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Abstract. Recently, the Fully Convolutional Network (FCN) has been
adopted in image segmentation. However, existing FCN-based segmenta-
tion algorithms were designed for semantic segmentation. Before learning-
based algorithms were developed, many advanced generic segmentation
algorithms are superpixel-based. However, due to the irregular shape and
size of superpixels, it is hard to apply deep learning to superpixel-based
image segmentation directly. In this paper, we combined the merits of
the FCN and superpixels and proposed a highly accurate and extremely
fast generic image segmentation algorithm. We treated image segmenta-
tion as multiple superpixel merging decision problems and determined
whether the boundary between two adjacent superpixels should be kept.
In other words, if the boundary of two adjacent superpixels should be
deleted, then the two superpixels will be merged. The network applies
the colors, the edge map, and the superpixel information to make de-
cision about merging suprepixels. By solving all the superpixel-merging
subproblems with just one forward pass, the FCN facilitates the speed
of the whole segmentation process by a wide margin meanwhile gaining
higher accuracy. Simulations show that the proposed algorithm has favor-
able runtime, meanwhile achieving highly accurate segmentation results.
It outperforms state-of-the-art image segmentation methods, including
feature-based and learning-based methods, in all metrics.

1 Introduction

Image segmentation is fundamental and important in many image processing
applications. There are many existing image segmentation algorithms, including
the region growing method [1], the mean shift method [2], the watershed [3, 4],
the normalized cut [5, 6], the graph-based method [7], and the superpixel-based
method [8–10].

In recent years, deep learning techniques have also been adopted in image seg-
mentation [11–14]. With supplicated deep learning architectures, one can achieve
good segmentation results with enough training time. However, these learning-
based algorithms are used to produce semantic segmentation but not generic
segmentation results.
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Fig. 1. Overview of the proposed DMMSS-FCN algorithm. Multiple feature
maps including an original RGB image are stacked together to form the input data.
Then, they are fed into the fully convolutional network. The output is the superpixel
merging map that determines which boundaries should be kept. With such information,
we perform superpixel merging based on the output of the model to produce the final
segmentation result.

Before learning-based segmentation algorithms were developed, many ad-
vanced image segmentation algorithms are based on superpixels. However, due
to the irregularity of sizes and shapes of superpixels, it is hard to apply super-
pixels in a learning-based generic segmentation architecture.

Therefore, in this study, we broke down the whole image segmentation prob-
lem into several superpixel merging decision problems. Furthermore, each su-
perpixel merging process can be converted into a boundary keeping problem.
That is, whether the boundaries between two adjacent superpixels should be
deleted or not. We proposed a novel algorithm that leverages the Fully Convolu-
tional Network (FCN) for learning generic image segmentation. We call it Deep
Merging Models for Superpixel-Segmentation by Fully Convolutional Networks
(DMMSS-FCN). With the use of FCN, all of those superpixel merging problems
can be solved in just one forward pass. That is, it is extremely efficient. First, the
proposed DMMSS-FCN model will predict whether the pixels along the bound-
ary of two adjacent superpixels should be keep. Following, a majority voting
technique will be applied to decide the existence of all superpixel boundaries.
Therefore, the final image segmentation result will be produced with minimum
effort.

We use 5-channel stacked images as the input, including an RGB image,
a superpixel boundary map, an edge detection map. Since different superpixel
algorithms will produce different superpixel boundary maps, by vary the param-
eters of different superpixel algorithms, numerous training data can be easily
obtained. That is, our method does not require many human-annotated ground
truth. Furthermore, our method is fully automatic, that is, user does not need
to assign number of regions in prior.

We show the overview of the proposed DMMSS-FCN algorithm in Fig. 1. We
will discuss the detail of DMMSS-FCN in Section 3.
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2 Related Work

2.1 Superpixels

Superpixels are a group of pixels with similar colors and locations. There are
many types of superpixels, including the entropy rate superpixel (ERS) [15] and
the simple linear iterative clustering (SLIC) [16] superpixel. In [2], the superpixel
generated by mean shift was proposed. It has good edge-preserving property and
the number of superpixels have not to be specified in advance. Moreover, its
boundaries highly match the borders of objects. Recently, deep learning-based
superpixels like superpixel sampling network (SSN) [17], and segmentation-aware
loss (SEAL) superpixels [18] were proposed. They both outperform non deep
learning-based superpixels by a wide margin.

2.2 Classical Segmentation

Most classical segmentation methods utilize hand-crafted features such as color,
histogram, gradient, or texture to perform segmentation. Many of them are
still widely used today, such as the graph-based method [7] and the normalized
cut [6]. Arbelaz et. al. [3,4] proposed a method based on the global information to
perform the oriented watershed transform and generated an ultra-metric contour
map for hierarchical segmentation.

Moreover, superpixel-based segmentation algorithms like the method of seg-
mentation by aggregating superpixels (SAS) [8] perform segmentation based
on merging superpixels using some local grouping cues. Kim et. al. [9] used a
full range affinity model and Yang et. al. [10] proposed a spectral clustering
method based on Gaussian Kernel similarity measure for image segmentation.
These superpixel-based segmentation algorithms have good performance. How-
ever, due to the irregular shapes and sizes of superpixels, it is hard to embed
deep learning techniques in superpixels-based algorithms.

2.3 Deep Learning in Image Segmentation

Recently, many semantic segmentation algorithms applied the deep neural net-
work were developed. In [12, 13], the fully convolutional network (FCN) were
proposed to improve the performance of image segmentation and object detec-
tion. In [14], the conditional random field (CRF) was applied in the pixel-wise
segmentation method of DeepLab. In [11], Xia and Kulis proposed the W-Net
based on the FCN to perform segmentation. In [19], Haeh et. al. introduced a
method based on the CNN to detect split error in segmented biomedical im-
ages. In [20], Chen et. al. extracted deep features and used them for superpixel
merging. In [21], Liu et. al. applied the FCN for superpixel merging.

In this study, we integrate the merits of superpixel-based methods and state-
of-the-art learning-based methods and propose a high accuracy image segmen-
tation algorithm.
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3 Proposed Algorithms: DMMSS-FCN

In this work, we proposed an effective way of integrating FCN with generic
image segmentation. That is, with the use of superpixel, we can encode the su-
perpixel merging problems with keeping of superpixel boundaries into generic
image segmentation. In Fig. 2(a), the existence of boundary between two su-
perpixels implies that they are separated from each other, in other words, they
are not merged. On the contrary, the disappearance of boundary means they
are merged. Therefore, with the use of the FCN, we perform dense prediction
on every adjacent boundaries. After one forward pass in the FCN, all the pixels
along the boundaries are classified into two classes, keeping or removing. Then
we measure the tendency of keeping a boundary by majority voting technique
defined in (1) for quantization. Hence, we can easily recover the segmentation
result.

BoundaryRate(i, j) =
# of pixels of (keep label ∩Bnd(i, j))

# of pixels of Bnd(i, j)
(1)

where the keeping label indicates that the pixel is predicted to be on the bound-
ary of some object and should be kept. For example in Fig. 2(b), there are 15
pixels along the boundary Bnd(i, j), 10 of them are predicted as the keeping

label (orange circles) while 5 of them(black circles) are of the removing label,
resulting in a BoundaryRate of 2/3. Therefore, we can thresholding on the
BoundaryRate to get the segmentation result from the FCN output.

Fig. 2. (a) Converting superpixel merging problem into superpixel boundary keeping
problem. (b) BoundaryRate Example.

3.1 Five-channel Input Data

We defined our input data by concatenating a RGB (3 channels) image with
a superpixel boundary map (1 channel) and a edge-detection map (1 channel).
The RGB image indicates the original image while the superpixel boundary map
is a binary image with only the boundary between two adjacent superpixels are
marked as positive (the keeping label). The superpixel boundary map generation
is shown in Fig. 3. There are many advanced learning-based contour generation
algorithms [22–24]. In this work, the RefineContourNet (RCN) [22] is adopted
for edge detection. An example of the output of the RCN is shown in the right
subfigure of Fig. 3.
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Fig. 3. Component of input data. Left: Superpixel result from SEAL-ERS [18]. Mid-
dle: Binary image with superpixel boundaries marked as 1s, others are 0s. Right:
Edges extracted by the RCN.

We have also tried different combination of concatenating input images. Ab-
lation studies have been carried out to analyze the impact of different input
channel in Sec. 4.3.

Since we want our model to be adaptive to any input superpixel type, the
superpixel boundary map plays an important role in the whole process. That is,
with any superpixel result as prior input, our model can determine which bound-
ary should be keep, with the superpixel boundary map as attention mechanism.

Fig. 4. Groundtruth generation. Left: SEAL-ERS superpixel result. Middle: Perfect
segmentation by oracle. Right: Groundtruth superpixel boundary map by converting
the resulting groundtruth into binary image.

3.2 GroundTruth Generation and Output

In [3], the Segmentation Covering (SC), the Probabilistic Rand Index (PRI), and
the Variation of Information (VI) are proposed to be the standard evaluation
metrics for generic image segmentation. Among all, the PRI as follows is often
treated as the most important metric, where cij indicates the case where pixels
i and j belong to the same region, pij is the probability, S is the resulting
segmentation, and Gk is a set of groundtruth.

PRI{S,Gk} =
1

T

∑

i<j

[cijpij + (1− cij) + (1− pij)] (2)

That is, we use an oracleguided process to produce the highest achievable
PRI score for a given oversegmentation(superpixel) result. From that, we can
acquire the groundtruh by transforming the results into a binary boundary map
called the superpixel merging map which is the ideal output of our model. The
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groundtruth generation result is shown in Fig. 4. Sufficient training data can be
obtained by varying the parameters of superpixel generation algorithms. There-
fore, the model is designed to be adaptive for different superpixel type. We use
BoundaryRate to recover segmentation result. In Fig. 5, we show that for dif-
ferent superpixel type as prior input, our models will generate corresponding
superpixel merging maps.

Fig. 5. Different superpixel boundary map input. First Row: Superpixel boundaries
overlapped with the original images. Second Row: Superpixel merging maps over-
lapped with corresponding groundtruth merging maps.

3.3 Training Architecture

Since our goal is to perform pixel-wise prediction on the image, and examine the
BoundaryRate along the boundary of two adjacent superpixels, the localization
of predicted labels is crucial. Therefore, we adopted the DeepLab V3+ [25] FCN
architecture proposed by Chen et. al.. The DeepLab V3+ utilized the atrous
convolution in the encoder side for the better field of view and a simple but
effective decoder with short cut skipped through the encoder part is added to this
architecture, making it a highly accurate fully convolutional network structure
while preserving good spacial information.

In this paper, we adopted the InceptionResNetV2 [26] as the hidden encoder
architecture, and the output stride of encoder is set to 16. And the batch size is
set to 13 with the size of input data is 321x481x5.

Since this is a binary classification problem of two labels, keeping or removing

labels, with the keeping class is far less than the other one, we applied the
weighted binary cross entropy loss in the following equation to calculate the
loss. Furthermore, Adam optimizer is adopted to update the parameters of the
networks with initial learning rate of 0.0001 and divided by 0.5 for every 10
epochs, and stopped training after 100 epochs.

weightedBCE (T, S) = −
∑

i

[ω0 (TilogSi) + ω1log (1− Si)] (3)
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where S is the output superpixel merging map, and Si ∈ (0, 1) denotes the
predicted probability value at ith pixel in S. T is the groundtruth merging map,
and Ti ∈ 0, 1 denotes the groundtruth label in T . The weighting factors ω0 = 1
and ω1 = 38 is the ratio of two classes.

We applied the Berkeley Segmentation DataSet 500, with 200 test images,
200 training images, and 100 validation images. As we mentioned in Sec 3.2,
different superpixel algorithm can produce different superpixel and groundtruth
pairs. Therefore, we adopted the SEAL-ERS [18] and the SSN [17] both with
the number of superpixels set to 100, and 200 to generate the training data,
resulting in 800 training images, and 400 validation images in total.

3.4 Inference and Superpixel Merging

As we shown in Fig. 6, we first concatenate RGB image with superpixel bound-
ary map and RCN edge map to form the 5-channel input data. Then we perform
one forward pass through the networks to obtain superpixel merging map. After-
wards, we use the BoundaryRate in (1) to measure how many predicted keeping

label are on each boundary of adjacent superpixels. Then, we perform thresh-
olding merging procedure as we by using the formula in (1). Here we adopted an
adaptive thresholding technique which first start merging by thresholding with
the lowest threshold values and increase the threshold values bit-by-bit until
there are no candidates for merging. After the thresholding value (0.5 in this
paper) is reached, the whole merging process stops and the final segmentation
result is obtained.

Fig. 6. Overview of DMMSS-FCN. We first form the 5-channel input data by
concatenating a RGB (3 channels) image with a superpixel boundary map (1 channel)
and an edge-detection map(1 channel). Then, the input is fed to perform pixel-wise
prediction and output the superpixel merging map. Then, the BoundaryRate in (1) is
used to threshold each superpixel boundary to perform superpixel merging and obtain
the segmentation result.

4 Experiments

In this section, we carried out tons of experiments and ablation studies to jus-
tify that our proposed DMMSS-FCN can outperform many state-of-the-art algo-
rithms, even compared to our own DMMSS, the proposed DMMSS-FCN can still
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Table 1. Results on the BSDS500 dataset.

Method VI PRI SC

Ncuts 2.23 0.78 0.45

Canny-owt-ucm 2.19 0.79 0.49

Felz-Hutt 2.21 0.80 0.52

Mean Shift 1.85 0.79 0.54

Taylor 1.78 0.81 0.56

W-Net 1.76 0.81 0.57

fPb-owt-ucm 1.70 0.82 0.58

DC-Seg-full 1.68 0.82 0.59

W-Net+ucm 1.67 0.82 0.59

gPb-owt-ucm 1.69 0.83 0.59

cPb-owt-ucm 1.65 0.83 0.59

DMMSS(SSN) 1.46 0.86 0.63

DMMSS-FCN(SSN) 1.38 0.87 0.66

Human Drawing 1.17 0.88 0.72

surpass it in all evaluation metrics while boosting the speed, making DMMSS-

FCN a highly accurate and efficient generic image segmentation algorithm.

4.1 Segmentation Evaluation

To compare the proposed DMMSS-FCN algorithm to the existing methods, we
evaluate the performance on the standard metrics of segmentation covering (SC),
the probabilistic rand index (PRI), and the variation of information (VI) [3]. A
higher SC and PRI and a lower VI mean better performance.

We compare the proposed DMMSS-FCN algorithm to the state-of-the-art
methods, including the W-Net [11], gPb-owt-ucm [4], DC-Seg-full [27], Tay-
lor [28], Felzenszwalb and Huttenlocher (Felz-Hutt) [7], Mean Shift [2], Canny-
owtucm [4], Multiscale Normalized Cuts (NCuts) [5], fPb-owt-ucm [9], cPb-
owtucm [9], and our own DMMSS. As the proposed algorithm, all the algorithms
compared in Table 1 have not to assign the number of regions in prior.

4.2 Run Time Analysis

We then analyze the run time of the proposed DMMSS-FCN and compare it to
the state-of-the-art segmentation algorithms of DC-Seg-full [27] and gPb-OWT-
UCM [4]. The runtime includes the inference time of generating the superpixel
boundary map and the edge map. We evaluate our algorithms on SEAL-ERS
superpixels, and perform inference on the BSDS500 test set. In Table 2, the
average run time of processing single image is presented. One can find out that
the proposed DMMSS-FCN has drastically reduce the run time compare to gPb-
OWT-UCM, decreasing the runtime up to 384x times less than the gPb-OWT-
UCM and 227x times less than DC-Seg-full and meanwhile achieving higher
accuracy. More on that, even we switch our DMMSS-FCN to CPU mode, our
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Table 2. Run time on the BSDS500 test set.

Method Mode Time (s)

DMMSS-FCN(SEAL-ERS) CPU+GPU 0.26

DMMSS-FCN(SEAL-ERS) CPU 8.2

DC-Seg-full CPU 59

gPb-OWT-UCM CPU 100

proposed DMMSSFCN still 12x faster than the gPb-OWT-UCM and 12x faster
than the DC-Segfull.

4.3 Ablation Study

We then discuss the functionality of some key component in our proposed al-
gorithm, and how they affect the overall performance. Including the different
combination of input data, different superpixel generation algorithm, and dif-
ferent DeepLabV3 Plus implementation detail, furthermore, different inference
techniques.

Combination of Input Data Following: We show that different combina-
tion of input data could have a great impact on the performance of the model. In
this section, we mainly use the SEAL-ERS 100 as the underlying superpixel rep-
resentation. In Table 3, we show the difference of concatenating different feature
map as input data.

Table 3. Performance of different input data combination.

Input Data VI PRI SC

4-channel: RGB(3)+spixel bdry(1) 1.569 0.846 0.547

5-channel: RGB(3)+spixel bdry(1)
+RCN edge(1)

1.446 0.863 0.634

5-channel: LAB(3)+spixel bdry(1)
+RCN edge(1)

1.458 0.860 0.632

7-channel: RGB(3)+spixel bdry(1)
+RCN edge(1)+AffinityXY(2)

1.472 0.861 0.629

7-channel: LAB(3)+spixel bdry(1)
+RCN edge(1)+AffinityXY(2)

1.534 0.859 0.606

It is reasonable to think that concatenating another feature map as prior in-
formation might improve the performance. As we added the RCN edge-detection
map, we got a huge gain in performance. Hence, we tried to concatenated more
feature map or change RGB to CIE LAB color space to further improve the
performance. For example, we use the Affinity map that generated from the
SEAL-ERS as candidates for feature map concatenation. Nevertheless, from the
experimental results in Table 3, more channels of feature maps do not imply
better performance. In the end, we adopted the 5-channel with RGB image as
the input of the model.

Superpixels: We measure the performance over different number of initial
superpixels. In Fig. 7, the proposed DMMSS-FCN. Since our main superpixel
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boundary maps are collected from the initial number of superpixels set to 100,
and 200, the peak performance is around 200. However, our proposed DMMSS-

FCN still maintains great performance over different numbers of initial super-
pixels even if some of them are not included during training.

Fig. 7. Performance of different numbers of superpixels between SSN and SEALERS
over DMMSS-FCN.

In Fig. 5, we show the performance of the proposed model on different types
of superpixels, where yellow lines index that the prediction overlapped with the
corresponding groundtruth superpixel boundary map, the light blue parts indi-
cate that the model predicts the keeping label, and the dark blue parts represent
the model predicts the removing label. Therefore, as we observe, different input
superpixel type will lead the model to predict corresponding superpixel merging
map.

DeepLabV3 Plus Variation: Chen et. al. [25] proposed a powerful encoder-
decoder-based fully convolutional networks. They suggested different variations
of implementation details, including changing the output stride of the model
or replacing hidden encoder architecture with any existing CNN architecture
such as the ResNet [29] or Xception [30]. More on that, inference techniques like
forwarding not one image but four up-down and right-left flipped images at once
is also reported as legit method to gain performance. Therefore, we discuss the
difference of the performance among the variation of DeepLabV3 Plus applied in
our work. We choose SEAL-ERS 100 as the underlying superpixel representation
to carry out the following experiments.

In Table 4, we reported the difference among two recent CNN architecture,
the Xception [30] and the InceptionResNetV2 [26] with two different output
stride setting. In [14], they indicated that smaller output stride could greatly in-
crease the training time and memory usage with a negligible improvement which
corresponds to our case here. As for different encoder architecture, Inception-
ResNetV2 has better performance over the Xception.

Furthermore, we also adopted the inference technique in [25] to improve the
performance, that is, we generate extra images by flipped the original image,
then feed them into the networks, then average the scores of the outputs to
obtain the final superpixel merging map. In Table 5, we show that a simple but
effective flipping technique could boost the performance.
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Table 4. Performance of different encoder architecture and output stride.

Encoder Architecture Output Stride VI PRI SC

Xception 8 1.569 0.860 0.600

Xception 16 1.532 0.857 0.606

InceptionResNetV2 8 1.635 0.854 0.583

InceptionResNetV2 16 1.446 0.863 0.634

Table 5. Result of adopting flipping technique.

Encoder Architecture Flip VI PRI SC

InceptionResNetV2 No 1.446 0.863 0.634

InceptionResNetV2 YES 1.411 0.864 0.647

4.4 Visual Comparison

In this section, visual comparisons with other segmentation algorithms are pre-
sented. In addition to show the simulation results on the BSDS500, we also
perform simulations on some real-world images to justify that under any circum-
stance, our proposed algorithm can be highly accurate and efficient to produce
good generic image segmentation results.

BSDS500 Test Images Fig. 8 shows the comparison between the proposed
methods and other methods like a deep-learning-based method, the DC-Seg-full
method [27], and classical segmentation algorithm gPb-OWT-UCM [4]. As we
can see, both the results of the proposed algorithms are much better than that
of state-of-the-art algorithms, since ours can produce more general and compact
segmentation results compared to the others.

Real-World Images: To further justify the robustness of our model, we pick
some modern images that have never been in our training set. In this section,
we show some segmentation results on the images taken in the night to test the
capability of our proposed methods of handling dark view scenario. In Fig. 9(a)
and Fig. 9(b) , one can see that, the proposed model well merges the superpixels
belonging to the same object into a region but the other method fails to do
this and has severe segmentation leakage. Therefore, such examples prove that
our models are robust not only in images taken under great exposures, but in
those low-light and blurry scenarios. Additionally, we present simulations of an
aircraft engine in Fig. 9(c), which is difficult for another algorithm to perform
accurate segmentation on the boundary of engine itself since the background
information is similar to the engine. Nevertheless, our proposed method can
generate compact segmentation without losing edge information.

5 Conclusion

In this work, a novel image segmentation algorithm that integrates the merit of
the Fully Convolutional Network and superpixel-based segmentation is proposed.
We call it the DMMSS-FCN.
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Fig. 8. Visual comparison of segmentation results. (First row): original images. Results
produced by (Second row): DC-Seg-full [27]; (Third row): gPb-OWT-UCM [4]; (Fourth
row): DMMSS-FCN (proposed).
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Fig. 9. Real-world image segmentation results. (First row): original images. Results
produced by (Second row): gPb-OWT-UCM [4]; (Third row): DMMSS-FCN (pro-
posed).
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With the use of superpixel, which allows us to be able to solve the generic
image segmentation by highly efficient networks. That is, we covert the merging
decision into a boundary keeping problem across all superpixel pairs. Hence, with
the use of Fully Convolutional Networks, we can solve all those boundary keeping
problems with just one forward pass. As a result, the proposed DMMSS-FCN

algorithm is not only vastly faster than the other state-of-the-art algorithms,
but also has high score in accuracy close to human performance.

Additionally, one can obtain large quantity of training data by varying the pa-
rameters of existing superpixel algorithms to produce various superpixel bound-
ary maps as input training data. That is, our method does not require a lot of
human-annotated ground truth to be fully trained.

We proposed a simple but effective deep-learning-based generic image seg-
mentation algorithm that leverages the FCN for learning generic image segmen-
tation. The proposed algorithm is very effective and simulations show that it is
capable of producing reliable segmentation results under many circumstances.
Since our algorithm do not require any post-processing technique and further in-
formation from user, the simplicity makes it extremely efficient and reliable for
any generic image segmentation task. Therefore, we hope this work could offer
a great idea to be implemented in the downstream tasks, since segmentation is
a quite useful technique in many computer vision applications.
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