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Abstract. Image convolutions have been a cornerstone of a great num-
ber of deep learning advances in computer vision. The research commu-
nity is yet to settle on an equivalent operator for sparse, unstructured
continuous data like point clouds and event streams however. We present
an elegant sparse matrix-based interpretation of the convolution opera-
tor for these cases, which is consistent with the mathematical definition
of convolution and efficient during training. On benchmark point cloud
classification problems we demonstrate networks built with these oper-
ations can train an order of magnitude or more faster than top existing
methods, whilst maintaining comparable accuracy and requiring a tiny
fraction of the memory. We also apply our operator to event stream pro-
cessing, achieving state-of-the-art results on multiple tasks with streams
of hundreds of thousands of events.
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1 Introduction

Deep learning has exploded in popularity since AlexNet [1] achieved ground-
breaking results in image classification [2]. The field now boasts state-of-the-
art performance in fields as diverse as medical imaging [3], natural language
processing [4], and molecular design [5].

Robotics [6] applications are of particular interest due to their capacity to
revolutionize society in the near future. Driverless cars [7] specifically have at-
tracted enormous amounts of research funding, with advanced systems being
built with multi-camera setups [8], active LiDAR sensors [9], and sensor fusion
approaches [10].

At the other end of the spectrum, small mobile robotics applications and
mobile devices benefit from an accurate 3D understanding of the world. These
platforms generally don’t have access to large battery stores or computation-
ally hefty hardware, so efficient computation is essential. Even where compute
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is available, the cost of energy alone can be prohibitive, and the research com-
munity is beginning to appreciate the environmental cost of training massive
power-hungry algorithms in data centres [11].

The convolution operator has been a critical component of almost all recent
advances in deep learning for computer vision. However, implementations de-
signed for use with images cannot be used for data types that are not defined
on a regular grid. Consider for example event cameras, a new type of sensor
which shows great promise, particularly in the area of mobile robotics. Rather
than reporting average intensities of every pixel at a uniform frame rate, pixels
in an event camera fire individual events when they observe an intensity change.
The result is a sparse signal with very fast response time, high dynamic range
and low power usage. Despite the potential, this vastly different data encoding
means that a traditional 2D convolution operation is no longer appropriate.

Fig. 1: Learned image convolutions can be thought of as linear combinations of
static basis convolutions, where the linear combination is learned. Each basis
convolution can be expressed as a sparse-dense matrix product. We take the
same approach with point clouds and event streams.

In this work, we investigate how the convolution operator can be applied to
two non-image input sources: point clouds and event streams. In particular, our
contributions are as follows.

1. We implement a convolution operator for sparse inputs on continuous do-
mains using only matrix products and addition during training. While others
have proposed such an operator, we believe we are the first to implement one
without compromising the mathematical definition of convolution.

2. We discuss implementation details essential to the feasible training and de-
ployment of networks using our operator on modest hardware. We demon-
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strate speed-ups of an order of magnitude or more compared to similar meth-
ods with a memory foot-print that allows for batch sizes in the thousands.

3. For point clouds, we discuss modifications that lead to desirable properties
like robustness to varying density and continuity, and demonstrate that rel-
atively small convolutional networks can perform competitively with much
larger, more expensive networks.

4. For event streams, we demonstrate that convolutions can be used to learn
features from spiking network spike trains. By principled design of our ker-
nels, we propose two implementations of the same networks: one for learning
that takes advantage of modern accelerator hardware, and another for asyn-
chronous deployment which can provide features or inferences associated
with events as they arrive. We demonstrate the effectiveness of our learned
implementation by achieving state-of-the-art results on multiple classifica-
tion benchmarks, including a 44% reduction in error rate on sign language
classification [12].

2 Prior Work

Point Clouds Early works in point cloud processing – Pointnet [13] and Deep
Sets [14] – use point-wise shared subnetworks and order invariant pooling op-
erations. The successor to Pointnet, Pointnet++ [15] was (to the best of our
knowledge) the first to take a hierarchical approach, applying Pointnet submod-
els to local neighborhoods.

SO-Net [16] takes a similar hierarchical approach to Pointnet++, though uses
a different method for sampling and grouping based on self-organizing maps.
DGCNN [17] applies graph convolutions to point clouds with edges based on
spatial proximity. KCNet [18] uses dynamic kernel points in correlation layers
that aim to learn features that encapsulate the relationships between those ker-
nel points and the input cloud. While most approaches treat point clouds as
unordered sets by using order-invariant operations, PointCNN [19] takes the
approach of learning a canonical ordering over which an order-dependent opera-
tion is applied. SpiderCNN [20] and FlexConv [21] each bring their own unique
interpretation to generalizing image convolutions to irregular grids. While Spi-
derCNN focuses on large networks for relatively small classification and seg-
mentation problems, FlexConv utilizes a specialized GPU kernel to apply their
method to point clouds with millions of points.

Event Stream Networks Compared to standard images, relatively little re-
search has been done with event networks. Interest has started to grow recently
with the availability of a number of event-based cameras [22, 23] and publicly
available datasets [23–26, 12].

A number of approaches utilize the extensive research in standard image
processing by converting event streams to images [25, 27]. While these can lever-
age existing libraries and cheap hardware optimized for image processing, the
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necessity to accumulate synchronous frames prevents them from taking advan-
tage of many potential benefits of the data format. Other approaches look to
biologically-inspired spiking neural networks (SNNs) [28–30]. While promising,
these networks are difficult to train due to the discrete nature of the spikes.

Other notable approaches include the work of Lagorce et al. [31], who in-
troduce hierarchical time-surfaces to describe spatio-temporal patterns; Sironi
et al. [26], who show histograms of these time surfaces can be used for object
classification; and Bi et al. [12], who use graph convolution techniques operating
over graphs formed by connecting close events in space-time.

Sparse Convolutions Sparse convolutions have been used in a variety of ways
in deep learning before. Liu et al.[32] and Park et al.[33] demonstrate improved
speed from using implementations optimized for sparse kernel on discrete do-
mains, while there are various voxel-based approaches [34–36] that look at con-
volutions on discrete sparse inputs and dense kernels. Other approaches involve
performing dense discrete convolutions on interpolated projections [37, 38].

3 Method Overview

For simplicity, we formulate continuous domain convolutions in the context of
physical point clouds in Section 3.1, before modifying the approach for event
streams in Section 3.2. A summary of notation used in this section is provided
in the supplementary material.

3.1 Point Cloud Convolutions

We begin by considering the mathematical definition of a convolution of a func-
tion h with a kernel g,

(h ∗ g)(t) =
∫

D

h(τ)g(t− τ) dτ. (1)

We wish to evaluate the convolution of a function with values defined at fixed
points xj in an input cloud X of size S, at a finite set of points x′

i in an output
cloud X ′ of size S′. We denote a single feature for each point in these clouds
f ∈ R

S and f ′ ∈ R
S′

respectively. For the moment we assume coordinates for
both input and output clouds are given. In practice it is often the case that
only the input coordinates are given. We discuss choices of output clouds in
subsequent sections.

By considering our convolved function h to be the sum of scaled Dirac delta
functions δ centred at the point coordinates,

h(x) =
∑

j

fjδ(x− xj), (2)
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Equation 1 reduces to

f ′
i =

∑

xj∈Ni

fjg(x
′
i − xj), (3)

where Ni is the set of points in the input cloud within some neighborhood of the
output point x′

i. We refer to pairs of points {xj , x
′
i} where xj ∈ Ni as an edge,

and the difference in coordinates ∆xij = x′
i − xj as the edge vector.

Like Groh et al.[21], we use a kernel made up of a linear combination of M
unlearned basis functions pm,

g(∆x; θ) =
∑

m

pm(∆x)θm, (4)

where θm are learnable parameters. As with Groh et al., we use geometric mono-
mials for our basis function. Substituting this into Equation 3 and reordering
summations yields

f ′
i =

∑

m

∑

xj∈Ni

pm(∆xij)fjθm. (5)

We note the inner summation can be expressed as a sparse-dense matrix
product,

f ′ =
∑

m

N (m)fθm, (6)

This is visualized in Figure 1. Neighborhood matrices N (m) have the same spar-

sity structure for all m. Values n
(m)
ij are given by the corresponding basis func-

tions evaluated at edge vectors,

n
(m)
ij =

{

pm(∆xij) xj ∈ Ni,

0 otherwise.
(7)

Generalizing to multi-channel input and output features F ∈ R
S×Q and

F ′ ∈ R
S′

×P respectively, this can be expressed as a sum of matrix products,

F ′ =
∑

m

N (m)FΘ(m), (8)

where Θ(m) ∈ R
Q×P is a matrix of learned parameters.

The elegance of this representation should not be understated. N (m) is a
sparse matrix defined purely by relative point coordinates and choice of basis
functions. Θ(m) is a dense matrix of parameter weights much like traditional
convolutional layers, and F ′ and F are feature matrices with the same structure,
allowing networks to be constructed in much the same way as image CNNs.

We now identify three implementations with analogues to common image
convolutions. A summary is provided in Table 1.

Down-Sampling Convolutions Convolutions in which there are fewer output
points than input points and more output channels than input channels are more
efficiently computed left-to-right, i.e. as (N (m)F )Θ(s). These are analogous to
conventional strided image convolutions.
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Up-Sampling Convolutions Convolutions in which there are more output points
than input points and fewer output channels than input channels are more effi-
ciently computed right-to-left, i.e. N (m)

(

FΘ(m)
)

. These are analogous to con-
ventional fractionally strided or transposed image convolutions.

Featureless Convolutions The initial convolutions in image CNNs typically have
large receptive fields and a large increase in the number of filters. For point
clouds, there are often no input features at all – just coordinates. In this instance
the convolution reduces to a sum of kernel values over the neighborhood. In the
multi-input/output channel context this is given by

Z = G̃Φ0, (9)

where Φ0 ∈ R
S×Q is the learned matrix and G̃ ∈ R

N ′
×S is a dense matrix of

summed monomial values
g̃is =

∑

j

n̂
(m)
ij . (10)

Opt. Cond. Form Mult. Adds Mem.

In Place
Q = P

S′ = S

∑

m
N (m)FΘ(m) MP (E + SP ) SP

Down-Sample
Q < P

S′ < S

∑

m

(

N (m)F
)

Θ(m) MQ(E + S′P ) S′Q

Up-Sample
Q > P

S′ > S

∑

m
N (m)

(

FΘ(m)
)

MP (E + SQ) SP

Featureless F = 1 G̃Φ0 MSP -

Table 1: Time complexity of different point cloud convolution operations and
theoretical space complexity of intermediate terms (Mem). The matrix product
for in place convolutions can be evaluated in either order.

Neighborhoods To be consistent with the mathematical definition of convolu-
tion, the neighborhood of each point should be fixed, which precludes the use of
k-nearest neighbors (kNN), despite its prevalence in the literature [21, 20, 15, 39].
The obvious choice of a neighborhood is a ball. Equation 8 can be implemented
trivially using either kNN or ball neighborhoods, though from a deep learning
perspective each neighborhood has its own advantages and disadvantages.

Predictable computation time: The sparse-dense matrix products have compu-
tation proportional to the number of edges. For kNN this is proportional to the
output cloud size, but is less predictable when using ball-searches.

Robustness to point density: Implementations based on each neighborhood react
differently to variations in point density. As the density increases, kNN imple-
mentations shrink their receptive field. On the other hand, ball-search implemen-
tations suffer from increased computation time and output values proportional
to the density.
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Discontinuity in point coordinates: Both neighborhood types result in operations
that are discontinuous in point coordinates. kNN convolutions are discontinuous
as the kth and (k + 1)th neighbors of each point pass each other. Ball-search
convolutions have a discontinuity at the ball-search radius.

Symmetry: Connectedness in ball-neighborhoods is symmetric – i.e. if x′
i ∈ Nj

then xj ∈ Ni for neighborhood functions with the same radius. This means the
neighborhood matrix NIJ between sets XI and XJ is related to the reversed
neighborhood by NIJ = NT

JI (up to a possible difference in sign due to the
monomial value). This allows for shared computation between different layers.

Transposed Neighborhood Occupancy: For kNN, all neighborhood matrices are
guaranteed to have k entries in each row. This guarantees there will be no empty
rows, and hence no empty neighborhoods. Ball search neighborhoods do not
share this property, and there is no guarantee points will have any neighbors.
This is important for transposed convolutions, where points may rely on neigh-
bors from a lower resolution cloud to seed their features.

Subsampling Thus far we have remained silent as to how the S′ output points
making up X ′ are chosen. In-place convolutions can be performed with the same
input and output clouds, but to construct networks we would like to reduce
the number of points as we increase the number of channels in a similar way
to image CNNs. We adopt a similar approach to Pointnet++ [15] in that we
sample a set of points from the input cloud. Pointnet++ [15] selects points
based on the first S′ points in iterative farthest point (IFP) ordering, whereby
a fixed number of points are iteratively selected based on being farthest from
the currently selected points. For each point selected, the distance to all other
points has to be computed, resulting in an O(S′S) implementation.

To improve upon this, we begin by updating distances only to points within
a ball neighborhood – a neighborhood that may have already been computed for
the previous convolution. By storing the minimum distances in a priority queue,
this sampling process still gives relatively uniform coverage like the original IFP,
but can be computed in O(S′k̄), where k̄ is the average number of neighbors of
each point.

We also propose to terminate searching once this set of neighborless candi-
dates has been exhausted, rather than iterating for a fixed number of steps. We
refer to this as rejection sampling. This results in point clouds of different sizes,
but leads to a more consistent number of edges in subsequent neighborhood ma-
trices. It also guarantees all points in the input cloud will have a neighbor in the
output cloud. We provide pseudo-code for these algorithms and illustrations in
the supplementary material.

Weighted Convolutions To address both the discontinuity at the ball radius
and the neighbor count variation inherent to using balls, we propose using a



8 D. Jack et al.

weighted average convolution by weighting neighboring values by some continu-
ous function w which decreases to zero at the ball radius,

n̂
(m)
ij =

1

Wi

wijn
(m)
ij (11)

where wij = w(|∆xij |) and Wi =
∑

j wij . We use w(x) = 1 − x/r for our
experiments, where r is the search radius.

Comparison to Existing Methods We are not the first to propose hierar-
chical convolution-like operators for learning on point clouds. In this section we
look at a number of other implementations and identify key differences.

Pointnet++ [15] and SpiderCNN [20] each use feature kernels which are non-
linear with respect to the learned parameters. This means these methods have
a large memory usage which increases as they create edge features from point
features, before reducing those edge features back to point features.

Pointnet++ claims to use a ball neighborhood – and show results are im-
proved using this over kNN. However, their implementation is based on a trun-
cated kNNsearch with fixed k, meaning padding edges are created in sparse
regions and meaningful edges are cropped out in dense regions. The cropping
is partially offset by the use of max pooling over the neighborhood and IFP
ordering, since the first k neighbors found are relatively spread out over the
neighborhood. As discussed however, IFP is O(SS′) in time, but removing this
means results in the truncated ball search will no longer necessarily be evenly
distributed. Also, the padding of sparse neighborhoods leads to an inefficient
implementation, as edge features are computed despite never being used.

FlexConv [21] present a very similar derivation to our own. However, they
implement Equation 5 with a custom GPU kernel that only supports kNN.

On the whole, we are unable to find any existing learned approaches that
perform true ball searches, nor make any attempt to deal with the discontinuity
inherent to kNN. We accept models are capable of learning robustness to such
discontinuities, but feel enforcing it at the design stage warrants consideration.

Data Pipeline There are two aspects of the data processing that are critical
to the efficient implementation of our point cloud convolution networks.

Neighborhood Preprocessing The neighborhood matrices N (m) are functions of
relative point coordinates and the choice of unlearned basis functions – they do
not depend on any learned parameters. This means they can be pre-computed,
either online on CPUs as the previous batch utilizes available accelerators, or of-
fline prior to training. In practice we only pre-compute the neighborhood indices
and calculate the relative coordinates and basis functions on the accelerator. This
additional computation on the accelerator(s) takes negligible time and reduces
the amount of memory that needs to be stored, loaded and shipped.
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Ragged Batching During the batching process, the uneven number of points
in each cloud for each example can be concatenated, rather than padded to a
uniform size, and sparse matrices block diagonalized. For environments where
fixed-sized inputs are required, additional padding can occur at the batch level,
rather than the individual example level, where variance in the average size will
be smaller.

Unlike standard dataset preprocessing, our networks require network-specific
preprocessing – preprocessing dependent on e.g. the size of the ball searches at
each layer, the number of layers etc. To facilitate testing and rapid prototyping,
we developed a meta-network module for creating separate pre- and post-batch
preprocessing, while simultaneously building learned network stages based on a
single conceptual network architecture. This is illustrated in Figure 2.
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Fig. 2: (a) Conceptual network vs (b) separate computation graphs.

3.2 Event Stream Convolutions

Event streams from cameras can be thought of as 3D point clouds in (x, y, t)
space. However, only the most fundamental of physicists would consider space
and time equivalent dimensions, and in practice their use cases are significantly
different. For event cameras in particular,

– spatial coordinates of events are discrete and occur on a fixed size grid cor-
responding to the pixels of the camera;

– the time coordinate is effectively continuous and unbounded; and
– events come in time-sorted order.

We aim to formulate a model with the following requirements:
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– Intermediate results : we would like our model to provide a stream of predic-
tions, updated as more information comes in, rather than having to wait for
the end of a sequence before making an inference.

– Run indefinitely : we would like to deploy these models in systems which can
run for long periods of time. As such, our memory and computational re-
quirements must be O(1) and O(E) respectively, with respect to the number
of events.

Unfortunately, these requirements are difficult to enforce while making good
use of modern deep learning frameworks and hardware accelerators. That said,
just because we desire these properties in our end system does not mean we
need them during training. By using convolutions with a domain of integration
extending backwards in time only and using an exponentially decaying kernel,
we can train using accelerators on sparse matrices and have an alternative de-
ployment implementation which respects the above requirements.

Formally, we propose neighborhoods defined over small spatial neighborhood
of size Mu – similar to image convolutions – extending backwards in time – with
a kernel given by

g(u,∆t) =
∑

v

exp(−λuv∆t)θuv, (12)

where u corresponds to the pixel offset between events and v sums over some fixed
temporal kernel size Mv, λuv is a learned temporal decay term enforced to be
positive, θuv is a learned parameter and u extends over the spatial neighborhood.
A temporal domain of integration extending backwards in time only ensures
∆t ≥ 0, hence we ensure the effects of events on features decay over time.

Dual Implementations For training, the kernel function of Equation 12 can
be used in Equation 5 and reduced to a form similar to Equation 8, where
M = MuMv. This can be implemented in the same way as our point cloud con-
volutions. Unfortunately, this requires us to construct the entire sparse matrix,
removing any chance of getting intermediate results when they are relevant, and
also breaks our O(1) memory constraint with respect to the number of events.

As such, we additionally propose a deployment implementation that updates
features at pixels using exponential moving averages in response to events. As
an input events come in, we decay the current values of the corresponding pixel
by the time since it was last updated and add the new input features. When
the features for an output event are required, the features of the pixels in the
receptive field can be decayed and then transformed by Θ(uv), and reduced like

a standard image convolution. Formally, we initialize z
(uv)
x = 0 ∈ R

Q and τx = 0
for all pixels x. For each input event (x, t) with features f , we perform the
following updates:

z(uv)x ← f + exp(−λuv(t− τx))z
(uv)
x (13)

τx ← t. (14)
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Features f ′ for output event at (x′, t′) can thus be computed by

f ′ =
∑

u,v

exp(−λuv(t
′ − τx′−u))z

(uv)
x′−u

T

Θ(uv). (15)

This requires O(MuMvQ) operations per input event, O(MuMvPQ) opera-
tions per output event and O(MuMvQ) space per pixel. Alternatively, the linear

transform can be applied to f during the z
(uv)
x update (equivalent to up-sampling

convolutions) for subtly different space and computational requirements. Either
way, our requirements are satisfied.

Subsampling As with our point cloud formulation, we would like a hierarchical
model with convolutions joining multiple streams with successively lower reso-
lution and higher dimensional features. We propose using an unlearned leaky-
integrate-and-fire (LIF) model due to the simplicity of the implementation and
its prevalence in SNN literature [40].

LIF models transform input spike trains by tracking a theoretical voltage at
each location or “neuron”. These voltages exponentially decay over time, but are
increased discontinuously by input events in some receptive field. If the voltage at
a location exceeds a certain threshold, the voltage at that neuron is reset, and an
output event is fired. SNNs generally learn the sensitivity of each output neuron
to input spikes. We take a simpler approach, using a fixed voltage increase of 1/n
as a result of an input spike, where n is the number of output neurons affected
by the input event. Note we do not suggest this is optimal for our use case –
particularly the unlearned nature of it – though we leave additional investigation
of this idea to future work.

4 Experiments

We perform experiments on various classification tasks across point clouds and
event streams. We provide a brief overview of network structures here. Model
diagrams and technical details about the training procedure are provided in the
supplementary material.

We investigate our point cloud operator in the context of ModelNet40 [41],
a 40-class classification problem with 9840 training examples and 2468 testing
examples. We use the first 1024 points provided by Pointnet++ [15] and use the
same point dropout, random jittering and off-axis rotation, uniform scaling and
shuffling data augmentation policies.

We construct two networks based loosely on Resnet [42]. Our larger model
consists of an in-place convolution with 32 output channels, followed by 3 alter-
nating down-sampling and in-place residual blocks, with the number of filters
increasing by a factor of 2 in each down-sampling block. Our in-place ball radii
start at 0.1125 and increase by a factor of 2 each level. Our down-sample radii
are
√
2 larger than the previous in-place convolution. This results in sampled

point clouds with roughly 25% of the original points on average, roughly 10
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neighbors per in-place output point and 20 neighbors per down-sample output
point. After our final in-place convolution block we use a single point-wise con-
volution to increase the number of filters by a factor of 4 before max pooling
across the point dimension. We feed this into a single hidden layer classifier
with 256 hidden units. All convolutions use monomial basis functions up to 2nd
order. We use dropout, batch normalization and L2 regularization throughout.
Our smaller model is similar, but skips the initial in-place convolution and has
half the number of filters at each level. Both are trained using a batch size of
128 using Adam optimizer [43] and with the learning rate reduced by a factor of
5 after 20 epochs without an improvement to training accuracy.

For event streams, we consider 5 classification tasks – N-MNIST and N-
Caltech101 from Orchard et al.[24], MNIST-DVS and CIFAR10-DVS from Ser-
rano et al.[23]) and ASL-DVS from Bi et al.[12].

All our event models share the same general structure, with an initial 3x3 con-
volution with stride 2 followed by alternating in-place resnet/inception-inspired
convolution blocks and down-sample convolutions (also 3x3 with stride 2), fin-
ishing with a final in-place block. We doubled the number of filters and the LIF
decay time at each down sampling.

The result is multiple streams, with each event in each stream having its own
features. The features of any event in any stream could be used as inputs to a
classifier, but in order to compare to other work we choose to pool our streams
by averaging over (x, y, t) voxels at our three lowest resolutions. For example, our
CIFAR-10 model had streams with learned features at 64×64 down to 4×4. We
voxelized the 16×16 stream to 16×16×4, the 8×8 stream into an 8×8×2 grid and
the final stream into a 4× 4× 1. Each voxel grid beyond the first receives inputs
from the lower resolution voxel grid (via a strided 2×2×2 voxel convolution), and
from the average of the event stream. In this way, examples with relatively few
events that result in zero events at the final stream still resulted in predictions
(empty voxels are assigned the value 0). Hyperparameters associated with stream
propagation (decay rate, spike threshold and reset potential) were hand-selected
via an extremely crude search that aimed to achieve a modest number of events
in the final stream for most examples. These hyperparameters, along with further
details on training and data augmentation are provided in the supplementary
material.

5 Results

5.1 Point Clouds

We begin by benchmarking our implementations of Equation 8. We implement
the outer summation in two ways: a parallel implementation which unstacks the
relevant tensors and computes matrix-vector products in parallel, and a map-
reduce variant which accumulates intermediate values. Both are written entirely
in the high-level python interface to Tensorflow 2.0.

We compare with the work of Groh et al.[21] who provide benchmarks for
their own tensorflow implementation, as well as a custom CUDA implementation
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that only supports kNN. Our implementations are written entirely in the high-
level Tensorflow 2 python interface and can handle arbitrary neighborhoods.
Computation time and memory requirements are shown in Table 2. Values do
not include neighborhood calculations. Despite our implementation being more
flexible, our forward pass is almost an order of magnitude faster, and our full
training pass is sped up more than 60-fold. Our implementation does require
more memory. We also see significant improvements by using Tensorflow’s ac-
celerated linear algebra just-in-time (JIT) compilation module, particularly in
terms of memory usage.

Time (ms) GPU Mem (Mb)

Forward Backward Forward Backward

TF [21] 1829 2738 34G 63G
Custom [21] 24.0 265.0 8.4 8.7

(NF )Θ 2.9 5.1 57.3 105.0
(NF )Θ-JIT 2.7 5.0 41.0 41.0
N(FΘ) 2.9 4.3 56.0 56.2
N(FΘ)-JIT 2.7 4.1 40.0 49.0

Table 2: Equation 8 implementations vs. FlexConv benchmarks on an Nvidia
GTX-1080Ti. M = 4, P = Q = 64, S = S′ = 4096, 9 neighbors and batch size of
8. Backward passes compute gradients w.r.t. learned parameters and input fea-
tures (F and Θ). JIT rows correspond to just-in-time compiled implementations
excluding compile time.

Next we look at training times and capacity of our model on the ModelNet40
classification task using 1024 input points. Table 3 shows performance at various
possible batch sizes and training times for our standard model compared to
various other methods. For fair comparison, we do not use XLA compilation.

Clearly our model runs significantly faster than those we compare to. Just as
clear is the fact that our models which compute neighborhood information online
are CPU-constrained. This preprocessing is not particularly slow – a modest 8-
core desktop is capable of completing the 7 neighborhood searches and 3 rejection
samplings associated with each example on our large model at over 800 Hz, which
results in training that is still an order of magnitude faster than the closest
competitor – but in the context of an accelerator-based training loop that runs
at up to 3000 Hz this is a major bottleneck.

One might expect such a speed-up to come at the cost of inference accuracy.
Top-1 accuracy is given in Table 4. We observe a slight drop in performance
compared to recent state-of-the-art methods, though our large model is still
competitive with well established methods like Pointnet++. Our small model
performs distinctly worse, though still respectably.
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Model Batch Size
Epoch time (s)

Online Offline

SpiderCNN [20] 24 196 -

Pointnet++ [15]
32 56 -
64 56 -

PointCNN [19]
32 35 -
64 33 -

128 33 -

Ours (large)

32 12.9 6.80
64 11.8 5.10

128 11.2 4.13
1024 12.4 3.60
4096 11.5 3.35

Ours (small)

32 12.0 4.35
64 11.4 2.83

128 11.2 2.06
1024 11.4 1.38
4096 11.5 1.41
9840 13.0 1.39

Table 3: Time to train 1 epoch of Mod-
elNet40 classification on an Nvidia GTX-
1080Ti. Online/offline refers to preprocess-
ing.

Model Reported/Best Mean

Ours (small) 88.77 87.94
Pointnet [13] 89.20 88.65
KCNet [18] 91.00 89.62
DeepSets [14] 90.30 89.71
Pointnet++ [15] 90.70 90.14
Ours (large) 91.08 90.34
DGCNN [17] 92.20 91.55
PointCNN [19] 92.20 91.82
SO-Net [16] 93.40 92.65

Table 4: Top-1 instance accuracy on
ModelNet40, sorted by mean of 10
runs according to Koguciuk et al.[44],
for our large model with batch size
128. Reported/Best are those values
reported by other papers, and the best
of 10 runs for our models.

5.2 Event Camera Streams

Table 5 shows results for our method on the selected classification tasks. We
see minor improvements over current state-of-the art methods on the straight-
forward MNIST variants, though acknowledge the questionable value of such
minor improvements on datasets like these. We see a modest improvement on
CIFAR-10, though perform relatively poorly on N-Caltech101. Our ASL-DVS
model significantly out-performs the current state-of-the-art, with a 44% reduc-
tion in error rate. We attribute the greater success on this last dataset compared
to others to the significantly larger number of examples available during training
(∼80,000 vs ∼10,000).

Model N-MNIST MNIST-DVS CIFAR-DVS NCaltech101 ASL-DVS

HATS [26] 99.1 98.4 52.4 64.2 -
RG-CNN [12] 99.0 98.6 54.0 65.7 90.1

Ours 99.2 99.1 56.6 63.0 94.6

Table 5: Top-1 classification accuracy (%) for event stream classification tasks.
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