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Abstract. We study the shape of the convolution kernels in the up-
sampling block for deep monocular depth estimation. First, our em-
pirical analysis shows that the depth estimation accuracy can be im-
proved consistently by only changing the shape of the two consecutive
convolution layers with square kernels, e.g., (5 × 5) → (5 × 5), to two
“long-range” kernels, one having the transposed shape of the other, e.g.,
(1×25) → (25×1). Second, based on this observation, we propose a new
upsampling block called Cascaded Transposed Long-range Convolutions
(CTLC) that uses parallel sequences of two long-range convolutions with
different kernel shapes. Experiments with NYU Depth V2 and KITTI
show that our CTLC offers higher accuracy with fewer parameters and
FLOPs than state-of-the-art methods.

1 Introduction

Depth information often provides useful clues for recognizing the 3D structure
of a scene, which is essential for many practical applications such as 3D scene
reconstruction, navigation, and autonomous driving. While the performance of
depth sensors has improved, obtaining dense and accurate depth information
still requires high-end sensors. Unfortunately, such sensors cannot always be
available due to limitations of device size or cost constraints. To overcome this
issue, depth estimation from a single RGB image has received much attention
in recent years.

Monocular depth estimation is an ill-posed problem; it is impossible to re-
cover the depth of a scene from only a single RGB image without any assump-
tions or knowledge about the scene. Modern approaches rely on deep convolu-
tional neural networks (CNNs) to learn a direct mapping from an RGB image
to a corresponding depth map [1–3]. The majority of existing methods can be
grouped into supervised [2–4] and self-supervised approaches [5]. The former
uses ground truth depth maps measured by a depth sensor to train the predic-
tion network, and the latter instead trains the network using a stereo pair or a
sequence of moving frames that can be used to estimate depth. Although the
self-supervised approach has a significant advantage of being trainable without
explicit ground truth information, the supervised approach still tends to accu-
rate. In this paper, we consider the supervised approach for monocular depth
estimation.
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Fig. 1: Kernel shape and effective field-of-view. (a) Two convolution layers
whose kernel shapes are (5 × 5) are applied to the input feature map. The size
of the effective field of view, i.e., the number of the pixels on the input feature
map used to compute the value of the output feature map at the position of
the black pixel, is 9 × 9 (green pixels). (b) The shape of the two convolution
kernels is changed to (1 × 25) and (25 × 1), respectively. Although the number
of parameters and FLOPs are exactly the same as the case of (a), the area of
the effective field-of-view (green) is dramatically increased to 25× 25.

A common approach is to use an encoder-decoder type CNN. The encoder
part is typically built by using a Fully Convolutional Network (FCN) to extract
a low-resolution feature map, and the decoder part upsamples the feature map
to recover the target depth map by applying several upsampling blocks. Previ-
ous studies have explored diverse aspects of this common strategy to improve
the final prediction performance, including network architectures [1–3, 6], loss
functions [1, 3, 4, 7], and usage of additional cues such as sparse depth [4, 8] or
relative depth information [9], just to name a few.

We focus on the shape of the convolution kernels in the upsampling blocks.
To the best of our knowledge, the only existing method that has focused on the
shape of the kernels in the upsampling blocks is Whole Strip Masking (WSM)
[10]. WSM uses a “long-range” convolution whose kernel is designed so that
either of its vertical or horizontal length is equal to that of the input feature
map. By stacking several WSM blocks, the receptive field spanned by the network
as a whole effectively covers a wide area of the input RGB image. However, a
single WSM layer only looks at pixels on approximately the same vertical or
horizontal line to compute each output pixel value. This may overlook potential
dependencies between vertical and horizontal directions on each intermediate
feature map, which should be a powerful clue for accurate depth estimation.
Another disadvantage would be that, because the kernel size depends on the
size of the input feature map, it can only be applied to images of the same size
(similar to a CNN that has fully connected layers), which may not always be
desirable in practice.

We propose a modified upsampling block called Cascaded Transposed Long-
range Convolutions (CTLC) free from these problems. Unlike WSM that applies
a single long-range convolution separately to the input feature map, the core idea
of our CTLC is to sequentially apply two long-range convolutions, one having
the spatially transposed shape of the other. More specifically, suppose there
are two consecutive convolution layers with normal square kernels, (5 × 5) →
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(5 × 5), as shown in Fig. 1a. Our CTLC changes their shapes to (1 × 25) →
(25 × 1) as in Fig. 1b. A notable advantage of our CTLC block is that the
resulting area of the effective field-of-view is dramatically increased, without
changing the number of parameters and FLOPs. Moreover, unlike WSM, the
kernel size of CTLC does not depend on the size of the input image, so it
can be applied to images of any size. Our final CTLC block is configured to
apply multiple convolutional sequences with different kernel shapes in parallel
to capture different levels of contextual information of the input feature map by
a single upsampling block. Experiments on two standard benchmark datasets
for monocular depth estimation, namely NYU Depth V2 [11] and KITTI [12],
demonstrate that our CTLC block yields consistently better accuracies than
existing upsampling blocks and can outperform several state-of-the-art methods.

2 Related Work

We briefly review previous studies on supervised monocular depth estimation
and upsampling block that are relevant to this work.

2.1 Supervised Monocular Depth Estimation

Supervised methods assume that ground truth depth maps, usually measured
by a range imaging system such as an infrared camera or LiDAR, are available
during the training and train a model so that the error between the model’s
output and the ground truth depth map is minimized. Early attempts addressed
the problem using probabilistic structured prediction models, such as Markov
Random Fields (MRFs) and Conditional Random Fields (CRFs) [13–15], or an
external database to obtain a depth map with RGB content similar to the target
scene [16]. These methods generally used hand-crafted features, but designing
useful features has often been a difficult problem. Modern approaches use deep
learning. The ability to learn features directly from the data has been shown to
improve performance significantly, and since then, a variety of researches have
been conducted on network architecture design, loss function, and so on.

Network architectures. One of the key requirements for the network architec-
ture is to effectively model the multiscale nature of the depth estimation task,
which has been a mainstream of the architecture study. Eigen et al. proposed
using multiple FCNs, where each FCN aims to infer different scale levels of the
depth map [1, 2]. Liu et al. [17] proposed a model that incorporates a CRF into
the FCN to obtain a smoother depth map [17]. Xu et al. [6] also used a vari-
ant of CRFs to fuse multiscale outputs extracted from the intermediate layers.
Lee et al. [18] fused multiple depth predictions at different cropping rates with
the weights obtained by Fourier domain analysis. Fu et al. [7] proposed to use
Atrous Spatial Pyramid Pooling (ASPP) that is originally proposed for semantic
segmentation tasks [19] to capture the different levels of contextual information
of the feature map. Lee et al. [20] also used an extended version of ASPP called
Dense ASPP [21].
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Loss functions. [4] investigated several standard loss functions, such as the
mean absolute error (MAE) and the mean square error (MSE). Robust and
“anti-robust” loss functions have also been explored in several studies [3, 22].
[1] introduced a scale-invariant loss to mitigate a harmful effect that the aver-
age scale of the scene dominates the overall prediction error. [23] proposed an
attention-driven loss to take into account the long-tail distribution of depth val-
ues. Fu et al. proposed to solve the problem as an ordinal regression problem by
quantizing depth values [7].

Other attempts. Several studies have focused on densifying sparse depth maps
with the help of RGB images [4, 24]. Given the strong correlation between struc-
tured visual prediction tasks, such as depth estimation, semantic segmenta-
tion, and normal map estimation, some studies explored multi-task learning
approaches of these tasks [2, 25]. [26] showed that the result could be improved
by explicitly modeling the uncertainties of the depth information.

The focus of this work is on the network architecture, more specifically the
upsampling block, which will be described in detail in the next subsection.

2.2 Upsampling Block

The majority of the existing architectures for monocular depth estimation have
a feature extraction backbone to extract a low-resolution feature map and up-
sampling blocks to recover the target depth size. Hence, the performance of the
upsampling block greatly affects the final depth estimation accuracy. Given a
general architecture that has a feature extraction backbone (e.g., ResNet-50 [27])
and an upsampling network consisting of a sequence of four upsampling blocks,
Laina et al. [3] explored several types of upsampling blocks including unpooling
(UnPool), upconvolution (UpConv), deconvolution (DeConv) and upprojection
(UpProj), and showed that UpProj outperforms the others. The most relevant
research to our work would be WSM [10]. As discussed in the introduction, a
major drawback of WSM is that it cannot capture dependencies between verti-
cal and horizontal directions on each intermediate feature map, and our CTLC
overcomes this weakness. Vertical pooling [28] that pools the input feature map
along the vertical direction and RowColCNN [29] that uses long-range kernels for
image distortion correction have also the same weakness as WSM. Our experi-
mental results in Sec. 4 will demonstrate that our CTLC can achieve significantly
better performance than Vertical Pooling and WSM.

Several upsampling networks have also been explored in some neighboring
fields, such as image classification and semantic segmentation. Atrous convolu-
tion [19] was originally proposed for semantic segmentation, performing convo-
lutions at “wider intervals” to ensure larger receptive fields. DUpsampling [30] is
a trainable upsampling layer that has been proposed to generate finer segmen-
tation results from low-resolution images. More recently, several methods[31,
32] proposed using self-attention for CNNs [33] to integrate information over
the entire image. Inception V3, which is a well-known architecture proposed by
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Fig. 2: Our architecture of entire depth estimation network. The entire
structure follows [3] and consists of two major parts. One is a feature extraction
backbone (encoder) that is typically constructed by using an image classifica-
tion network such as ResNet-50 and DenseNet-161. The other is an upsampling
network (decoder) which has one (1×1) convolution layer to reduce the number
of channels by half, four upsampling blocks, one (3 × 3) convolution layer, and
one bilinear upsampling layer to predict the target depth map.

Szegedy et al. for image classification, uses an idea of decomposing a square con-
volution kernel into two vertical and horizontal kernels [34]. Unlike their method
that reduces the number of parameters for efficient convolution operations, our
CTLC changes only the shape of the kernel without changing the number of
parameters, which has not been considered in [34].

3 Method

We describe the details of our CTLC upsampling block in this section. We first
present the entire architecture of our depth estimation network used in this
paper. We next explain the core idea of our CTLC upsampling block and prove
its effectiveness by showing empirical results of how the shape of the convolution
kernel affects the final depth estimation performance. Finally, we introduce the
final architecture of our CTLC upsampling block.

3.1 Entire Architecture of Depth Estimation Network

The entire architecture of our depth estimation network is illustrated in Fig 2.
Overall, this has the same structure proposed in some previous work [3, 4] and
consists of a feature extraction backbone and an upsampling network. The fea-
ture extraction backbone takes an RGB scene image and outputs a low-resolution
feature map. Following [3, 4], we use popular CNN architectures for image classi-
fication (e.g., ResNet-50) pre-trained on ImageNet and adapt them to our depth
estimation task by discarding a few top layers. We will detail this adaptation
process later in Sec. 4. The upsampling network is built by stacking several up-
sampling blocks in which each doubles the spatial resolution of the input feature
map while reducing the number of channels into a half [3]. Typically, four blocks
are involved, resulting in a 16 times larger feature map than that generated by
the feature extraction backbone.

3.2 Core Concept of CTLC

We start from UpProj that is a simple and effective upsampling block proposed
in [3] and introduce the core concept of our CTLC.
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Fig. 3: Architecture of upsampling block. (a) UpProj and (b) our CTLC
blocks with (1 × 25) → (25 × 1) convolutions. (C, H, W) means the number of
channels, height, and width of the input feature map. A batch normalization
layer and a ReLU activation function follow each convolution layer. ⊕ means
element-wise addition.

The architecture of the UpProj block is given in Fig. 3a. After the input
feature map is doubled in size by the UnPool layer, it passes through two separate
branches and then fused into a single feature map with an element-wise addition.
While the bottom branch in Fig. 3a simply applies a single (5× 5) convolution
to the input feature map, the upper branch uses a sequence of two convolutions
which we denote by (5× 5) → (5× 5) for brevity1.

The goal of our CTLC is to achieve a larger effective field of view both
vertically and horizontally than the square convolutions while keeping the com-
putational costs the same. The key idea is to modify the kernel shape of the
two consecutive convolutions in the upper branch, such that (1) each is longer
in either direction and (2) one is to be the transpose of the other. Such a modi-
fication can be done systematically as follows. Suppose we have two consecutive
convolutions with size k, i.e., (k × k) → (k × k). We can obtain the CTLC
versions of them as (⌈k/c⌉ × ⌈ck⌉) → (⌈ck⌉ × ⌈k/c⌉), where 0 < c ≤ k is a
parameter to control the aspect ratio. For instance, when we set c = 5 for the
case of k = 5, we have (1× 25)× (25× 1). We consider only the case where both
sides of each kernel are odd, in order to keep the size of the input and output
feature maps exactly the same, and thus the possible combinations we have for
k = 5 are the following four patterns: (9 × 3) → (3 × 9), (3 × 9) → (9 × 3),
(25×1) → (1×25) and (1×25) → (25×1). The example of the resulting CTLC
block with (1× 25) → (25× 1) kernels can be illustrated in Fig. 3b.

To examine the impact of the kernel shapes on the final depth estimation
accuracy, we evaluate the accuracy when we change only the kernel shapes while
keeping the rest (further details of the protocol will be given later in Sec. 4). We
tested two feature extraction backbone networks, DenseNet-161 and ResNet-50.
Table 1 shows the results for the five different combinations of the kernel shapes.
The results show that the shape of the convolution kernels significantly affects the
final depth prediction performance. Interestingly, the performance of the square
kernel is the worst for both feature extraction backbone networks, and the longer
the kernel shapes, the better the performance. We also evaluated cases that use
kernels having the same lengths as the input feature map as adopted in WSM

1 Although [3] uses (5×5) → (3×3), we in this work restrict it to be (5×5) → (5×5)
for systematic discussion.
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Table 1: Impact of kernel shapes in upsampling block on depth esti-

mation performance. The scores are evaluated on NYU Depth V2 dataset.
All the kernels have almost the same number of parameters (5 × 5). The best
score for each metric and each feature extraction backbone (DenseNet-161 or
ResNet-50) is shown in bold.

Backbone Kernel Shape higher is better lower is better
δ1 δ2 δ3 AbsRel SqRel RMSE RMSElog

(5× 5) → (5× 5) 0.850 0.975 0.995 0.126 0.075 0.431 0.156
(9× 3) → (3× 9) 0.857 0.977 0.995 0.122 0.072 0.426 0.154
(3× 9) → (9× 3) 0.857 0.978 0.996 0.121 0.071 0.425 0.153

DenseNet-161 (25× 1) → (1× 25) 0.867 0.978 0.995 0.119 0.070 0.412 0.148
(1× 25) → (25× 1) 0.871 0.979 0.995 0.116 0.068 0.409 0.147

(H × 1) → (1×W ) 0.873 0.978 0.996 0.118 0.070 0.407 0.147
(1×W ) → (H × 1) 0.871 0.979 0.996 0.115 0.068 0.413 0.147

(5× 5) → (5× 5) 0.812 0.965 0.992 0.143 0.094 0.478 0.177
(9× 3) → (3× 9) 0.829 0.968 0.993 0.137 0.087 0.459 0.169
(3× 9) → (9× 3) 0.828 0.968 0.993 0.137 0.087 0.461 0.170

ResNet-50 (25× 1) → (1× 25) 0.863 0.977 0.994 0.120 0.073 0.418 0.150
(1× 25) → (25× 1) 0.867 0.980 0.995 0.117 0.069 0.413 0.148

(H × 1) → (1×W ) 0.864 0.976 0.994 0.120 0.073 0.413 0.150
(1×W ) → (H × 1) 0.866 0.979 0.996 0.117 0.070 0.413 0.149

[10], e.g., (1 × W ) → (H × 1), but they did not give a consistent performance
improvement over our CTLC counterparts such as (1× 25) → (25× 1), despite
their non-negligible increases in the number of parameters2. These results suggest
the effectiveness of the core concept of our CTLC.

There are several possible reasons. First, the sequence of a long-range con-
volution and its transposition allows the upsampling block to have a far larger
field of view than a sequence of two square kernels, as shown in Fig. 1. The
importance of the size of the field of view in deep monocular depth estimation
has been pointed out in several studies, e.g., [3]. However, to the best of our
knowledge, there has been no attempt to increase its size by changing only the
shape of the convolution kernels in monocular depth estimation. Another reason
may be that information obtained from pixels in the horizontal and vertical lines
is often vital in depth estimation. An RGB image and a depth map captured
in a natural setting are often taken almost parallel to the ground. In this case,
in which case, if no object is present in the scene, pixels in the same horizontal
line are considered to be almost equidistant from the camera. Furthermore, a
recent study on deep monocular depth estimation [35] suggests that the network
pays attention to the vertical position of the object to estimate the depth. From
these observations, the pixels on the same horizontal and vertical lines provide
important clues, which can be effectively captured by our CTLC.

2 For example, (1 × W ) → (H × 1) has 1.46 times the number of parameters than
(1× 25) → (25× 1) for the DenseNet-161 backbone.
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Depth map by 
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Fig. 4: Examples of estimated depth map. Each row shows an RGB image
(left) and corresponding depth maps estimated by (3 × 9) → (9 × 3) (center)
and (1× 25) → (25× 1) (right), respectively. The area inside the black frame is
enlarged and displayed at the top right of each image.

3.3 Final CTLC Block

We propose our final CTLC block by introducing two modifications to the ar-
chitecture shown in Fig. 3b. One is the parallelization of CTLCs to improve the
accuracy, and the other is leveraging the idea of sub-pixel convolution [36] to
reduce the number of parameters and FLOPs.

Parallel CTLC. Fig. 4 shows some examples of the depth maps estimated by
the upsampling block with (3 × 9) → (9 × 3) and (1 × 25) → (25 × 1). The
results shown in Table 1 show that (1× 25) → (25× 1) tends to perform better
than (3 × 9) → (9 × 3) in average. However, looking at the examples in the
figure, we can see that (3 × 9) → (9 × 3) better recovers corners and roundish
objects (such as a human) than (1 × 25) → (25 × 1). This may be because
(3× 9) → (9× 3) is closer to square than (1× 25) → (25× 1), and thus is useful
for restoring local shapes that would otherwise be difficult to recover without
looking vertical and horizontal directions at the same time. Furthermore, since
the second convolution sees only the features aggregated by the first convolution,
the order of the kernels to be applied determines the priority of the directions.
According to the suggestion above by [35], this should be determined based
on the presence or absence of objects. These discussions suggest that a single
sequence of CTLC may not be sufficient to capture the full spectrum of depth
information.

We, therefore, propose a CTLC block that uses multiple sequences of different
kernel shapes in parallel. The architecture of the proposed parallel CTLC block
is indicated by the red dotted box in Fig. 5. The input feature map passes
through parallel branches of four CTLCs with different shape patterns and then
concatenated into a single feature map. Compared to the original CTLC block
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Fig. 5: Full CTLC block. (C, H, W) means the number of channels, height,
and width of the input feature map. A batch normalization layer and ReLU
follow each convolution layer. c© and ⊕ mean concatenation and element-wise
addition, respectively.

having only a single branch, the number of channels in each branch is reduced to
1/4. The concatenated feature map is linearly projected by (1× 1) convolution.
This parallel architecture allows the upsampling block to effectively capture
different context information, which leads to better estimation accuracy.

Sub-pixel convolution. UnPool is not efficient because it doubles the spatial
resolution of the input feature map without reducing the number of channels.
Only a quarter of the pixels in the resulting feature map have non-zero values.
This increases the number of parameters of the subsequent convolution layers
and requires more FLOPs. We resolve this issue based on the idea of sub-pixel
convolution [36] and replace UnPool with the pixel shuffle operation (PixelShuf-
fle) that relocates the pixels of the tensor of shape C × H × W to that of
C/4× 2H × 2W . The number of channels can be reduced to 1/4 while retaining
the same information. This makes it possible to suppress both the number of
parameters and FLOPs to 1/3 or less without losing depth estimation accuracy.

Fig. 5 shows the architecture of our final CTLC block. Unless otherwise specified,
the proposed method uses this architecture for the upsampling block.

4 Experiments

We evaluate the performance of our CTLC upsampling block for monocular
depth estimation.

4.1 Protocol

We follow the common protocol adopted in most of the previous papers (e.g.,
[2–4]) as detailed below.

Dataset. We use two datasets that are commonly used to evaluate monocu-
lar depth estimation. The first one is NYU Depth V2 [11] which is the most
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widely-used benchmark dataset for indoor depth estimation tasks. It consists of
RGB and depth images of 464 indoor scenes with a resolution of 480×640. Follow-
ing the official split, we sampled 48k RGB-depth pairs from the raw RGB/depth
sequences of the official training set (249 scenes) for training and used all the
654 images from the official test set (215 scenes) for evaluation. Each depth
map is spatiotemporally aligned with the corresponding RGB image and hole-
filled by applying a cross-bilateral filter. The second one is KITTI [12] which
is frequently used for outdoor monocular depth estimation evaluation. KITTI
consists of image frames and depth maps of 61 outdoor scenes, including “city”,
“residential”, “road”, and “campus” categories. All the images are captured by
a camera and LiDAR sensor mounted on a car with a resolution of 375× 1241.
Following the common protocol called “Eigen split” introduced by [1], we use
23, 488 images from 32 categories for training and 697 images extracted from the
remaining 29 scenes for evaluation. Our method is evaluated with the ground
truth depth within 80m or 50m.

Feature extraction backbone. We use three types of feature extraction back-
bone networks including DenseNet-161 [37], ResNet-50 [27], and MobileNetV2
[38]. The original architecture of DenseNet-161/ResNet-50 consists of four dense/residual
blocks for feature extraction and one classification block (a fully-connected layer
after a global average pooling layer) at the top to output the final classification
results. Following [3, 4], we adapted these architectures to the monocular depth
estimation task by replacing their classification block with the upsampling net-
work shown in Fig. 2. For MobileNetV2, we also replaced the top convolution
and average pooling layers for classification with the upsampling network. The
parameters are initialized with those pre-trained on ImageNet and fine-tuned
with the training set of the corresponding dataset.

Training details. We use PyTorch for implementing all the models and run-
ning the experiments. The training is performed using Adam optimizer for 50
epochs. The learning rate is initially set to 10−4 and polynomially decayed dur-
ing training to 10−5. Other parameters we use are β1 = 0.9, β2 = 0.999, a weight
decay of 10−4, and a mini-batch size of 6. For all the experiments, we use the
scale-invariant loss [1] to train our networks.

ℓ(e) =
1

n

n
∑

i

e2
i
−

1

n2

(

n
∑

i

ei

)2

(1)

where ei and n are the pixel-level difference at i-th pixel between the estimated
and ground truth depth maps and the number of pixels, respectively. We also
use several standard data augmentation techniques commonly used in monocular
depth estimation [1, 4, 7]. The RGB and depth images are randomly rotated in
[−5,+5] (deg), horizontally flipped with a 50% chance, and each of the RGB
values is scaled by [0.5, 1.5]. We train our model on a random crop of size 416×544
for NYU Depth V2 and 385× 513 for KITTI.
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Table 2: Comparison of upsampling blocks on NYU Depth V2 with three
backbone networks. #Params and GFLOPs are the number of trainable param-
eters and gigaFLOPs of each upsampling network, respectively. “Ours (UP)”
and “Ours (PS)” use UnPool and PixelShuffle for upsampling, respectively. The
best and the second-best are in bold and underlined, respectively.

Backbone Upsampling Block higher is better lower is better #Params GFLOPs
δ1 δ2 δ3 AbsRel SqRel RMSE RMSElog (million)

UpConv [3] 0.773 0.955 0.990 0.157 0.111 0.520 0.194 25.2 117.2
UpProj [3] 0.812 0.965 0.992 0.143 0.094 0.478 0.177 58.2 293.0
Sub-pixel Conv [36] 0.802 0.962 0.992 0.147 0.099 0.485 0.181 18.1 117.2
Atrous Conv [19] 0.855 0.975 0.994 0.125 0.075 0.427 0.156 58.2 293.0

ResNet-50 Self-attention [33] 0.830 0.970 0.994 0.136 0.086 0.452 0.167 25.7 120.6
DUpsampling [30] 0.840 0.972 0.995 0.129 0.079 0.442 0.162 123.9 53.3
DASPP [21] 0.857 0.978 0.995 0.121 0.074 0.433 0.154 97.5 332.6
WSM [10] 0.812 0.969 0.993 0.158 0.102 0.474 0.176 17.4 38.0

Ours (UP) 0.866 0.976 0.994 0.119 0.073 0.412 0.149 41.4 256.3
Ours (PS) 0.865 0.978 0.995 0.117 0.071 0.415 0.150 17.7 77.4

UpConv [3] 0.843 0.975 0.995 0.128 0.077 0.436 0.160 24.4 136.2
UpProj [3] 0.850 0.975 0.995 0.126 0.075 0.431 0.156 57.5 340.6
Sub-pixel Conv [36] 0.846 0.975 0.996 0.127 0.075 0.430 0.158 17.4 136.3
Atrous Conv [19] 0.866 0.977 0.995 0.118 0.070 0.419 0.150 57.5 340.6

DenseNet-161 Self-attention [33] 0.861 0.978 0.995 0.121 0.071 0.417 0.151 24.9 140.0
DUpsampling [30] 0.856 0.977 0.996 0.122 0.072 0.426 0.153 123.2 66.7
DASPP [21] 0.874 0.979 0.995 0.115 0.068 0.410 0.146 96.8 385.3
WSM [10] 0.830 0.975 0.995 0.150 0.091 0.456 0.167 21.8 44.2

Ours (UP) 0.877 0.979 0.995 0.114 0.067 0.404 0.145 50.6 297.1
Ours (PS) 0.874 0.979 0.995 0.115 0.068 0.406 0.146 16.9 89.4

UpConv [3] 0.773 0.955 0.990 0.157 0.111 0.520 0.194 7.6 45.8
UpProj [3] 0.778 0.952 0.989 0.157 0.115 0.526 0.196 17.8 114.5
Sub-pixel Conv [36] 0.762 0.949 0.988 0.162 0.120 0.541 0.201 5.4 45.8
Atrous Conv [19] 0.820 0.967 0.992 0.138 0.092 0.478 0.174 17.8 114.5

MobileNetV2 Self-attention [33] 0.801 0.960 0.990 0.150 0.103 0.498 0.183 7.7 47.5
DUpsampling [30] 0.805 0.964 0.993 0.143 0.095 0.489 0.178 106.8 20.8
DASPP [21] 0.827 0.967 0.992 0.133 0.089 0.474 0.170 29.9 133.5
WSM [10] 0.788 0.959 0.991 0.163 0.115 0.515 0.188 6.8 14.8

Ours (UP) 0.833 0.967 0.991 0.134 0.090 0.466 0.169 15.7 100.3
Ours (PS) 0.829 0.967 0.992 0.135 0.089 0.465 0.169 5.3 30.2

Evaluation metrics. We employ the following metrics for evaluation. The pre-
dicted and ground truth depth values at i-th pixel (1 ≤ i ≤ n) are denoted by
ẑi and z∗

i
.

- δα: ratio of pixels whose relative error is within 1.25α. We use α ∈ {1, 2, 3}.
Higher is better.

- AbsRel: mean absolute relative error, i.e., 1
n

∑

n

i
|z∗

i
− ẑi|/z

∗

i
. Lower is better.

- SqRel: squared version of absolute relative error, i.e., 1
n

∑

n

i
(z∗

i
− ẑi)

2/z∗
i
.

Lower is better.

- RMSE: root mean square error, i.e.,
√

1
n

∑

n

i
(z∗

i
− ẑi)2. Lower is better.

- RMSElog: logarithmic root mean square error, i.e.,
√

1
n

∑

n

i
(log z∗

i
− log ẑi)2.

Lower is better.
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Table 3: Comparison with state-of-the-art methods on NYU Depth V2.

The best and the second-best scores for each metric and backbone network are
shown in bold and are underlined, respectively.

Method Backbone higher is better lower is better
δ1 δ2 δ3 AbsRel RMSE

Saxena et al. [14] - 0.447 0.745 0.897 0.349 1.214
Eigen et al. [2] VGG 0.769 0.950 0.988 0.158 0.641
Liu et al. [17] AlexNet (Custom) 0.650 0.906 0.976 0.213 0.759
Laina et al. [3] ResNet-50 0.811 0.953 0.988 0.127 0.573
Kendall et al. [26] DenseNet (Custom [39]) 0.817 0.959 0.989 0.110 0.506
Xu et al. [6] ResNet-50 0.811 0.954 0.987 0.121 0.586
Ma et al. [4] ResNet-50 0.810 0.959 0.989 0.143 0.514
Lee et al. [18] ResNet-152 0.815 0.963 0.991 0.139 0.572
Fu et al. [7] ResNet-101 0.828 0.965 0.992 0.115 0.509
Qi et al. [25] ResNet-50 0.834 0.960 0.990 0.128 0.569
Heo et al. [10] ResNet-50 0.816 0.964 0.992 0.135 0.571
Lee et al. [40] DenseNet-161 0.837 0.971 0.994 0.131 0.538

Ours ResNet-50 0.865 0.978 0.995 0.117 0.415
Ours DenseNet-161 0.874 0.979 0.995 0.115 0.406

4.2 Comparison with Existing Upsampling Blocks

We first compare our CTLC with the following eight existing upsampling blocks.
For all the upsampling blocks, we use the same base network architecture given
in Fig. 2 and the training protocol.

- UpConv [3] uses only the bottom branch of UpProj. Other parts of the
entire network is the same as that shown in Fig. 2.

- UpProj [3] which is exactly Fig. 3a.
- Sub-pixel Conv [36] is the same as UpProj except that it uses PixelShuffle
instead of UnPool.

- Atrous Conv [19] changes the dilation rate of all convolution layers in the
upper branch of UpProj to 2.

- Self-attention [33] uses UpConv as the base architecture, but a self-attention
block (see Figure 2 in [33]) is placed on top of the first two upsampling blocks.

- DUpsampling [30] uses three (5 × 5) convolutions and one DUpsampling
layers, following [30].

- DASPP [21] is the same as the UpProj but has one DASPP block before the
first upsampling block right after the feature extraction backbone network.

- WSM [10] uses the WSM block (see Fig. 5 in [10]) for each upsampling
block in Fig. 2.

We use NYU Depth V2 for this experiment.
The results are presented in Table 2. Overall, we observe that our CTLC

outperforms all the other upsampling blocks for all the feature extraction back-
bone networks. This clearly shows the effectiveness of our CTLC block. The re-
sults provide several interesting observations. First, when compared to UpProj
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Table 4: Comparison with state-of-the-art methods on KITTI. “cap”
gives the maximum depth used for evaluation. “Ours (raw)” and “Ours (GT)”
are trained with raw depth maps and post-processed ground truth depth maps,
both available on the official page. The best scores for each metric are shown in
bold.

Method Backbone cap higher is better lower is better
δ1 δ2 δ3 AbsRel SqRel RMSE RMSElog

Saxena et al. [14] - 80m 0.601 0.820 0.926 0.280 3.012 8.734 0.361
Eigen et al. [1] AlexNet 80m 0.692 0.899 0.967 0.190 1.515 7.156 0.270
Liu et al. [17] AlexNet (Custom) 80m 0.647 0.882 0.961 0.217 1.841 6.986 0.289
Godard et al. [5] ResNet-50 80m 0.861 0.949 0.976 0.114 0.898 4.935 0.206
Kuznietsov et al. [41] ResNet-50 80m 0.862 0.960 0.986 0.113 0.741 4.621 0.189
Gan et al. [28] ResNet-50 80m 0.890 0.964 0.985 0.098 0.666 3.933 0.173
Fu et al. [7] ResNet-101 80m 0.932 0.984 0.994 0.072 0.307 2.727 0.120

Ours (raw) DenseNet-161 80m 0.896 0.972 0.990 0.093 0.519 3.856 0.155
Ours (GT) DenseNet-161 80m 0.951 0.992 0.998 0.064 0.271 2.945 0.101

Garg et al. [42] Alexnet (Custom) 50m 0.740 0.904 0.962 0.169 1.080 5.104 0.273
Godard et al. [5] ResNet-50 50m 0.873 0.954 0.979 0.108 0.657 3.729 0.194
Kuznietsov et al. [41] ResNet-50 50m 0.875 0.964 0.988 0.108 0.595 3.518 0.179
Gan et al. [28] ResNet-50 50m 0.898 0.967 0.986 0.094 0.552 3.133 0.165
Fu et al. [7] ResNet-101 50m 0.936 0.985 0.995 0.071 0.268 2.271 0.116

Ours (raw) DenseNet-161 50m 0.911 0.975 0.991 0.086 0.399 2.933 0.145
Ours (GT) DenseNet-161 50m 0.956 0.994 0.999 0.065 0.199 2.141 0.098

which is used as the basic model of CTLC, we can see that CTLC consistently
improves performance and significantly reduces the number of parameters and
FLOPs. This proves the validity of the idea of changing the shape of two con-
secutive convolutions into spatially transposed long-range convolutions. Second,
replacing UnPool (Ours (UP)) with PixelShuffle (Ours (PS)) greatly reduces the
number of CTLC parameters and FLOPs while maintaining accuracy. Note that
depending on the architecture of the upsampling block, accuracy may not always
be maintained. More specifically, there is no significant difference in accuracy be-
tween UpProj and Sub-pixel Conv when DenseNet-161 is selected as the feature
extraction backbone. However, using ResNet-50 or MobileNetV2 gives a perfor-
mance gap between them. This may be because our CTLC has a much longer
field-of-view than the range of the pixels shuffled by PixelShuffle, which also
illustrates its advantage. Third, our CTLC is significantly more accurate than
WSM that also uses long-range convolutions. Unlike CTLC, WSM compresses
the input feature map vertically or horizontally using a convolutional layer of
the same length as the input feature map. This reduces FLOPs, but can result in
significant loss of spatial information. In contrast, our CTLC mitigates this by
using the cascades of two long-range convolutions to capture spatial information
in both directions efficiently. This may allow CTLC to achieve high accuracy
with fewer parameters than other methods, including WSM.

Comparison with state-of-the-art methods. We compare the performance
of our CTLC with several state-of-the-art monocular depth estimation methods.



14 G. Irie et al.

Table 5: Ablation study. Performance on NYU Depth V2 with DenseNet-
161 feature extraction backbone is reported. #Params and GFLOPs are the
number of trainable parameters and gigaFLOPs of each upsampling network,
respectively. The best scores for each metric are shown in bold.

Method higher is better lower is better #Params GFLOPs
δ1 δ2 δ3 AbsRel RMSE (million)

UpProj 0.850 0.975 0.995 0.126 0.431 57.5 340.6
+ Long-range 0.871 0.979 0.995 0.119 0.412 57.5 340.6
+ Parallel CTLC 0.877 0.979 0.995 0.114 0.404 50.6 297.1
+ PixelShuffle 0.874 0.979 0.995 0.115 0.406 16.9 89.4

The results with NYU Depth V2 and KITTI are given in Table 3 and Table 4,
respectively. Overall, our method outperforms all the other methods in most
cases, which proves the remarkable superiority of our CTLC. The diversity of
some detailed configurations over the different methods (e.g., differences of fea-
ture extraction backbone networks) makes it not easy to perform entirely fair
comparisons for all the methods. However, ours achieves better performance
even with ResNet-50 backbone than several methods that adopt much stronger
backbone networks such as DenseNet with 100 layers [26] or ResNet-101 [7].

Ablation study. We conduct an ablation study to analyze the effectiveness of
each idea of our method. The results on NYU Depth V2 are shown in Table 5.
From the normal UpProj block, the depth estimation accuracy is improved by
changing the two convolution kernels in the upper branch to a pair of transposed
long-range convolutions (1 × 25) → (25 × 1) (+ Long-range) without changing
the number of parameters and FLOPs. Introducing a parallel CTLC block (+
Parallel CTLC) further improves accuracy. Finally, by replacing UnPool with
PixelShuffle, both the number of parameters and FLOPs are significantly reduced
while preserving accuracy. These results confirm the validity of each idea.

5 Conclusions

We introduced an upsampling block called Cascaded Transposed Long-range
Convolutions (CTLC) for monocular depth estimation. Despite its simplicity of
changing the kernel shape of two successive convolutions to spatially transposed
long-range convolutions, it yields significantly better performance at reasonably
smaller computational costs compared with existing upsampling blocks. We also
demonstrated that the depth estimation network involving our final CTLC block
outperforms the state-of-the-art depth estimation methods. One interesting sug-
gestion is that changing the shape of the convolution kernels can boost the depth
estimation performance, which will bring a new possibility for improving the per-
formance of depth estimation in a way that can be easily applied to many types
of network architectures. Applying the idea to other structured prediction tasks
such as image segmentation would be an interesting future direction.
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