent the assigned person IDs.
As the appearance changes for example due to pose changes, the latent repre-
sentations vary smoothly.

distance, further denoted dAE. For instance in the first row, frame 1 and frame
6 are very similar due to the same detection position of the person within the
bounding box as well as the direction the girl is looking to. At frame 41, the girl
(in Fig. 3) slightly turned towards another person. Although the correct nearest
neighbour was retrieved, the distance dAE almost doubled (in blue: distance 4.83
compared to 2.96 at frame 6). Another observation is that the position of the
bounding box influences the latent space distance. Such behavior easily allows
for false positive associations. In the second row, in the first detection from the
left (frame 5), the detection of the person is slightly shifted to the left. At frame
15, 20 or 25, the position is slightly zoomed and dAE increases. Yet, it is overall
more stable and less false positive associations are made.

Visualization of Latent Space. Figure 4 shows the TSNE-Visualization
[69] of the latent space from the sequence MOT17-04-FRCNN. Our proposed
AutoEncoder learned the visual features without supervision. The different col-
ors represent the cluster labels. As shown in the example circled on the bottom
left, similar looking persons are very closed to one another in the latent space:
The sitting person in white shirt and the lady, wearing a white shirt (example
in bottom left). The visualization also shows that the same person may change
the appearance over time (example on the bottom right). In the latent space,
the snake-like shape may indicate that the viewpoint or pose of a person may
have changed over time, causing a continuous appearance change. When stand-
ing still, the change is minimal, which is also observed in the example on the top
right corner. While for nearby frames, we can compute pairwise cues based on
the distance between latent feature representation (dAE), as well as on spatial
cues (IoUDM), spatial information can not be used to associate detections over
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longer temporal distances. However, to facilitate the re-identification of objects
after being fully or partly occluded, such long-range information is needed. In
these cases, we have to purely rely on the learned latent space distance dAE. The
distance is directly cast to a binary logistic regression to compute the cut proba-
bility of the respective edge in graph G. The label that is used for the regression
comes from the DeepMatching IoU. If IoUDM(xi, xj) < Tlow for a threshold Tlow,
xi and xj most certainly belong to different objects. If IoUDM(xi, xj) > Thigh for
a different threshold Thigh, they are very likely to match. Formally, we estimate
a probability pe ∈ [0, 1] between two detections using a feature vector f (e) by
regressing the parameters β of a logistic function:

pe =
1

1 + exp(−〈β, f (e)〉)
(11)

Thus, the costs ce can intuitively be computed by the logit. To robustly esti-
mate these probabilities, we set Tlow and Thigh most conservatively to 0.1 and
0.7, respectively. From this partial, purely spatially induced labeling, we can
estimate cut probabilities for all available features combinations, i.e. possible
combinations of IoUDM and dAE within nearby frames and only dAE for distant
frames.

4 Experiments and Results

We evaluate the proposed method on the MOT17 Benchmark [6] for multiple
person tracking. The dataset consists of 14 sequences, divided into train and test
sets with 7 sequences each. For all sequences, three different detection sets are
provided, from the detectors SDP [70], DPM [71] and FRCNN [72], thus yield-
ing 21 sequences in both data splits. While SDP and FRCNN provide reliable
detections, the performance of the DPM detector is relatively noise and many
detections are show poor localization.

The settings between the training and testing scenes are very similar such as
moving/static camera, place of recording or view angle, such that learning-based
methods usually train on the most similar training sequence for every test se-
quence. For the evaluation, we use the standard CLEAR MOTA metric [73]. We
reported Tracking Accuracy (MOTA), Precision (MOTP), number of identity
switches (IDs), mostly tracked trajectories ratio (MT) and mostly lost trajecto-
ries (ML).

Implementation Details. Our implementation is based on the Tensorflow
Deep Learning Framework. We use a convolutional AutoEncoder in order to
extract features by optimizing the equation (8). Thus no pre-training or any
other ground truth is required. Furthermore, our pre-processing step is only lim-
ited to extracting the provided detections from all sequences and resizing them
to the corresponding size of the AutoEncoder input layer. Thus the detections
from the MOT17 dataset are directly fed to the AutoEncoder. For each sequence
from the dataset (MOT17-01 to MOT17-14 with the detector SDP, FRCNN and



12 Ho et al.

Table 2: Tracking Performance using different features on the MOT17 Training
Dataset. The third column refers to the frame distance over which bounding
boxes are connected in the graph. dAE represents the AutoEncoder latent space
distance while dAE+C includes the clustering term, respectively. Our proposed
approach includes lifted edges [4] between frames of distance 10, 20 and 30.

No Features Distance MOTA MOTP IDs MT ML FP FN

1 IoUDM 1-3 47.2 83.8 3,062 311 657 7,868 167,068
2 dAE 1-3 35.2 83.9 4,378 138 743 10,213 203,868
3 dAE+C 1-3 37.6 84.0 3,830 162 745 8,951 197,308
4 Combined (1+2) 1-3 49.4 83.5 1,730 381 593 7,536 161,057
5 Combined (1+3) 1-3 49.4 83.4 1,713 380 594 7,786 161,084

6 IoUDM 1-5 47.2 83.5 2,731 337 642 12,195 163,055
7 dAE 1-3 35.8 84.2 4,623 129 755 6,867 204,697
8 dAE+C 1-5 35.2 83.9 4,378 138 743 10,213 203,868
9 Combined (6+7) 1-5 49.7 83.3 1,567 389 578 9,067 158,788
10 Combined (6+8) 1-5 49.8 83.3 1,569 388 580 8,869 158,715

11 Proposed 1-5 50.2 83.3 1,458 391 582 8,466 157,936

Table 3: Tracking result compared to other methods on the MOT17 dataset.
The best performance is marked in bold.

Sequence Method MOTA MOTP IDs MT ML FP FN

Lif T [35] Supervised 60.5 78.3 1,189 27.0 33.6 14,966 206,619
MPNTrack [36] Supervised 58.8 78.6 1,185 28.8 33.5 17,413 213,594
eHAF17 [74] Supervised 51.8 77.0 1,834 23.4 37.9 33,212 236,772
AFN17 [75] Supervised 51.5 77.6 2,593 20.6 35.5 22,391 248,420
jCC [37] Supervised 51.2 75.9 1,802 20.9 37.0 25,937 247,822

Proposed Self-Supervised 48.1 76.7 2,328 17.7 39.8 17,480 272,602

DPM), one individual model is trained with the same setup and training param-
eters. However, it is important to note that the number of detections for each
individual person varies significantly: while some pedestrians are staying in the
scene for a long time, others are passing by quickly out of the scene. This results
different cluster sizes. To balance this, randomized batches of detections are ap-
plied during the training, where each batch contains only images from one single
frame. This way, one iteration of training contains only detections from unique
persons. The initial learning rate is set to α = 0.001 and decays exponentially
by a factor of 10 over time. The balancing parameter between reconstruction
and clustering loss is set to λ = 0 at the beginning in order to first learn the
visual features of the video sequences. After five epochs, the cluster information
is included in the training, e.g. λ is set to 0.95 to encode the appearance varia-
tions from the spatio-temporal clusters into the latent space of the AutoEncoder.
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From Clusters to Tracklets. To transform detection clusters into actual
tracks, we follow the procedure proposed in [3], i.e. from all detections within one
cluster, we select the one with the best detection score pre frame. Clusters con-
taining less than 5 detections are completely removed and gaps in the resulting
tracklets are filled using bilinear interpolation.

4.1 Ablation Study

We investigated feature setups in the minimum cost multicut framework. The
cut probability between pairs of nodes are computed using a logistic regression
function. Adding new features directly affects the edge cost between pairs thus
resulting in different clustering performances. Here, we investigate the extent to
which our proposed appearance model improves the tracking performance.

Comparison of different setups. Table 2 shows the evaluated setups and
the resulting tracking performance scores. The column Features lists the added
features to the logistic regression model. The temporal distances over which
bounding boxes are connected in the graph are marked in the column Distances.
The tracking accuracy of experiment 1 and 6, which uses IoUDM only, is 47.2%.
Experiment 2+3 and 7+8 compare the different AutoEncoder models: the Eu-
clidean distance (dAE) from the AutoEncoder latent space is computed in order
to estimate the similarity of each pair detections. Here, dAE denotes the latent
space distance before adding the clustering loss while dAE+C denotes the distance
after training of the AutoEncoder with the clustering loss, i.e. our proposed ap-
pearance method.

Best performance with proposed method. The benefit from using the clus-
tering loss on the model training is obvious: for both distances (1-3 and 1-5
frames), the performance is significantly higher. For distance 1-3, dAE+C has
a tracking accuracy of 37.6 compared to dAE (35.2) and for distance 1-5, the
MOTA scores are 35.2 and 35.8 for dAE+C and dAE, respectively. Although the
scores are lower than using IoUDM, combining them both together increases the
performance further. This is shown in experiment 4+5 and 9+10, where the best
score is achieved with in experiment 10 (proposed method). We also observe that
the number of identity switches (IDs) is reduced with our setup. Finally, we add
lifted long range edges and solve the resulting minimum cost lifted multicut
problems on G. Our best performance is achieved using the setup of experiment
11 with a MOTA of 50.2% using all model components.

4.2 Results

Tracking Performance on test data. Here, we present and discuss our fi-
nal tracking results on the MOT17 test dataset. Compared to the performance
on the training dataset, the MOTA score of our proposed approach is slightly
lower (Training: 50.2% vs. Testing: 48.1%), which is within the observed variance
between different sequences, neglecting excessive parameter tuning. The best
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Table 4: Tracking results on the recent MOT20 dataset. Our proposed method
is closed to the current state-of-the-art method given the fact that ours is based
on self-supervised learning.

Sequence Method MOTA MOTP IDs MT ML FP FN

SORT20 [76] Supervised 42.7 78.5 4,470 16.7 26.2 27,521 264,694

Proposed Self-Supervised 41.8 78.6 5,918 15.9 27.0 28,341 266,672

performance is achieved in conjunction with the SDP-detector while the perfor-
mance on the noisier DPM detections are weaker (detailed tables are provided in
the supplementary material). While supervised approaches can also train their
models w.r.t. the overlap of provided detections with the ground truth and thus
compensate for poor detector quality, our self-supervised approach depends on
reasonable object detections.

Comparison with other tracking approaches. We compare our method
with five other reported tracking methods Lif T [35], MPNTrack [36], eHAF17
[74], AFN17 [75] and jCC [37]. We consider a tracking method as supervised
when ground truth data is used (for example label data for learning a regression
function) or if any pre-trained model is included in the approach. Table 3 gives
an overview of the scores in different metrics that is being evaluated. The best
on each category is marked in bold.

When comparing more closely the average MOTA scores we achieve per de-
tector over all sequences, our proposed method reaches 46.9% on the SDP detec-
tor while [44] reach 47.1%. For a state-of-the-art detector, our method performs
thus competitive with supervised one. Yet, on the noisy DPM detections, our
approach is outperformed by 10% (49.0 [44] vs. 34.3 (Ours)), decreasing the total
average significantly.
Evaluation on MOT20. We evaluated our approach on the recent MOT20
dataset. The current state-of-the-art method [76] achieves a MOTA score of
42.7% while ours 41.8% (see table 4).

5 Conclusion

We present a two stage approach towards tracking of multiple persons without
the supervision by human annotations. First, we group the data based on their
spatial-temporal features to obtain weak clusters (tracklets). Combining the vi-
sual features learned from an AutoEncoder with these tracklets, we are able to
automatically create robust appearance cues enabling multiple person tracking
over a long distance. The result of our proposed method achieves a tracking ac-
curacy of 48.1% and 41.8% on the MOT17 and MOT20 benchmark, respectively.
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