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Abstract. In this paper, we focus on instance segmentation of a top-
view image for robot picking task. One difficulty in this setting is that
objects are located in various orientations and highly overlapped, where
a traditional box proposal approach such as Mask R-CNN does not work
well because more than one objects often have very similar bounding-
boxes. To address this issue, we adopt a recently developed point proposal
approach. This approach firstly generates point proposals instead of box
proposals, then an instance mask is predicted over an image for each
proposal point. This procedure enables us to obtain pixel-precise masks
even for objects sharing the same bounding-box. However, mask predic-
tion over an image may produce a few false positive pixels apart from
objects and these false positives are problematic for robot picking task.
To suppress them, we introduce rectangular masks. A rectangular mask
for each proposal point restricts the existence area of the correspond-
ing object within the rectangle. The experimental result on WISDOM
dataset shows that our method achieves superior performance to Mask
R-CNN with the same backbone model and introduction of rectangular
masks gives small improvement of mask AP and large improvement of
box AP.

1 Introduction

With the recent increase of e-commerce, automation technologies using robots
to reduce logistics costs attract great attention. In order to grasp and move
objects, it’s important for robots to understand each object’s shape and loca-
tion accurately. The task of segmenting objects in an image is called instance
segmentation in computer vision. A lot of instance segmentation methods have
been proposed so far and the detection performance has been much improved
with recent advances of deep learning techniques. However, most of the methods
were evaluated on benchmark datasets consisting of natural scenes such as Mi-
crosoft COCO [1] and Cityscapes [2] while instance segmentation of a top-view
image is usually required for robot picking task. Therefore, those methods are
not necessarily suitable for this task.

In this work, we study instance segmentation of a top-view image for robot
picking task. Segmenting objects in a top-view image is difficult because objects
can be located in various orientations and highly overlapped. In this situation,
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since object shape cannot be approximated with an axis-aligned bounding-box,
a traditional box proposal approach such as Mask R-CNN [3] does not work well.
Furthermore, overlapped objects often have very similar bounding-boxes or even
share the same bounding-box, and a box proposal approach cannot distinguish
them.

To overcome the above problem, we use recently developed point proposal
based methods [4, 5]. This approach firstly proposes points in objects instead
of bounding-boxes of objects, then predicts a pixel-precise instance mask over
an image based on each proposal point. Thus, a point proposal approach can
deal with non-axis-aligned objects and objects sharing the same bounding-box.
However, since the number of background pixels is much larger than the number
of object pixels, it is likely that a predicted mask includes a few false positive
pixels. For robot picking task, false positive pixels apart from an object are
problematic. Therefore, we introduce rectangular masks to suppress those false
positives. For each proposal point, our model generates a rectangular mask to
restrict the existence area of the corresponding object within the rectangle.

Experimental results on WISDOM dataset [6] show that our method achieves
superior performance to Mask R-CNN. In ablation study, introduction of rect-
angular masks gives a large improvement of box AP by 7.5 points and a small
improvement of mask AP by 0.5 points.

2 Related Work

Two-stage methods with object detector/proposal [7, 8, 3] became the first main-
stream of instance segmentation in deep learning. Mask R-CNN [3] is the most
famous method and widely used even today. There are methods [9–11] to im-
prove mask R-CNN performance. This two-stage approach firstly detects RoIs
by using Region Proposal Network (RPN) [12] then classifies and segments an
object in each RoI. Because this approach assumes that an RoI contains only
one object, it cannot deal with objects sharing the same RoI. Recently, single-
stage methods [13–16] based on the successful single-stage object detector FCOS
[17] have been proposed and achieve comparable performance to mask R-CNN.
However, these methods are still based on an object detector, hence they have
the same problem as two-stage methods.

Another approach on instance segmentation is based on pixel embeddings [18,
19]. In this approach, the network is trained to output similar embeddings for the
pixels of the same objects while dissimilar embeddings for the pixels belonging
to different objects. Then, after outputting pixel embeddings, some clustering
method is applied to them in order to obtain instance masks. This approach can
produce a pixel-precise mask even for objects sharing the same bounding-box.
However, this solution is suboptimal since the trained network is not optimized
for instance segmentation. As a result, this approach is not competitive to the
above mentioned detector based approach in terms of detection performance.

There are a few methods [4, 5] based on point proposal. These methods firstly
propose points in objects, then predict an instance mask over an image for
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each proposal point. Neven et al. [4] uses pixel embeddings for instance mask
prediction. Therefore, this approach inherits both advantages of detector based
approach and pixel embedding approach. Our method is based on this approach,
and some techniques are introduced to improve the performance of instance
segmentation of a top-view image.

Recently, a single stage method named SOLO [20] has been proposed. SOLO
utilizes a uniform grids instead of proposal points. That is, it divides an image
into grid cells. Then, for each grid cell, it predicts the mask of the object which
the cell belongs to. Therefore, if the cell size is enough small, SOLO has the
same advantages as point proposal approach.

3 Method

The overview of our instance segmentation method is shown in figure 1. Our
model is built on a backbone such as ResNet [23] and FPN [21]. Multi-scale
feature maps P2, P3, P4 and P5 are fused to a single scale shared features f ∈
RH×W×256 by the method described in [22] whereH andW are height and width
of P2, respectively. Then, shared features are input to five branches. Each branch
has its own learnable parameters of two convolution layers. A point proposal
branch outputs proposal points p, and instance masks M are predicted by using
pixel embeddings, scales, and proposal points. At the same time, rectangular
masks B are generated by using an output of box branch and proposal points.
Then, each instance mask is refined by the corresponding rectangular mask in
order to suppress false positive pixels. Finally, confidence scores of instances are
computed from the refined instance masks and a semantic segmentation score
map.

3.1 Point Proposal

A point proposal branch transforms shared features to a heat map h ∈ RH×W in
which the pixels belonging to objects have larger values than background. Then,
the at most K largest local maximum points {pk = (uk, vk)}

K
k=1 are sampled

from the heat map. uk and vk represent y and x coordinates, respectively. These
points {pk}

K
k=1 are used as proposal points. We use K = 500 in our experiments.

3.2 Mask Prediction

For each proposal point p = (u, v), its corresponding instance mask Mp ∈
{0, 1}H×W is obtained by thresholding mp ∈ RH×W whose elements are com-
puted by the following function:

mp(i, j) = exp
(

−(x(i, j)− xp)
TΣ−1

p
(x(i, j)− xp)

)

, (1)

where x(i, j) ∈ R2 is the pixel embedding at the coordinates (i, j) and xp =
x(u, v). Σ−1

p
∈ R2×2 is a positive definite symmetric matrix at the proposal
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Fig. 1. The overview of our instance segmentation method. There are five branches
after shared features, obtained by fusing P2, P3, P4 and P5 of FPN [21]. Fusion process
is the same as UPerNet [22]. Instance masks are computed from pixel embeddings,
scales, and proposal points, and rectangular masks are computed from bounding-boxes
and proposal points, in parallel. Then, instance masks are refined by rectangular masks
in order to suppress false positive pixels. Finally, confidence scores for instances are
calculated from the refined masks and semantic segmentation map.
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point p and used for distance calculation in the pixel embedding space. mp(i, j)
represents a probability that a pixel (i, j) belongs to the object which p belongs
to. In order to make pixel embeddings x more discriminative, a coordinate map
is added as mentioned in [24, 4]. Eq. (1) is similar to [4], but our Σ−1

p
is a full

matrix while their method adopts a diagonal one. We believe that a full matrix
is more suitable for this task because objects are not axis-aligned. The matrix
Σ−1

p
is represented as:

Σ−1
p

=
1

1− ρ2xy,p

(

σ−2
y,p −ρxy,pσ

−1
x,pσ

−1
y,p

−ρxy,pσ
−1
x,pσ

−1
y,p σ−2

x,p

)

, (2)

where

Σp =

(

σ2
y,p ρxy,pσx,pσy,p

ρxy,pσx,pσy,p σ2
x,p

)

(3)

σ−1
y,p = σ−1

y (u, v) (4)

σ−1
x,p = σ−1

x (u, v) (5)

ρxy,p = ρxy(u, v). (6)

Hence, our scales branch outputs three parameter maps σ−1
x ,σ−1

y ∈ RH×W
>0

and ρxy ∈ (−1, 1)H×W for constructing each Σ−1
p

. The exponential activation
function is used for σ−1

x and σ−1
y , and the tanh activation function is used for

ρxy.

3.3 False Positive Suppression with Rectangular Masks

As mentioned above, since the majority of pixels are background, a few false
positive pixels accidentally occur in background region. We suppress them in
the instance mask Mp by using a rectangular mask Bp ∈ {0, 1}H×W :

M ′

p
= Mp ◦Bp, (7)

where ◦ denotes Hadamard product. The rectangular mask Bp is constructed
from bp = (tp, lp, bp, rp)

T ∈ R4
>0, an output of our box branch at the proposal

point p = (u, v), as follows:

Bp(i, j) =

{

1 if u− αtp ≤ i ≤ u+ αbp ∧ v − αlp ≤ j ≤ v + αrp

0 otherwise
, (8)

where α is a constant parameter to expand a predicted rectangle. We use α = 1.1
in our experiments. The exponential activation function is applied after the
last convolution layer in the box branch so that bp is positive. Note that this
suppression procedure is not used in training phase.

Finally, an average of a semantic segmentation score map s over an instance
region is used as a confidence score for the instance mask.
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(c) (d)(b)(a)

Fig. 2. Visualization of proposal points. (a) input image. (b) proposal points repre-
sented as red cross over proposal heat map h. (c) remaining proposal points after
post-processing. (d) instance segmentation result.

3.4 Post-processing

Our model outputs {(M ′

k, yk)}
K
k=1 where M ′

k is the (refined) instance mask
obtained in eq. (7) and yk is the corresponding confidence score. The obtained
masks are generally redundant because there can be more than one proposal
points in each object region. In order to remove redundant masks, we select the
instance masks in descending order of confidence scores so that each instance
mask includes only one proposal point. Then, redundant masks are removed
from remaining masks based on overlap ratio. Figure 2 shows that an example
of proposal points before and after post-processing. We can see that there is only
one proposal point in each instance after post-processing.

3.5 Training

For training our model, we compute four losses Lprop, Lmask, Lbox and Lsseg.
Then, these losses are combined by using multitask uncertainty weighting [25]
which is one of the adaptive multitask loss balancing techniques. As described
later, proposal points are required to compute Lprop and Lmask. However, the
quality of point proposal is poor at an early stage of training. Therefore, we use
points randomly sampled from ground-truth instance masks as proposal points
during training. In our experiments, we sample 100 points per image. Each loss
is briefly described below.
Lprop for Point Proposal. We train the network so that heat map h can be
used as a proxy to the quality of the instance mask generated at each proposal
point. The quality at (i, j) is approximated with the following equation:

q(i, j) =
1

Z
min
k

m(i,j)(uk, vk), (9)

where (uk, vk) is the k-th random proposal point as described above and Z is a
normalization parameter to ensure maxi,j q(i, j) = 1. By using q(i, j), we define
Lprop as follows:

Lprop =
1

HW

∣

∣

∣
h− ĥ

∣

∣

∣

2

F
, (10)
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where | ∗ |F denotes Frobenius norm and

ĥ(i, j) =

{

β + (1− β)q(i, j) if (i, j) ∈ foreground pixels

0 otherwise
. (11)

β ∈ (0, 1) is a minimum value for foreground pixels and we set it to 0.7. This
value is the same as [5].
Lmask for Mask Prediction. For Lmask, we adopt a simple soft-IoU loss [26]
as follows:

Lmask =
1

K

K
∑

k=1

(

1−
ϵ+

∑

i,j mpk
(i, j)M̂pk

(i, j)

ϵ+
∑

i,j mpk
(i, j) + M̂pk

(i, j)−mpk
(i, j)M̂pk

(i, j)

)

,

(12)

where ϵ = 1 is a smoothing constant and M̂pk
is the ground-truth instance mask

to which the point pk belongs.
Lbox for Rectangular Masks. For Lbox, we compute box IoU loss [27] at
every foreground pixels as below:

Lbox =
1

N

∑

p∈foreground

(

1−
Ip + ϵ

Up + ϵ

)

, (13)

where N is the number of foreground pixels, ϵ = 1 is a smoothing constant,

Ip =
(

min(tp, t̂p) + min(bp, b̂p)
)(

min(lp, l̂p) + min(rp, r̂p)
)

, (14)

Up = (t̂p + b̂p)(l̂p + r̂p) + (tp + bp)(lp + rp)− Ip, (15)

and ∗̂ denotes the corresponding ground-truth, respectively.
Lsseg for Semantic Segmentation. For the semantic segmentation loss Lsseg,
we adopt a standard soft-max cross entropy loss with label smoothing [28]. Its
smoothing parameter is set to 0.1 in our experiments.

4 Experiments

The performance of our method is evaluated on WISDOM Dataset [6]. This
dataset provides 400 color top-view images of 1, 032 × 772. We use the same
training/test split as [6]. This split provides 100 training images including 25
objects and 300 test images including different 25 objects. For all experiments,
each input image is resized so that the longer side is equal to 512. The detection
performance is evaluated three times with different random seeds, and their
averaged score is reported.

Here, we consider evaluation metrics. As described above, false positive pixels
apart from an object are problematic for robot picking task, hence an evaluation
metric should be sensitive to them. Box AP, an object detection evaluation met-
ric, is such a metric while mask AP, commonly used as an instance segmentation
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Fig. 3. Comparison of mask IoU and box IoU. A predicted mask including a few false
positive pixels apart from an object is judged as true positive detection by mask IoU
while judged as false positive detection by box IoU under an IoU threshold in (0.5, 0.95].

evaluation metric, is insensitive to a few false positive pixels. Figure 3 shows a
typical example. A predicted mask including a few false positives is judged as
true positive by mask IoU while judged as false positive by box IoU. On the
other hand, box AP is insensitive to mask accuracy while mask AP is sensitive
to it. Therefore, we use both evaluation metrics box AP and mask AP in our
experiments.

We use ResNet50 model pre-trained on ImageNet [29]. Our model is trained
for 10, 000 iterations with a batch-size of 4. We use the SGD optimizer with
learning rate of 0.02, momentum of 0.9 and weight decay of 0.0005. The learn-
ing rate is scheduled using a cosine annealing scheduler [30]. During training,
parameters of stem and stage1 in ResNet50 are fixed and the learning rate for
the other parameters in ResNet50 is multiplied by 0.1. We apply data augmen-
tation similar to that used to train an SSD model [31]. Data augmentation is
implemented by using Albumentations library [32]. We use PyTorch framework
[33] for all our experiments.

4.1 Main Results

Table 1 shows comparison of our model with other methods. The evaluation
result of Mask R-CNN with ResNet50-FPN is obtained by using maskrcnn-
benchmark [34]. Our model achieves mask AP of 52.3% and box AP of 48.1%,
which are 12.2 points and 11.4 points higher than those of Mask R-CNN with the
same ResNet50-FPN backbone, respectively. As compared with D-SOLO [20],
our mask and box APs are 10.3 and 9.0 points higher, respectively. Furthermore,
our method is comparable to SDMask R-CNN1 [6] which uses depth information.

1 Since their ResNet35 model is not standard, we could not compare the performance
with the same backbone. The configuration of ResNet35 can be found in their code.
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Input GT Ours Mask R-CNN D-SOLO

Fig. 4. Visualization results of our method, Mask R-CNN and D-SOLO.
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Table 1. Mask AP and box AP of each method on WISDOM dataset.

input mask AP box AP
method backbone type @all [%] @all [%]

SD Mask R-CNN [6] ResNet35-FPN depth 51.6 -
Mask R-CNN [6] ResNet35-FPN RGB 38.4 -

Mask R-CNN ResNet50-FPN RGB 40.1 36.7
D-SOLO ResNet50-FPN RGB 42.0 39.1
ours ResNet50-FPN RGB 52.3 48.1

Table 2. Mask APs [%] of each method with ResNet50-FPN backbone on WISDOM
dataset.

method AP@all AP@IoU=0.5 AP@IoU=0.75

Mask R-CNN 40.1 76.4 38.0
D-SOLO 42.0 75.1 42.9
ours 52.3 82.8 55.1

Table 2 shows mask APs at IoU threshold of 0.5 and 0.75. We can see that
mask AP@IoU=0.75 of our method is much higher than mask R-CNN and D-
SOLO. This means that our method can predict object shapes more precisely
than those methods. We show some visualization results of each method in fig-
ure 4. It also shows that our method produces more accurate instance masks
than Mask R-CNN and D-SOLO. Moreover, our method generates good in-
stance segmentation results even for highly overlapped objects. Typical failure
case is found in the bottom-most row in figure 4. All the methods over-segment
a hammer-shaped object. This is because there is no object of similar shape in
training data.

4.2 Ablation Study

The results of ablation experiments are shown in table 3. Our instance segmen-
tation method with rectangular masks achieves a large improvement of box AP
from 40.6% to 48.1% while a small improvement of mask AP from 50.7% to
52.3%. This means that introduction of rectangular masks successfully suppress
false positive pixels apart from objects. An example is shown in figure 5. We can

Table 3. Ablation experiments on WISDOM dataset.

full Σ rectangular masks mask AP@all [%] box AP@all [%]

49.2 39.1
✓ 50.7 40.6

✓ 51.8 47.4
✓ ✓ 52.3 48.1
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(c)(b)(a)

false positives

Fig. 5. Instance masks obtained by our method with or without rectangular masks.
(a) Input image. (b) Instance masks with rectangular masks. (c) Instance masks with-
out rectangular masks. The instance mask for upper-right object includes a few false
positives under the banana-shaped object.

see that our method without rectangular masks produces a few false positive
pixels far from an object while our method with rectangular masks does not
produces such a false positive pixels.

By using a full matrix Σ, the performance mask AP is slightly improved
from 51.8% to 52.3%. Computational cost is almost unchanged between our
model with a full matrix and that with diagonal one. Hence, introducing a full
matrix is a good choice for this task.

5 Conclusions

In this work, we focus on instance segmentation of a top-view image for robot
picking task. We propose a point proposal based instance segmentation method
with rectangular masks, which suppress false positive pixels apart from objects.
The experimental results on WISDOM dataset show that our method achieves
superior performance to Mask R-CNN and D-SOLO with the same backbone
model.
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