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Abstract. Recent studies have revealed the importance of fairness in
machine learning and computer vision systems, in accordance with the
concerns about the unintended social discrimination produced by the
systems. In this work, we aim to tackle the fairness-aware image classifi-
cation problem, whose goal is to classify a target attribute (e.g., attrac-
tiveness) in a fair manner regarding protected attributes (e.g., gender,
age, race). To this end, existing methods mainly rely on protected at-
tribute labels for training, which are costly and sometimes unavailable for
real-world scenarios. To alleviate the restriction and enlarge the scalabil-
ity of fair models, we introduce a new framework where a fair classifica-
tion model can be trained on datasets without protected attribute labels
(i.e., target datasets) by exploiting knowledge from pre-built benchmarks
(i.e., source datasets). Specifically, when training a target attribute en-
coder, we encourage its representations to be independent of the features
from the pre-trained encoder on a source dataset. Moreover, we design a
Group-wise Fair loss to minimize the gap in error rates between different
protected attribute groups. To the best of our knowledge, this work is
the first attempt to train the fairness-aware image classification model
on a target dataset without protected attribute annotations. To verify
the effectiveness of our approach, we conduct experiments on CelebA
and UTK datasets with two settings: the conventional and the transfer
settings. In the both settings, our model shows the fairest results when
compared to the existing methods.

1 Introduction

Artificial Intelligence (AI) systems have been widely used for decision making
such as visual recognition [1], criminal justice [2], or employment [3]. Although
AI systems are proved to be effective, they have raised concerns due to their
biased results against some human characteristics such as gender, age, or race,
which are referred to as protected attributes. As pointed out in the literature [4–
6], AI models are highly dependent on training datasets, thus they tend to learn
unfair thoughts or biases from the datasets and produce discriminatory outputs.
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Fig. 1. Illustrations of four different classification models: (a) conventional classifica-
tion model, (b) Protected Attribute Adversarial Learning (PAAL) [5, 15] with domain
adversarial training of neural network [16], (c) Adversarial De-biasing (AdvDe) [14],
and (d) Ours. x and y denote an input image and its target attribute label respec-
tively, while z represents its protected attribute label. Unlike the previous fairness-
aware methods, our model is trained without z by leveraging a pre-trained protected
attribute encoder on another dataset.

For example, image captioning models may generate biased captions against
gender, i.e., while captions for images with women are biased towards shopping or
cooking, those for images with men are inclined towards driving or shooting [7].
In addition, face recognition systems usually perform well on Caucasians, yet
they often fail to identify faces of other races [8, 9]. To prevent socially negative
impacts, researchers have paid their attention to developing fair AI models that
produce unbiased results with regard to protected attributes [10–14].

To build fair models, previous methods mainly focus on excluding information
related to protected attributes from the feature representation by utilizing a
domain adaptation technique [5, 15], adversarial de-biasing [14], or disentangled
representation learning [17, 10]. Despite their impressive improvements in the
perspective of fairness, they still have limitations in that protected attribute
labels for new datasets are inevitably required when they are supposed to be
deployed in a new circumstance. Acquiring additional annotations of protected
attributes is time-consuming and may be even infeasible in real-world situations,
which limits the scalability of the fair models.

Therefore, we set two goals in this paper: 1) predicting target attributes (e.g.,
attractiveness) in a fair way with respect to protected attributes (e.g., gender,
age), namely fairness-aware image classification, and 2) transferring knowledge
about protected attributes from a pre-built dataset (i.e., source dataset) to an-
other dataset without protected attribute labels (i.e., target dataset).

To this end, we introduce a new framework with two encoders, where one en-
coder pre-trained on a source dataset provides guidance on protected attributes
and the other encoder fairly predicts target attributes according to the guidance.
In Fig. 1, we compare our method to the existing approaches with the simple dia-
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gram illustrations. Given an input image x, the conventional classification model
(Fig. 1a) is trained to predict the target label y without considering protected
attributes. Upon the conventional model, the previous fairness-aware approaches
(Fig. 1b and Fig. 1c) adopt gradient reversal layers to make their models unable
to predict the protected attribute label z. On the other hand, our method (Fig.
1d) does not exploit the label z. Instead, it encourages the feature representation
fTA to be independent of the representation fPA from the pre-trained protected
attribute encoder. By doing so, our model can learn the fair representation with
respect to the protected attribute without using z.

Technically, we introduce a Feature Independency Triplet loss to promote
the independency of the features from two different encoders. In specific, we
first select three samples in a target dataset and encode them with the pre-
trained protected attribute encoder. Next, we choose one of them as an anchor
and calculate the feature distances between the anchor and the other samples.
The sample with a larger distance is set to a positive sample and the other to
a negative one. Then, in the feature space of the target attribute encoder, we
pull the positive sample to the anchor while pushing the negative sample away
from the anchor. This encourages the independency between the representations
from the target and protected attribute encoders. In addition, we propose a
Group-wise Fair loss to minimize the difference in error rates between protected
attribute groups. Firstly, we cluster the features from the protected attribute
encoder into k groups. Then, we train the target attribute encoder to equalize
the error rates of target attribute classification among the groups by minimizing
their Wasserstein distance. These two proposed losses work complementarily to
each other and enable the target attribute encoder to learn fair representation
in terms of the protected attribute without explicit labels.

Our key contributions are summarized as follows:

– We propose a new framework for fairness-aware image classification, where
fair representations can be learned without protected attribute labels by
exploiting knowledge from external pre-built benchmarks.

– We design a Feature Independency Triplet loss to reduce the dependency
between representations of two encoders for protected attributes and target
attributes.

– To further improve fairness, we introduce a Group-wise Fair loss to minimize
the gap between the error rates of different protected attribute groups.

– We compare our method with existing fairness-aware classification approaches
on two most popular benchmarks: CelebA and UTK datasets. The results
validate the effectiveness of our model, achieving the fairest results regarding
Equality of Opportunity in two experimental settings, namely the conven-
tional and the transfer settings. Notably, our method in the transfer setting
shows fairer results than the existing methods in the conventional setting,
which confirms the efficacy of our transfer learning approach.
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2 Related Work

2.1 Fairness-aware Image Classification

Recently, fairness studies in computer vision mainly attempt to solve the societal
bias problems on image classification task [5, 15, 18, 19, 13]. There are two main-
streams of fairness-aware approaches for mitigating biases related to protected
attributes: pre-processing and in-processing.

Pre-processing methods aim at constructing a new de-biased dataset from
an original biased dataset with respect to protected attributes. Quadrianto et

al. [13] propose a data-to-data translation method that maps a biased dataset
into a fair dataset. Meanwhile, Sattigeri et al. [19] introduce a method generating
a de-biased dataset based on Generative Adversarial Networks (GANs) [20] with
two fairness-aware constraints, Demographic Parity [21] and Equality of Oppor-

tunity [12].

In-processing approaches devise new algorithms to eliminate discrimina-
tory factors in models. They mainly focus on learning invariant feature rep-
resentations against protected attributes (e.g., gender, age, race). For example,
inspired by the domain adversarial training of neural network [16], Wang et al. [5]
train an image classification model to misclassify the protected attribute label
with a Gradient Reversal Layer (GRL) [16] but to correctly classify target labels
at the same time. Similarly, Kim et al. [15] utilize an adversarial strategy [20,
22] and the gradient reversal technique [16] to eliminate unwanted biases by
minimizing the mutual information between the feature embedding and the pro-
tected attribute. Besides, Adversarial De-biasing [14] is introduced to make the
prediction for the target label which is not predictive for the protected attribute
label.

Overall, prior methods achieve fair results in pre-processing and in-processing
ways, but they still suffer from the essentially required cost for obtaining addi-
tional protected attribute labels for new datasets. On the contrary, our method
leverages information from the pre-built source dataset to perform fair classifi-
cation on the target dataset without protected attribute labels.

2.2 Transfer Learning in Computer Vision

Transfer learning is an important research topic that focuses on exploiting knowl-
edge from a problem to tackle a different but related problem [23]. Since transfer
learning allows utilizing pre-trained models for various tasks with time-saving,
it draws much attention from researchers in the computer vision domain. For
instance, transfer learning is actively investigated in image captioning [24], clas-
sification [25], generation [26], and object detection [27].

However, transfer learning has not been investigated for fairness-aware image
classification. Herein, we are the pioneering work to obtain knowledge for pro-
tected attributes from the source dataset and transfer it into the target dataset
without protected attribute labels to tackle fairness-aware image classification.
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𝑃𝐴𝐶 𝑦𝑔𝑒𝑛𝑑𝑒𝑟𝑦𝑎𝑔𝑒𝑦𝑟𝑎𝑐𝑒

𝐸𝑁𝐶𝑃𝐴

Protected Attribute Labeled Dataset

𝑥𝑎𝑛𝑐ℎ𝑜𝑟𝑥𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑥𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
𝑦𝑡𝑎𝑟𝑔𝑒𝑡

𝑐𝑙𝑢𝑠𝑡𝑒𝑟1𝑐𝑙𝑢𝑠𝑡𝑒𝑟2 𝑇𝐴𝐶

(a) (b)

Fig. 2. Overview of the proposed framework for transfer learning. (a) In the first stage,
we train the Protected Attribute Classifier (PAC) to predict three protected attributes
on the source dataset in a multi-task way. (b) Then, we train the Target Attribute
Classifier (TAC) on the target dataset to classify target attributes in a fair way re-
garding the protected attributes. To make the training without protected attribute
labels feasible, we propose to utilize the encoder of the pre-trained PAC with Feature
Independency Triplet Loss and Group-wise Fair Loss.

3 Fairness Definition

Fairness of the AI system can be defined as the ability to produce fair deci-
sions with regard to protected attributes such as gender. The most widely used
definition is Equality of Opportunity [12], which is based on the principal that
individuals should be provided equal opportunities for desired results. Formally,
all protected attribute groups should have the same true positive rates for the
target attribute as follows:

P(Ŷ = 1|p = 0, Y = 1) = P(Ŷ = 1|p = 1, Y = 1), (1)

where p, Y , Ŷ ∈ {0, 1} denote the protected attribute, the target attribute, and
the prediction respectively. In this work, we focus on improving fairness in terms
of Equality of Opportunity.

4 Approach

Our main goal is to train a fair classification model on the target dataset without
protected attribute labels. To this end, we devise a two-step strategy for transfer
learning as illustrated in Fig. 2. In the first step, we train a Protected Attribute
Classifier (PAC) using the source dataset with protected attribute labels (Fig.
2a). Then, we leverage the representation from the encoder of the PAC to transfer
knowledge about protected attributes to a Target Attribute Classifier (TAC)
(Fig. 2b). By utilizing the obtained knowledge in the first stage, the TAC is
able to learn fair representations without explicit protected attribute labels.
Specifically, to transfer knowledge of the PAC into the TAC, we introduce a
Feature Independency Triplet loss and a Group-wise Fair loss, which will be
detailed in this section.
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Fig. 3. Schematic visualization of the Feature Independency Triplet loss. In the fea-
ture space of the encoder of the protected attribute classifier (ENCPA), we select three
samples and choose one of them as an anchor. Then, we set the sample with a larger
feature distance from the anchor to be a positive sample and the other to be a nega-
tive sample. Afterwards, in the space of the encoder of the target attribute classifier
(ENCTA), the Feature Independency Triplet loss minimizes the feature distance be-
tween the anchor and the positive sample, while maximizing the distance between the
negative pair.

4.1 Protected Attribute Classifier

We first train the Protected Attribute Classifier (PAC) on the source dataset
to encode representations with respect to multiple protected attributes. The
PAC consists of a feature encoder with several convolutional layers (ENCPA)
and fully connected layers. Given a set of training data Xs = {x1, x2, ..., xn},
gender labels Yg = {g1, g2, ..., gn}, age labels Ya = {a1, a2, ..., an}, and race labels
Yr = {r1, r2, ..., rn} , we optimize the PAC by minimizing three cross-entropy
loss functions simultaneously:

LPAC = −

n∑

i=1

gilog(ĝi)−

n∑

i=1

ailog(âi)−

n∑

i=1

rilog(r̂i), (2)

where ĝ, â, r̂, and n denote the prediction of three different classifiers and the
number of samples in the source dataset respectively.

4.2 Target Attribute Classifier

The Target Attribute Classifier (TAC) is composed of a convolutional feature
encoder (ENCTA) and fully connected layers. Given a set of training images
Xt = {x1, x2, ..., xm} and corresponding labels Yt = {t1, t2, ..., tm}, we train the
TAC with the following cross-entropy loss function:

Ltarget = −
m∑

i=1

tilog(t̂i), (3)

where t̂i and m denote the prediction of the target attribute classifier and the
number of samples in the target dataset respectively.
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Fig. 4. The process of the Group-wise Fair loss. We group input images by k-means
clustering based on their protected attribute features from the ENCPA. Afterwards,
during training the target attribute classifier, we aim to minimize the error rate dis-
crepancy between different groups. The same process is performed in the subgroups as
well.

4.3 Feature Independency Triplet loss

We propose a Feature Independency Triplet loss to encourage target attribute
features from ENCTA to be independent of the protected attributes. Fig. 3
shows the schematic visualization for the Feature Independency Triplet loss.
Firstly, we randomly select two samples xi and xj for each anchor sample xa in
the mini-batchX = [x1, x2, ..., xk] of the target dataset, where k is the batch size.
The anchor and the selected samples are encoded by the pre-trained ENCPA

into fa,fi, and fj respectively. Based on the anchor feature fa, we calculate the
euclidean distance d(fa, fi) and d(fa, fj). We assign the sample which is more
distant from xa to a positive sample xp and the other to a negative sample
xn. Thereafter, we construct k tuples [(x1

a, x
1
p, x

1
n), (x

2
a, x

2
p, x

2
n), ..., (x

k
a, x

k
p, x

k
n)],

where the negative sample xi
n is more similar to the anchor sample xi

a in terms
of the protected attributes. The Feature Independency Triplet loss is defined as:

Ltriplet =

N∑

i=1

max(d(hi
a, h

i
p)− d(hi

a, h
i
n) + α, 0), (4)

where hi
a, h

i
p, and hi

n are encoded features of xi
a, x

i
p, and xi

n from ENCTA re-
spectively.

4.4 Group-wise Fair Loss

We introduce a Group-wise Fair loss to further reinforce the fairness of our
model with respect to the protected attributes (See Fig. 4). Inspired by the
prior work [28], we aim to minimize the discrepancy on misclassification rate
between different protected attribute groups as follows:

minimize|P (ŷ 6= y|G1)− P (ŷ 6= y|G2)|, (5)
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where ŷ and y denote the prediction and the target label respectively. G1 and
G2 indicate the different protected attribute groups respectively.

However, since protected attribute labels are unavailable for the target dataset,
we exploit the transferred knowledge of protected attributes from ENCPA in
order to separate the groups in terms of protected attributes. Specifically, we
extract features F = [f1, f2, ..., fm] of input images from the target dataset
Xt = [x1, x2, ..., xm] using the pre-trained ENCPA. Then, we cluster Xt into
two groups G1 and G2 with the k-means clustering algorithm based on F . Sub-
sequently, to satisfy the equation (5), we minimize the Wasserstein distance
between the two groups G1 and G2 in terms of the last fully connected features
Hg from ENCTA. The Wasserstein distance between two groups G1 and G2 are
as follows:

W(HG1
, HG2

) = inf
γ∈

∏
(HG1

,HG2
)

E(z1,z2)∼γ [‖z1 − z2‖]. (6)

where
∏
(HG1

, HG2
) is the set of all joint distributions γ(z1, z2) whose marginals

are respectively HG1
and HG2

.
Although Group-wise Fair loss improves fairness between the protected at-

tribute groups, the bias in terms of the target attribute still exists. Therefore,
we propose a loss to minimize the Wasserstein distance between output features
of subgroups as follows:

W(HG+

1

, HG−

1

) = inf
γ∈

∏
(H

G
+
1

,H
G

−

1

)

E(z1,z2)∼γ [‖z1 − z2‖].

W(HG+

2

, HG−

2

) = inf
γ∈

∏
(H

G
+
2

,H
G

−

2

)

E(z1,z2)∼γ [‖z1 − z2‖],
(7)

where G+ and G− respectively denote the group of positive samples and nega-
tive samples in terms of the target attribute respectively, while G1 and G2 are
distinguished in terms of the protected attribute.

4.5 Full Objective Function for TAC

The final objective function for training the TAC is defined as:

LTAC = λ1Ltarget + λ2Ltriplet + λ3Lgroup, (8)

where λ∗ are the hyper-parameter for balancing the losses.

5 Experiment

We conduct experiments on two classification tasks: (1) attractiveness classifica-
tion on CelebA dataset [29] and (2) race classification on UTK Face dataset [30].



Exploiting Transferable Knowledge for Fairness-aware Image Classification 9

Table 1. Dataset bias of the attractiveness attribute towards Male, Young, and Pale
Skin attributes on CelebA dataset [29].

Male Young Pale Skin
Train Valid Test Train Valid Test Train Valid Test

TA=1
PA=1 19,014 2,651 1,914 78,239 9,404 9,116 5,021 595 610
PA=0 64,589 7,681 7,984 48,549 5,428 5,998 78,582 9,737 9,288

TA=0
PA=1 49,247 5,807 5,801 5,364 928 782 1,984 261 230
PA=0 29,920 3,728 4,263 30,618 4,107 4,066 77,183 9,274 9,834

For the quantitative evaluation in terms of fairness, we measure the Equal-

ity of Opportunity (Eq.Opp.) [12], which is defined as:

Eq.Opp. = |TPRp=0 − TPRp=1|, (9)

where TPR and p denote True Positive Rate (TPR) and a binary protected
attribute label respectively.

5.1 Experimental Settings

– Attractiveness Classification: For the attractiveness classification task,
we train the PAC on UTK Face dataset with three protected attributes,
gender, age, and race. We set 19,708, 2,000, and 2,000 images of UTK dataset
for training, validation, and test set, respectively. Then, we train the TAC
on CelebA dataset to classify the attractiveness attribute. CelebA dataset is
composed of train, validation, and test set with 162,770, 19,867, and 19,962
images respectively. The bias in the CelebA dataset is demonstrated in Table.
1. Since age and race attributes do not exist in CelebA dataset, we substitute
them with young and pale skin attributes. We pre-process all the images by
randomly cropping (178× 178) and resizing to 64× 64 in CelebA dataset.

– Race Classification: For the race attribute classification task (Caucasian or
others), we train the PAC on CelebA dataset with only the gender attribute
since it does not contain age and race attributes. Then, the TAC is trained
to classify the race attribute on UTK Face dataset. In this experiment, we
manually compose UTK Face dataset to be biased in terms of the protected
attribute as follows: 4,000 Caucasian male, 1,000 other male, 1,000 Caucasian
female, and 4,000 other female images for the training set, 1,000 images of
each group for the test set, and others for the validation set. We use the
cropped images of UTK Face dataset and resize it into 64× 64.

5.2 Implementation Details

For the TAC and PAC, we use ResNet-18 [1] as our backbone network. We
implement our networks in the Pytorch framework [31] and use the Adam opti-
mizer [32] with β1 = 0.5, β2 = 0.999, learning rate = 10−4, and the batch size
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Table 2. Protected attribute classification results on UTK Face and CelebA dataset.
Top three rows indicate the result of UTK Face dataset, and last row denotes the result
of CelebA dataset.

Dataset Attribute [Labels] Validation Test

UTK Face
Gender [Male, Female] 0.87 0.86
Race [White, Black, Asian, Indian, Others] 0.75 0.73
Age [0 9, 10 19, ..., 50+] 0.59 0.57

CelebA Gender [Male, Female] 0.97 0.96

of 256. We early-stop training when the network converges in the validation set.
All the networks are trained from scratch to prevent the model learning any
unwanted biases from the datasets used for pre-training. For all experiments, we
set λ1, λ2 and λ3 as 1, 1e-3, and 1e-3, respectively. In the classification phase,
we use the same threshold of 0.5 to fairly compare the methods.

5.3 Comparative Methods

To validate the effectiveness of our method, we compare it to the following
approaches:

– ResNet-18: we adopt ResNet-18 [1] as the conventional classification model.
The last fully connected layer is replaced with three fully connected layers
with batch normalization and ReLU activation following [16].

– Protected attribute adversarial learning: we compare our model to a
protected attribute adversarial learning approach (PAAL) [5, 15]. We adopt
ResNet-18 as a backbone network and add two parallel branches on top of
that for the domain adversarial training of neural network [16]: a classifier
with three fully connected layers for the target label and Gradient Reversal
Layers (GRL) composed of three fully connected layers for mitigating bias
to the protected attribute.

– Adversarial de-biasing: We also compare our model with the Adversarial
De-biasing (AdvDe) approach [14]. On top of the ResNet-18, we add one
fully connected layer for adversarially training the model not to predict the
protected attribute.

5.4 Protected Attribute Classification

Table. 2 shows the protected attribute classification accuracies on CelebA and
UTK Face datasets. Our model achieves the top-1 classification accuracy of
86%, 73%, and 57% for gender, race, and age attributes on CelebA dataset
respectively, and the accuracy of 96% for the gender attribute on UTK Face
dataset.
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Table 3. Equality of Opportunity (Eq.Opp.) for attractiveness classification on CelebA
dataset [29] with respect to the two protected attributes: Young (age related) and
Male. The lower is better. ResNet-18 is trained without any protected attribute labels.
While Adversarial de-biasing and Protected Attribute Adversarial Learning models are
trained with protected attribute labels of the target dataset, our method utilizes those
of the source dataset.

True Positive Rate
Eq.Opp.

True Positive Rate
Eq.Opp.

Young=1 Young=0 Male=1 Male=0

ResNet-18 [1] 86.21 65.60 20.61 63.85 89.55 25.70
AdvDe [14] 83.95 68.41 15.54 67.35 85.10 17.75
PAAL [15, 5] 91.87 80.31 11.56 81.35 94.24 12.89
Ours (All) 95.95 90.28 5.61 87.25 97.48 10.23

Table 4. Equality of Opportunity (Eq.Opp.) for attractiveness classification on CelebA
dataset [29] regarding the skin color related protected attribute (Pale Skin).

True Positive Rate
Eq.Opp.

Pale Skin=1 Pale Skin=0

ResNet-18 [1] 92.46 84.07 8.39
AdvDe [14] 91.80 83.93 7.85
PAAL [15, 5] 94.26 90.04 4.22
Ours 99.18 95.26 3.92

5.5 Attractiveness Classification

We conduct comparison on the attractiveness classification results as shown in
Table. 3 and Table. 4. As described in Sec. 3, the objective of our model is to
ensure Equality of Opportunity on different protected attributes such as gender,
age, and race. In these experiments, the results demonstrate that our model
achieves the fairest results on CelebA dataset with respect to the Young (5.61),
Male (10.23), and Pale Skin (3.92) attributes.

In addition, we verify the contributions of our proposed loss functions through
an ablation study as shown in Table. 5. We evaluate the results of models only
with the Feature Independency Triplet loss or the Group-wise Fair loss, and the
full model. Table. 5 shows that our loss function improves fairness step by step.

Furthermore, we validate that the improvement of our model is not caused
by an additional usage of the source dataset through the experimental results in
two different settings, as shown in Table. 6. In the first setting (i.e., conventional
setting), we conduct comparison with the comparative models by setting both
the source and the target datasets to CelebA dataset (denoted with asterisk (*)).
For this setting, we only consider gender as the protected attribute. In the second
setting (i.e., transfer setting), we compare fairness of all the models trained with
protected attribute labels in UTK Face dataset and target attribute labels in
CelebA dataset (denoted with dagger (†)). In both setting, our method shows
the fairest results, verifying its effectiveness.
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Table 5. Ablation Study on CelebA dataset for attractiveness classification. Eq.Opp.

denotes Equality of Opportunity.

True Positive Rate
Eq.Opp.

True Positive Rate
Eq.Opp.

Young=1 Young=0 Male=1 Male=0

Triplet Loss 93.66 83.63 10.03 80.36 95.87 15.51
Group-wise Fair Loss 93.90 84.27 9.63 82.08 95.79 13.71
All 95.95 90.28 5.61 87.25 97.48 10.23

Table 6. Equality of Opportunity (Eq.Opp.) for attractiveness classification on CelebA
dataset [29] in terms of gender attribute. ResNet-18 (first row) is trained without any
protected attribute. Asterisk (*) (2-5 rows) and dagger (†) (6-8 rows) denote the results
of the conventional and the transfer settings, respectively.

True Positive Rate
Eq.Opp.

Male=1 Male=0

ResNet-18 [1] 63.85 89.55 25.70

AdvDe* [14] 81.35 94.24 12.89
PAAL* [15, 5] 67.35 85.10 17.75
Ours* 88.51 97.77 9.26

AdvDe† [14] 68.90 89.58 20.98
PAAL† [15, 5] 73.46 94.40 20.94
Ours† 87.25 97.48 10.23

5.6 Race Classification

We also compare the race classification results of our model to baseline [1],
AdvDe [14], and PAAL [15, 5]. For this experiment, we set CelebA dataset as
the source dataset and UTK Face dataset as the target dataset. As shown in
Table. 7, our model achieves the fairest Eq.Opp. of 1.7.

Moreover, to see how our model works under varying levels of the bias in
the training dataset, we change the composition of training samples among four
groups: Caucasian Males, Other Males, Caucasian Females, and Other Females.
In Table. 8, our method performs better in terms of both accuracy and fairness
(Eq.Opp.) in less imbalanced setting, as expected. In contrast, the gap of Eq.Opp.

between the baseline and our model is larger in extremely imbalanced settings.
This indicates that our model works well in the challenging situations.

5.7 t-SNE Visualization

To deeply analyze the effectiveness of our model, we visualize the representa-
tions from the TAC and other models using t-SNE method [33]. We first train
them to fairly classify attractiveness attributes in terms of gender attributes on
CelebA dataset and conduct visualization on 1,000 male and 1,000 female im-
ages randomly sampled in the test set. The visualization results are shown in
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Table 7. Equality of Opportunity (Eq.Opp.) for race classification on UTK Face
dataset [30], where we set the protected attribute as gender.

True Positive Rate
Eq.Opp.

Male=1 Male=0

ResNet-18 [1] 86.4 67.2 19.2
AdvDe [14] 86.6 68.3 18.3
PAAL [15, 5] 76.8 73.8 3.0
Ours 76.1 74.4 1.7

Table 8. Equality of Opportunity (Eq.Opp.) for race classification on
UTK Face dataset [30] under different statistics. We present the ra-
tio of the number of training images in the following four cases:
(Male,Caucasian):(Female,Others):(Male,Others):(Female,Caucasian).

ResNet-18 [1] (without de-biasing) Ours
True Positive Rate

Eq.Opp.
True Positive Rate

Eq.Opp.
ratio Male=1 Male=0 Male=1 Male=0

1:1:1:1 86.8 84.8 2.0 86.1 87.5 1.4
1.5:1.5:1:1 79.6 87.0 7.3 84.7 86.5 1.8
4:4:1:1 67.2 86.4 19.2 74.4 76.1 1.7
9:9:1:1 57.3 81.8 24.5 61.0 64.8 3.8

Fig. 5, where the dark and light blue color denote female and male samples,
respectively. We observe that the representations of female and male samples
are separately grouped in other methods, indicating the bias towards the gender
attribute. In contrast, the representations of our method are more scattered with
respect to the gender attribute. This demonstrates that our model successfully
learns fair representations with respect to the protected attribute.

6 Conclusion

In this paper, we tackled the problem of the biased results of AI systems in terms
of sensitive characteristics, such as gender, age, or race. Since various real-world
datasets do not have annotations for protected attributes, we proposed a frame-
work for fairness-aware image classification, which can be trained on a dataset
without protected attribute labels (i.e., target dataset) by transferring knowl-
edge from another dataset with protected attribute labels (i.e., source dataset).

To leverage the knowledge, we introduced the Feature Independency Triplet
loss which encourages the representation for target attributes to be independent
of protected attributes. Moreover, we designed the Group-wise Fair loss to min-
imize the discrepancy on the misclassification rates among protected attribute
groups. To validate the effectiveness of our method, we conducted experiments
of facial attribute classification on CelebA and UTK Face datasets. Our experi-
ments demonstrate that the proposed method achieved the fairest performance
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(a) ResNet-18 [1] (b) AdvDe [14]

(c) PAAL [15, 5] (d) Ours (All)

Fig. 5. t-SNE Visualization [33] on CelebA dataset [29]. We visualize the representa-
tions of the attractiveness classifiers. Each of dark/light blue group denotes randomly
selected female and male samples respectively. Less clustered are better.

in terms of Equality of Opportunity. In addition, through the t-SNE visualization,
we showed that our representations are invariant to protected attributes.

To summary, we present a knowledge transfer method which works between
two datasets with similar domains (i.e., face images). However, the transfer be-
tween different domains is not investigated in this work. Adopting domain adap-
tation techniques would be interesting for future work.
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