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Abstract. Attention based encoder-decoder models have achieved com-
petitive performances in image captioning. However, these models usual-
ly follow the auto-regressive way during inference, meaning that only the
previously generated words, namely the explored linguistic information,
can be utilized for caption generation. Intuitively, enabling the model to
conceive the prospective linguistic information contained in the words
to be generated can be beneficial for further improving the captioning
results. Consequently, we devise a novel Prospective information guid-
ed LSTM (Pro-LSTM) model, to exploit both prospective and explored
information to boost captioning. For each image, we first draft a coarse
caption which roughly describes the whole image contents. At each time
step, we mine the prospective and explored information from the coarse
caption. These two kinds of information are further utilized by a Prospec-
tive information guided Attention (ProA) module to guide our model to
comprehensively utilize the visual feature from a semantically global per-
spective. We also propose an Attentive Attribute Detector (AAD) which
refines the object features to predict the image attributes more precise-
ly. This further improves the semantic quality of the generated caption.
Thanks to the prospective information and more accurate attributes,
the Pro-LSTM model achieves near state-of-the-art performances on the
MSCOCO dataset with a 129.5 CIDEr-D.

1 Introduction

Image captioning aims at automatically generating the descriptions for images
in natural language. This task can facilitate lots of practical applications such
as human-machine interaction and content based image retrieval. To date, the
encoder-decoder framework [1] equipped with attention modules [2–11] has be-
come prevalent in image captioning. Generally, these models utilize CNN as the
encoder to extract visual features from the image, and leverage language de-
coders such as RNN or the Transformer [12] to generate the captions. These de-
coders usually infer the caption in an auto-regressive manner. Specifically, when
generating the current word, only the linguistic information contained in the
previously generated words are utilized. For convenience, we call such linguistic
information as the explored information in this work. Oppositely, the linguis-
tic information contained in the words to be generated, namely the prospective
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Fig. 1. While most image captioning models can only utilize the explored informa-
tion, our model additionally incorporates prospective linguistic information to boost
captioning. Object features extracted by the Faster-RCNN [13] are both exploited to
generate a coarse caption and refined to predict the image attributes via Attentive
Attribute Detector (AAD). The proposed Prospective information guided LSTM (Pro-
LSTM) finally leverages the prospective information to guide the attention modules to
better attend to the visual features, leading to image captions of higher quality.

information, is seldom considered. This is logical considering that in an auto-
regressive process, exact prospective information keeps unknown. However, sup-
pose there is a way to get the prospective information in advance, even roughly,
it is possible for the decoder to synthesize more refined and accurate image
descriptions under the guidance of a ‘conceived’ global linguistic context.

Actually, when human beings compose a sentence, they usually draft a coarse
version first; and then polish it with both prospective and explored linguistic in-
formation to obtain a more descriptive and accurate sentence. In image caption-
ing, such a strategy can be imitated by firstly generating a coarse caption using a
pre-trained auto-regressive captioning model. Although the coarse caption may
not be perfect, roughly it is still a semantically correct description of the overall
content of the image, as shown in the blue circle in Fig. 1. Thus, the coarse
caption can be regarded as a reasonable representation of the global linguistic
information from which the prospective information can be effectively extracted.
Specifically in our proposal, at each time step, the prospective&explored infor-
mation mining module adaptively renews the prospective information and the
explored information. It should be noticed that the prospective information may
not necessarily be related to the succeeded words in the coarse caption. It de-
notes the information contained in words that have not yet been generated by
the current time step. In our method, we extract the prospective information
from coarse caption words of which the semantic information is less correlated
to that contained in the previously generated words. Such words are closely re-
lated to the input image and contain additional linguistic information that is
complementary to the explored information.
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Both prospective information and explored information are further exploited
by the Prospective information guided Attention (ProA) module in the green
circle of Fig. 1. Considering that the explored information is deterministic and
relatively more reliable, we utilize it to augment the visual features directly
as linguistic feature. The prospective information, however, contains additional
semantic information upon current linguistic context. Thus, we do not directly
utilize it as a feature but combine it with the current linguistic context to guide
the attention modules semantically from a global perspective. By jointly using
the prospective and explored information, our model attends to more appropriate
visual features based on a better grasp of the complete linguistic context.

Besides exploiting the image features and the coarse caption, we also lever-
age the image attributes, the most salient concepts contained in the image, in
our model, as shown in the orange circle in Fig. 1. While most works [14, 15]
directly adopt the image features in attribute detection, we propose to refine
these features for better detection performance to further strengthen the cap-
tioning model. Our proposed Attentive Attribute Detector (AAD) leverages the
Graph Convolutional Network (GCN) to model the similarity between the im-
age features and the attribute embedding in the refinement process. We notice
that with proper selections of similarity formulation and activation function, the
GCN can actually be transformed to a multi-head attention [12] module.

Benefiting from both prospective information contained in the coarse caption
and the explicit semantic information brought about by the image attributes,
the proposed Pro-LSTM model can generate precise and detailed image captions.
The main contributions of our work are as follows: 1) We introduce Pro-LSTM
which additionally utilizes prospective information to facilitate better usage of
visual and language information to boost image captioning. 2) We introduce
an AAD which refines the image features in order to predict the image at-
tributes more precisely. 3) The Pro-LSTM model achieves state-of-the-art image
captioning performance of 129.5 CIDEr-D score on the MSCOCO benchmark
dataset [16]. We notice that captions generated by Pro-LSTM are sometimes
even more descriptive than the human-labeled ground truth captions, indicating
the effectiveness of introducing the prospective information.

2 Related Work

Neural Image Captioning. The neural network based encoder-decoder
framework was first proved to be effective in image captioning in [1]. Later
on, the attention mechanism has been introduced to boost the vanilla encoder-
decoder framework. For example, spatial attention [5], semantic attention [6],
adaptive attention [4], bottom-up and top-down attention [2] were introduced to
exploit the visual information in different ways for generating better description-
s. Recently, Huang et al. [17] modified the attention module by adopting another
attention over it to obtain more appropriate attention results. While these auto-
regressive methods focus on better exploiting the explored information at each
time step, we explore how to additionally utilize the prospective information to
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utilize both the visual information and the language information. We will also
show that our method is compatible with the state-of-the-art AoA [17] method.

Exploitation of Prospective Information. Realizing that only leverag-
ing the explored information is not sufficient for captioning, researchers began to
study the possibility of exploiting the complementarity between the explored in-
formation and the prospective information. Wang et al. [18] adopted the bidirec-
tional LSTMs to generate two sentences in both forward-pass and backward-pass
independently. Nevertheless, as they merely integrated the two generated sen-
tences by selecting the one with larger probability, their method was essentially
exploiting the explored and inversely-explored information but not the prospec-
tive information. Look&modify [19] was devised to modify the coarse captions
with the residual information. However, they roughly integrate the word embed-
ding of the words in the coarse caption without explicit model the relationships
between the words. Recently, Ge et al. [20] proposed to attend to both the
coarse caption and the visual features respectively to generate a better descrip-
tion. However, they treat the coarse caption just like the attributes and fail to
model the interaction between prospective information and visual information.
In our proposal, both the prospective and explored information are thoroughly
exploited to guide the model towards more appropriate visual attention.

3 Preliminary

Before introducing our framework, we briefly introduce the Multi-Head Atten-
tion (MHA) [12]. The multi-head attention was first introduced in the Trans-
former model [12]. The scaled dot-product attention is the core component of
multi-head attention. Given a query qi, a set of keys K = (k1, ..., kn) and a
set of values V = (v1, ..., vn) where qi, ki, vi ∈ R

d, the output of the scaled
dot-product attention is the weighted sum of vi. The weights are determined
by the dot-product of qi and kj . Additionally, the dot-products are divided by
the square root of dimension d. In practice, the queries are packed together as a
matrix Q = (q1, ..., qm) to compute the above process in parallel as in (1).

Attention(Q, K, V) = Softmax (
QK⊤

√
d

)V (1)

Multi-head attention (MHA) is an extension of the above attention mecha-
nism. The queries, keys and values are firstly linearly projected to h subspaces.
Then the scaled dot-product attention is applied to the h heads separately in
(2), where i ∈ {1, ..., h}. The h outputs are finally concatenated to form the

output of MHA as in (3), where WQ
i ,W

K
i ,WV

i ∈ R
d× d

h and WMHA ∈ R
d×d

are trainable parameters.

Hi = Attention(QWQ
i , KWK

i , VWV
i ) (2)

V̂ = MHA(Q, K, V) = Concat(H1, ..., Hh)W
MHA (3)
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Fig. 2. The overall framework of our proposal. The framework is composed of an At-
tentive Attribute Detector (AAD), and a Prospective information guided LSTM (Pro-
LSTM) caption generator. The object features (shown in red lines) are firstly extracted
to generates a coarse caption with a pre-trained captioning model. Concurrently, AAD
refines the object features with attribute embedding and predicts the probabilities p of
the image attributes with the refined feature F̃. The Pro-LSTM dynamically mines the
prospective and explored information inside the coarse caption embedding (shown in
blue line) and guide our model to more properly attend to the visual features through
the Prospective information guided Attention (ProA) module.

4 Methodology

As shown in Fig. 2, the overall framework of our model follows the encoder-
decoder paradigm. Firstly, we introduce the Pro-LSTM model, which is equipped
with a Prospective information guided Attention (ProA) module to generate im-
proved image captions with the guidance of prospective information. We then
describe the Attentive Attribute Detector (AAD) which refines the object fea-
tures with multi-head attention to better predict image attributes.

4.1 Prospective Information Guided LSTM

As shown in the middle green circle in Fig. 2, the Pro-LSTM model is composed
of a Dual Encoder and an LSTM decoder. The MHA [12] based dual encoder
consists of two separate components that encode the object features and the
image attributes respectively. The LSTM decoder is a two-layer LSTM, where the
first LSTM layer and the second LSTM layer are called the attention LSTM and
language LSTM respectively. The implementations of these two LSTM layers are
similar to that proposed in [2] except for the attention module and some inputs.
It additionally takes in a coarse caption and leverages the ProA module to decode
these features in order to obtain plausible and detailed image descriptions.

Dual Encoder Generally, the components of the dual encoder are implement-
ed similarly using the structure defined in Eq. 4, where Z denotes the object
feature or the attribute feature to be encoded, FFN and MHA are short for
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Feed-Forward Network and Multi-Head Attention in [12]. The selected top-L at-
tributes are ranked by the predicted confidence p. We stack the attention blocks
for 6 times. The outputs of the 6th attention block of the object encoder and the
attribute encoder are denoted as O ∈ R

M×d and A ∈ R
L×d respectively.

Encoder(Z) = Stack(FFN (MHA(Z, Z, Z)))× 6 (4)

Prospective&Explored Information Mining The structure of this module
is shown in the left of Fig. 3. The idea of information mining is inspired by the
phenomenon that the semantically similar words are close in the word embed-
ding space [21, 22]. We notice that such a phenomenon also exists in the word
embedding trained along with the image captioning network. Thus, we compute
the cosine similarity between the current input word yt−1 and the words in the

coarse caption Ŵ = [ŵ1, ..., ŵT ′ ], ŵi ∈ R
1×d at each time step to select the

prospective words and the explored words.

cosineit =
ŵi ∗ yt−1

‖ŵi‖
∥

∥yt−1

∥

∥

(5)

At the first time step, there is no word in the explored word set Wexp
t and all

the words in the coarse caption are in the prospective word set Wpro
t . Then, at

each time step, the words in the coarse caption that are similar to (cosineit > 0.9)
current input words are recognized as previously generated words. These words
are added to the explored word set and are removed from the prospective word
set simultaneously. As such, the prospective word set Wpro

t always consists of
words that contain unrevealed semantic information at the current time step. We
then adopt self-attention to the two word sets as in Eq. 6, which transforms these
sets of word embedding to a high-level representation of prospective information
and explored information respectively.

Iprot = MHA(Wpro
t , Wpro

t , Wpro
t ), Iexpt = MHA(Wexp

t , Wexp
t , Wexp

t ) (6)

Prospective Information Guided Attention While most previous works
focused on how to exploit the explored information, we additionally explore
the effectiveness of using the prospective information to guide the attention
mechanism in order to better utilize the visual information and the semantic
information jointly. The right side of Fig. 3 shows the detailed architecture of
the Prospective information guided Attention (ProA) module, which is composed
of four attention sub-layers, an augmentation sub-layer, and a fusion sub-layer.

Suppose we are generating the tth word yt at the current time step. The
attention LSTM takes in the concatenation of current input word yt−1, the
averaged object feature Ō, and the output of the language LSTM in the last
time step hlan

t−1 to generates the current attention query hatt
t as in Eq. 7.

hatt
t = LSTMatt(h

att
t−1, [hlan

t−1; Ō; yt−1]) (7)
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Fig. 3. The architecture of the proposed prospective&explored information mining
module and the ProA module. The prospective and explored information are leveraged
to guide visual attention to attend to more appropriate visual features in different
ways. The object attention and attribute attention are implemented separately, they
are combined in this figure since they share similar structure.

Multi-head attention is then applied to the prospective information Iprot

and explored information Iexpt respectively to obtain the corresponding features,
namely the prospective feature i

pro
t and the explored feature i

exp
t in Eq. 8.

i
pro
t = MHA(hatt

t , Iprot , Iprot ), i
exp
t = MHA(hatt

t , Iexpt , Iexpt ) (8)

After grasping the prospective and explored features, we leverage them for
guiding the model to attend to the encoded object features O and image at-
tributes A more properly. Considering that the explored feature is basically the
integration of the information of previously generated words, it is appropriate to
let the model attend to it when generating the none visual words like articles and
prepositions at the current time step. Thus, we directly augment the encoded
visual feature with the explored feature as in Eq. 9.

Oaug
t = [O; i

exp
t ], Aaug

t = [A; i
exp
t ] (9)

Such an augmentation can be viewed as a modification of the Transformer
[12] or the adaptive attention module [4]. While the encoded features in the
Transformer are fixed in the whole captioning generation process, our model dy-
namically augments the explored feature to the encoded feature for facilitating
the inclusion of new information at each time step. Comparing with the adap-
tive attention which directly attends to the visual features and the language
features, we additionally leverage multi-head attention to make these features
more informative.

The prospective feature i
pro
t , however, can be viewed as the future informa-

tion ‘conceived’ by the captioning model. Although this information may not
be precise as the coarse caption may not always be satisfying, it is probably a
useful supplement to the current linguistic context hatt

t . Thus, we integrate the
prospective feature iprot with hatt

t to form a new guide and implement the visual
attention mechanism from a global perspective. We modify the vanilla scaled
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dot-product attention in Eq. 1 in the multi-head attention module to Eq. 10 and
Eq. 11, so that the prospective information is leveraged as part of the query to
attend to the augmented object features. In these equations, Wattn ∈ R

2d×d are
trainable parameters and αt ∈ R

d is the fusion weight vector. Similar modifi-
cation is also applied to the augmented attribute features Aaug

t to generate the
attribute context ât. The corresponding equations are very similar to Eq. 10 and
Eq. 11 and are omitted for conciseness.

Attentionpro(hatt
t , i

pro
t ,Oaug

t ) = Softmax (
(αti

pro
t + (1−αt)h

att
t )Oaug

t
⊤

√
d

)Oaug
t

(10)

ôt = MHApro(hatt
t , i

pro
t ,Oaug

t ), αt = Sigmoid(Concat(hatt
t , i

pro
t )Wattn) (11)

After the generation of the object context ôt and the attribute context ât,
we integrate them with the prospective feature to form the attended feature. We
concatenate the output of the attention LSTM and the prospective feature to
form the fusion weights as in Eq. 12. The concatenation is then fed to a linear
layer, the weight of which is Wfuse ∈ R

2d×3d. The output of the linear layer,
which is of size 3d, is reshaped to 3×d and further input to the Softmax layer to
compute the fusion weights. The fused attended feature is obtained as in Eq. 13.

βt = Softmax (Reshape(Concat(hatt
t , i

pro
t )Wfuse)) (12)

ĥt = β1
t ∗ ôt + β2

t ∗ ât + β3
t ∗ iprot (13)

Thanks to the global linguistic information brought about by the coarse cap-
tion, the model can exploit the visual information and language information
more thoroughly by utilizing the complementarity between prospective and ex-
plored information contained in ĥt. As such, image descriptions that are not only
reasonable in general but also accurate in details can be possibly generated. Fi-
nally, the concatenation of the attended feature ĥt and the output of attention
LSTM hatt

t is fed to the language LSTM to generate hlan
t as in Eq. 14.

hlan
t = LSTMlan(h

lan
t−1, [hatt

t ; ĥt]) (14)

The output of the language LSTM if firstly sent to a fully connected layer to
generate the logits and then sent to a softmax layer to generate the probability
for each word in the vocabulary as is in Eq. 15, where Wp ∈ R

d×k and bp ∈ R
k

are trainable parameters and k is the vocabulary size.

pw
t = Softmax (hlan

t Wp + bp) (15)

4.2 Attentive Attribute Detector

While previous attribute detectors [14, 15] directly utilize the image features
extracted from CNN for attribute detection without further polishing, we al-
ternatively explore the effectiveness of refining the visual features in advance.
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Suppose that we need to predict the probability of P attributes with M ob-
ject features, we can view the object features as M nodes in a graph and the
embedding of all the attributes as P exterior nodes. We model the relationship
between these two kinds of nodes and refine the object features via a special kind
of one-layer Graph Convolutional Network (GCN). We follow [23] to construct
the GCN layer, of which the mathematical formulation is shown in Eq. 16, where
W ∈ R

d×d is the parameter of the linear layer and f is the activation function;
function A(F, E) models the similarity between the object features F ∈ R

M×d

and the attribute embedding E ∈ R
P×d.

F̃ = f (A(F, E)FW) (16)

In our work, we take the recently proposed scaled dot-product formula-
tion [12] to model such similarity. In this formulation, the attribute embedding
E can be viewed as queries (Q), while the object features F can be viewed as
keys (K) and values (V) as in Eq. 17. Thus, the M object features are refined
to P compound features F̃ ∈ R

P×d that are more appropriate for predicting the
probability of each image attribute.

F̃ = f (Softmax (
EF⊤

√
d

)FW) (17)

In practice, the scaled dot-product formulation can be extended to the afore-
mentioned MHA to further increase the model capacity. Actually, when the rela-
tionship is modeled by the scaled dot-product and f is set to identity mapping,
GCN is transformed to MHA. Note that, when the number of interior nodes
and exterior nodes is unequal (M 6= P ), this kind of GCN cannot be stacked
as usual GCN layers. That’s why we call MHA a special kind of one-layer GCN
with additional exterior nodes. The output of MHA is sent to a linear layer and
then activated by the sigmoid function to predict the probability distribution
p ∈ R

P×1 of image attributes as in Eq. 18, where WAttr ∈ R
d×1 are trainable

parameters.
p = Sigmoid(MHA(E, F, F)WAttr) (18)

The structure of AAD is shown in the right orange circle in Fig. 2. We model
the task of attribute detection as P binary classification task and leverage the
focal loss [24] in training. For each image, we send the embedding of top L

attributes G ∈ R
L×d that are predicted with the highest confidences to the

Pro-LSTM model to exert the attribute information.

4.3 Loss Functions

Our image captioning model is trained in two phases. In the first phase, we use
the traditional cross-entropy (XE) loss. In the second phase, we modify the Self-
Critical Sequence Training (SCST) [25] to directly optimize the CIDEr-D metric.
The gradient of losswRL can be approximated as Eq. 19, where r(ws

1:T ), r(w̃1:T )
and r(ŵ1:T ) are the CIDEr-D rewards for the randomly sampled caption, greedy
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Table 1. F1 scores of two attribute detectors with top-L attributes. We reproduce the
MIL based detector with Up-down feature for fair comparison.

L 5 10 15 20 25

MIL* [14] 0.286 0.420 0.435 0.422 0.395
AAD (ours) 0.352 0.442 0.459 0.454 0.437

decoded caption, and the input coarse caption respectively. We also impose the
random caption to outperform the coarse caption in the SCST phase.

∇θloss
w
RL = −(r(ws

1:T )− 0.5 ∗ r(w̃1:T )− 0.5 ∗ r(ŵ1:T ))∇θlog(p
w(ws

1:T )) (19)

5 Experiments

5.1 Experimental Settings

We evaluate our model on the MSCOCO captioning dataset [16]. Words that
appear in the training set for over 4 times are selected to form a k=10369 size
vocabulary. Similar to [14, 15], the top-ranked 1000 words are selected to for-
m the attribute vocabulary. We follow the widely adopted Karpathy’s data s-
plit [26] in offline evaluation. We utilize the 36x2048 object feature released in
Up-down [2] for both attribute detection and image captioning and set the hid-
den size d=1024. Our models are trained 15 epochs under XE loss and another
10 epochs under SCST [25] with a mini-batch size of 40. We use the following
metrics in evaluation: Bleu [27], Meteor [28], Rouge-L [29], CIDEr-D [30] and
SPICE [31].

5.2 Performance Evaluation and Analysis

Attribute Detection We first evaluate the attribute detection performance
of our proposed AAD using the average F1 score on the MSCOCO test split.
Table 1 compares the detection performance of AAD with the MIL based [14]
attribute detector. The MIL detector firstly utilizes one feature to predict the
probabilities for all attributes, which may not be accurate; and then integrates
the probabilities of all proposals with MIL. The proposed AAD, however, pre-
dicts the confidence of each attribute with the integrated and refined features of
all the object features. It can be seen that AAD outperforms the MIL detector
for different values of L, suggesting the effectiveness of our proposal.
MSCOCO Offline Evaluation Table 2 shows the single-model performance
of the proposed Pro-LSTM model and recent state-of-the-art methods. The Up-
Down [2] method extracts image features with bottom-up attention and gen-
erates image captions with top-down attention. The proposed two-layer LSTM
is leveraged as our backbone model. Our proposed Pro-LSTM outperforms the
SGAE [32] shows that incorporating coarse caption is more beneficial than utiliz-
ing the scene graph features. Although Snammani [19] and Ge et al. [20] also use
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Table 2. Single-model image captioning performance (%) on the COCO ‘Karpathy’
test split, where B@N, M, R, C and S are short for Bleu@N, Meteor, Rouge-L, CIDEr-
D and SPICE scores. * indicates the results obtained from the publicly available code.
Top-2 scores in each column are marked in boldface and underline respectively.

Methods Cross-Entropy Loss CIDEr-D Optimization

Metric B@1 B@4 M R C S B@1 B@4 M R C S

Up-Down [2] 77.2 36.2 27.0 56.4 113.5 20.3 79.8 36.3 27.7 56.9 120.1 21.4
SGAE [32] - - - - - - 80.8 38.4 28.4 58.6 127.8 22.1

Look&Modify [19] 76.9 36.1 - 56.4 112.3 20.3 - - - - - -
MaBi-LSTM [20] 79.3 36.8 28.1 56.9 116.6 - - - - - - -

AoA [17] 77.4 37.2 28.4 57.5 119.8 21.3 80.2 38.9 29.2 58.8 129.8 22.4
AoA* [17] 77.4 37.0 28.2 57.3 118.4 21.5 80.4 39.0 28.9 58.7 128.8 22.5

Pro-LSTM (Ours) 77.8 37.1 28.2 57.3 120.2 21.5 81.0 39.2 29.0 58.8 129.5 22.6
Pro-LSTM+AoA* 77.7 37.1 28.3 57.2 120.5 21.6 80.8 39.0 29.0 58.9 129.8 22.7

Table 3. Performance (%) on the online MSCOCO evaluation server, where Σ denotes
model ensemble. Top-2 rankings are indicated by red superscript for each metric

Methods
Bleu-1 Bleu-4 Meteor Rouge-L CIDEr-D

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

SCSTΣ [25] - - 35.2 64.5 27.0 35.5 56.3 70.7 114.7 116.7
Up-DownΣ [2] 80.22 95.21 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5
SGAEΣ [32] - - 38.51 69.71 28.2 37.2 58.61 73.62 123.82 126.51

AoA* [17] 79.9 94.4 38.02 69.12 28.62 37.72 58.2 73.4 123.2 125.82

Pro-LSTM (ours) 80.31 94.82 38.51 69.71 28.71 38.01 58.42 73.71 124.11 126.51

the coarse caption, they fail to let it guide their model but treat it as semantic
feature. Our method outperforms MaBi-LSTM in most metrics indicates the ef-
fectiveness of leveraging prospective information as appropriate guidance for the
attention modules in the image captioning model. The AoA [17] model modifies
the attention modules to achieve state-of-the-art performance. However, they
fail to leverage the prospective information. We re-train the AoA* model with
the released publicly available code to generate the coarse caption in our exper-
iments. The experimental results show that our method extensively exploits the
global information from the coarse caption and enhances the CIDEr-D for 1.8
and 0.7 respectively in XE and SCST. Our method is compatible with the AoA
method as the combination of Pro-LSTM and AoA* yields the best performance.
MSCOCO Online Evaluation We submit the single-model captioning results
of both the AoA* model and our proposed Pro-LSTM to the online testing
server 1. Table 3 shows the online performance of officially published state-
of-the-art works. Our proposed Pro-LSTM achieves performance improvements
over the AoA* model.The performance of Pro-LSTM is among the top-2 in all
the compared methods across all the metrics. Specifically, a single Pro-LSTM
model even outperforms the ensemble of SGAE models.

1 https://competitions.codalab.org/competitions/3221
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Table 4. The performance of utilizing different modules in XE training.

method Bleu-1 Bleu-4 Meteor Rouge-L CIDEr-D SPICE

baseline 76.8 36.5 28.0 56.9 116.7 21.1
baseline+AAD 77.2 36.7 28.2 57.0 118.3 21.3
baseline+ProA 77.7 36.9 28.3 57.1 119.1 21.5

Pro-LSTM 77.8 37.1 28.2 57.3 120.2 21.5

Table 5. The performance of using prospective information and explored information
in XE training.

Methods Bleu-1 Bleu-4 Meteor Rouge-L CIDEr-D SPICE

Pro-LSTM - augmentation 77.8 37.0 28.2 57.2 119.7 21.5
Pro-LSTM - guidance 77.4 36.7 28.1 57.0 118.9 21.3

Pro-LSTM - fusion 77.5 36.8 28.2 57.2 119.3 21.4
Pro-LSTM 77.8 37.1 28.2 57.3 120.2 21.5

6 Ablation Study

6.1 Effectiveness of Modules

In Table 4, we assess the contribution of each module in our proposed method.
We firstly form a baseline model similar to that proposed in Up-Down [2] except
that we leverage multi-head attention to encode the object feature and generate
the object context. We then add the attentive attribute detector to the baseline
model to exploit the attribute information. Concurrently, we also replace the
vanilla multi-head attention module with our proposed prospective information
guided attention module as is shown in the third row. It can be noticed that
leveraging the global information to guide the attention module is more beneficial
than utilizing the image attributes only. Naturally, comprehensively using these
two modules in our proposed Pro-LSTM leads to the most favorable performance.

6.2 Effectiveness of ProA

The effectiveness of our proposed ProA module mainly comes from the joint
utilization of both prospective and explored information. More specifically, we
leverage the explored information to augment the visual features and utilize the
prospective information to guide the attention module. And we finally fuse the
multimodal features to further enhance the performance. Thus, we test the ef-
fectiveness of each sub-module in Fig. 3 by eliminating it from the Pro-LSTM
model. The corresponding results are shown in Table 5. The performance only
decreases a little without using the explored information for feature augmenta-
tion. This is understandable since such information has already been embedded
to the LSTM hidden states. Additionally leverage it in the attention module
leads to incremental improvements only. In contrast, eliminating the guidance of
prospective information results in a significant performance drop. This further
verifies that grasping the global linguistic context in attention modules through
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AoA*: two people walking 
down a street holding 
umbrellas. (0.421)
Pro-LSTM: a person 
walking down a street with 
a colorful umbrella. (1.875)

(a)

AoA*: a table topped with 
a cake and a cup of coffee. 
(0.849)
Pro-LSTM: a cake on a 
plate on a table with a 
vase of flowers. (1.843)

(b)

AoA*: a couple of horses 
standing on top of a lush 
green field. (2.140)
Pro-LSTM two horses 
grazing in the grass in a 
field. (2.161)

(c)

AoA*: a man riding on the back of a horse 
drawn carriage. (1.705)
Pro-LSTM: a black and white photo of a 
man riding a horse drawn carriage. (1.539)
GT: a black and white photo of a horse 
running on a track with a man.

(d)

AoA*:  a small plane flying in the sky. 
(1.640)
Pro-LSTM: an airplane flying in the sky 
with a trail of smoke. (1.074)
GT: a airplane that is flying through 
the sky. 

(e)

AoA*: a bus parked on the side of the 
road. (1.817)
Pro-LSTM: a white bus parked on the 
side of a street. (1.428)
GT: mass transit bus parked on the 
side of the road.

(f)

Fig. 4. Qualitative results of the generated captions and corresponding CIDEr-D s-
cores in MSCOCO test split. One ground truth caption is shown for (d), (e), and (f)
respectively. Pro-LSTM effectively utilizes the prospective information in the AoA*
generated coarse captions to narrate more precise and detailed captions. In some cases,
the captions generated by Pro-LSTM can more informative even when their CIDEr-D
scores are lower than that of AoA* captions.

utilizing the prospective information is essentially beneficial for image caption-
ing. Fusing the prospective information with visual information is also beneficial
for captioning since this enables the model to better conceive future semantics.
To conclude, we observe that effectively utilizing the prospective information in
the ProA module leads to better captioning performance as we expect.

7 Qualitative Results

Fig. 4 compares the captions generated by the AoA* model and that by the
Pro-LSTM model. Generally, AoA* sometimes generates grammatically correct
but semantically flawed sentences. However, these sentences still contain useful
descriptions that can help Pro-LSTM to correctly attend to corresponding visual
features, such as ‘walking’ and ‘cake’ in Fig. 4(a)(b). In Fig. 4(c), AoA* only
infers that the horses are ‘standing’ in the field. With the help of prospective
information, the Pro-LSTM model grasps the semantic that the horses are in a
field via the language information, and further induces that they are ‘grazing’

as it is a common behavior under this circumstance. For Fig. 4(d), Pro-LSTM
describes the color scheme while AoA* fails to do so. This is probably because
that ‘black’ and ‘white’ are successfully detected by AAD. Thus, Pro-LSTM can
leverage these attributes via ProA. Interestingly, we notice that the CIDEr-D
scores may even drop when the Pro-LSTM predicted captions are more accurate
and detailed as in Fig. 4(e)-(f). This is due to the fact that some of the image
details successfully revealed by Pro-LSTM are actually missing in the human-
labeled ground truth, such as ‘smoke’ in Fig. 4(e) and ‘white’ in Fig. 4(f). Under
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AoA*:  a cat sitting on a bed next to a stuffed animal. (1.885)

Pro-LSTM:  a cat laying on a bed next to a stuffed teddy bear. (2.345)

= {sitting, on, bed, next, to, stuffed, animal}
= 0.632           = 0.501             = 0.317   

pro
tW

tα 3
tβ2

tβ

= {sitting, animal}       = 0.151        = 0.741       = 0.136  pro
tW tα

2
tβ

Image Attributes

cat, stuffed, bear, 
laying, blue, 
teddy, pink, 
bed … 3

tβ

Fig. 5. Qualitative result illustrating how AAD and ProA affect the caption generation
process. W

pro
t is the prospective word set, ᾱt is the average weight of prospective

information in Eq. 10, β̄2

t and β̄3

t are average weights of attribute information and
prospective information in Eq. 13 respectively.

the commonly used token-based metrics which compute exact word matching
instead of considering semantic accuracy, this may lead to a performance drop.

We further demonstrate how AAD and ProA affect the captioning model
in Fig. 5 by showing the weight of corresponding information when the model
generates ‘laying’ and ‘teddy’. Our model generates ‘laying’ rather than ‘sitting’

mainly due to prospective information in the word ‘bed’. The average weight ᾱt

of the prospective information is large enough to guide our model to choose the
visual features that are more correlated to ‘bed’. Moreover, as the word ‘laying’

is detected as one of the image attributes, the prospective information therefore
tends to assign relatively larger weights to attribute information in the fusion
sub-module in Eq. 12. Consequently, ‘sitting’ in the coarse caption is replaced
by the more appropriate ‘laying’. When the generation of the whole sentence is
about to terminate, e.g. when the Pro-LSTM generates ‘teddy’, the prospective
information is not rich enough in helping to generate new words. Nevertheless,
thanks to the accurate AAD, ‘teddy’ and ‘bear’ are successfully detected as
image attributes to aid Pro-LSTM in generating a more detailed sentence by
replacing ‘stuffed animal’ with ‘teddy bear’.

8 Conclusions

We propose a Prospective information guided LSTM (Pro-LSTM) model which
comprehensively exploits both prospective and explored linguistic information
to boost image captioning. Generally, thorough utilization of the prospective
information from the coarse caption makes it possible for the model to attend
to proper information from a global perspective. Specifically, with the help of
the proposed AAD and ProA module, the Pro-LSTM model can appropriately
attend to the object features and image attributes, and adaptively decide when
to utilize visual information and when to make use of the language information.
As such, sentences with richer and more accurate semantics can be generated.
Our method achieves state-of-the-art performances on the benchmark MSCOCO
dataset. Comprehensive ablation studies further demonstrate the effectiveness of
our method. For future work, we are going to streamline our model to achieve
end-to-end training of Pro-LSTM and AAD. This work was supported by the
National Natural Science Foundation of China under Grant 61673234.
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