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Abstract. With the dominance of keyframe-based SLAM in the field
of robotics, the relative frame poses between keyframes have typically
been sacrificed for a faster algorithm to achieve online applications. How-
ever, those approaches can become insufficient for applications that may
require refined poses of all frames, not just keyframes which are rela-
tively sparse compared to all input frames. This paper proposes a novel
algorithm to correct the relative frames between keyframes after the
keyframes have been updated by a back-end optimization process. The
correction model is derived using conservation of the measurement con-
straint between landmarks and the robot pose. The proposed algorithm
is designed to be easily integrable to existing keyframe-based SLAM
systems while exhibiting robust and accurate performance superior to
existing interpolation methods. The algorithm also requires low compu-
tational resources and hence has a minimal burden on the whole SLAM
pipeline. We provide the evaluation of the proposed pose correction algo-
rithm in comparison to existing interpolation methods in various vector
spaces, and our method has demonstrated excellent accuracy in both
KITTI and EuRoC datasets.

1 Introduction

Simultaneous localization and mapping (SLAM) has been the focus of numerous
research in the field of robotics. SLAM involves estimating the ego-motion of a
mobile robot while simultaneously reconstructing the surrounding environment.
To this end, visual sensors and laser scanners have been commonly used to per-
ceive the surrounding environment. Vision sensors, in particular, have been most
widely adopted due to the wealth of visual information that they can provide
at a comparatively low price point. Hence, a vast portion of the SLAM research
has been conducted with vision sensors such as monocular, stereo cameras, or
RGB-D sensors [1-4].

Operating back-end refinement systems such as pose graph optimization
(PGO) or bundle adjustment (BA) on all frames can become taxing especially in
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large-scale environments. To reduce computation time while preserving perfor-
mance, most modern visual SLAM algorithms adopt keyframe-based approaches
which refine only keyframes that contain useful information for SLAM. In other
words, keyframe-based SLAM approaches effectively filters the input measure-
ments so that only those that contain significant changes are used in the refine-
ment process, resulting in shorter computation time and local minima avoid-
ance. They allow for the robust estimation of poses and reconstruction of the
surrounding map in real-time.

While keyframe-based SLAM methods have dominated SLAM research, they
refine the keyframe poses and do not propagate the corrections to the relative
frames between keyframes. Because such systems can only make use of selected
keyframes that are relatively sparse compared to the raw input measurements,
they are not suitable for applications that require corrected poses at high fre-
quency. In particular, multi-robot systems that utilize inter-robot relative poses
to integrate multiple observations from team robots require a high robot pose
density that existing keyframe-based SLAM methods cannot provide. Therefore,
an algorithm that can correct poses of relative frames each time the keyframe
poses are updated by the back-end of keyframe-based SLAM is required.

Some attempts to correct the relative poses between keyframes have been
made in past works using hierarchical PGO. Hierarchical PGO involves dividing
the full pose graph into subgraphs that contain representative keyframes called
keynodes. The back-end refinement process is conducted only on these selected
keynodes and propagated down the hierarchy. The propagation is usually done
through either optimization methods or non-optimization methods such as in-
terpolation. Optimization-based correction methods [5—7] exhibit high accuracy
but requires long computation time, making them difficult to operate in real-
time. Non-optimization methods [8-10], on the other hand, either treat each
subgraph as a rigid body or convert the 3D pose into a vector space and interpo-
lates within the given space, allowing for extremely fast operation. However, in
such methods, the interpolation factor can become numerically sensitive when
the change in a given axis is small. Furthermore, because the method does not
consider the measurement constraints between poses, the correction can poten-
tially break these constraints. These two methods will be further discussed in
Section 2.

This paper proposes a pose correction algorithm for relative frames between
keyframes. The algorithm requires just the estimated pose output from a SLAM
system to operate, meaning that it can be easily integrated into any existing
keyframe-based SLAM methods. The generated pose correction also preserves
measurement constraints such as image coordinates of visual features without
using optimization, enabling fast computation. The proposed algorithm is com-
pared to existing interpolation-based correction methods in various vector spaces
and demonstrates superior accuracy and computation time.

The remainder of this paper is structured as follows. The next section reviews
related works regarding pose correction and the problem setup and notation are
provided in Section 3. Section 4 describes the proposed pose correction algorithm
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using measurement constraints. The evaluation results using KITTI and EuRoC
datasets are presented in Section 5, and the conclusion of this paper is provided
in Section 6.

2 Related Work

This section of the paper discusses the existing work regarding hierarchical PGO
and the interpolation in various vector spaces. As mentioned above, distribution
of the corrections down to the lower levels of the hierarchy in previous attempts
have either used optimization methods or non-optimization methods. This paper
will henceforth refer to the former as non-naive methods and the latter as naive
methods.

The non-naive approaches to hierarchical PGO involve propagating the re-
finements of the keyframes to the relative frames through optimization meth-
ods. [5,6] proposed separating the full pose graph into sequentially generated
and conditionally independent subgraphs. Pose corrections can be conducted by
propagating the error from the most recent subgraph. [7] followed a similar ap-
proach but optimized each subgraph independently. While optimizing each hier-
archical subgraph is guaranteed to yield accurate results, the procedure requires
high computation times and is not suitable for large-scale SLAM applications.
Furthermore, because the implementation requires fundamental changes in the
SLAM algorithm itself, it is very difficult to integrate such methods into exist-
ing keyframe-based SLAM algorithms without affecting the functionality of the
algorithms.

The naive methods simplify the constraints between relative frames to prop-
agate the corrections. Interpolation is the most common example of such sim-
plification methods. However, due to the nature of interpolations, if the rate
of change between poses are small, the interpolation factor can become numer-
ically sensitive, resulting in extreme values. Furthermore, the accuracy of the
methods also suffers, as the interpolation is only concerned with the keyframe
poses and does not consider the measurement constraints present in the pose
graph. There have been past attempts to develop alternative methods to inter-
polation. [8] proposed an algorithm that utilized the quaternion spherical linear
interpolation (slerp) algorithm developed in [11] to distribute the pose correc-
tion to each frame along the traveled path. However, the method requires the
covariance of the edges between nodes and also assumes spherical covariances to
compute the interpolation factor. Computing the covariance accurately is very
difficult and further assumption of spherical covariance that is not guaranteed
SLAM applications can further exacerbate the error. [9] proposed a method
where the correction was propagated to the subgraph by treating each subgraph
as a rigid body. This simplification assumes that each relative frame receives the
same correction and also ignores the measurement constraints between relative
frames. More recently, [10] proposed a LiDAR-based online mapping algorithm
that treats individual scans as subgraphs and propagates the corrections between
scan poses using B-spline interpolation. However, this method discards the mea-
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Fig. 1: The refinement process for keyframes and relative frames. The pose cor-
rection algorithm for relative frames is triggered each time keyframes are updated
by back-end of SLAM.

surement constraints of relative frames between keyframes and does not hold
true if the path generated by the robot does not follow a B-spline trajectory.

The interpolation and linearization of various vector spaces that were used
in the naive methods have also been studied extensively [12-15]. Pose correc-
tions require the frame poses to be expressed in SE(3). While the translation
component of the SE(3) matrix can be readily interpolated, interpolating the ro-
tation matrix may break the SO(3) constraint that defines the rotation matrix.
Hence, the rotation matrix must be converted to a vector space in the form of
Euler angles, quaternions, so(3), or rotation axis and angle. In this paper, the
numerical robustness of these manifolds was tested for their application in the
interpolation of robot poses.

3 Problem Statement

As mentioned previously, most high-performance SLAM algorithms only refine
the keyframe poses, which may be too sparse for certain applications. Hence,
this paper proposes a fast and easily integrable pose correction algorithm for
relative frames between keyframes. The previous approaches have typically used
interpolation-based correction methods to achieve fast computation for online
robot applications. However, such methods are inherently limited by their nu-
merical sensitivity under singular cases involving small changes in a select axis,
and may potentially break measurement constraints even under non-singular
conditions. The proposed algorithm is not only capable of preserving measure-



Pose Correction Algorithm 5

ment constraints under most circumstances, but can also robustly correct poses
under singular conditions.

Fig. 1 depicts the correction of relative frames between keyframes when the
keyframes have been updated by a refinement process such as PGO or BA. {fi}
and {f}} are the coordinates of the i*? keyframe and the j*" relative frame con-
nected to the i*? keyframe, respectively. The updated keyframe and the corrected
relative frame are denoted as {f3"} and { f;*} Ty, s, is the SE(3) transforma-
tion from the {f1} coordinate frame to the {f2} coordinate frame. The aim is
to approximate the relative frame correction transformation Tf;- i given the
keyframe update transformations Tf ifir and T gL

Interpolation approaches are typically used to correct the relative poses be-
tween keyframes. However, element-wise interpolation of a matrix in the SE(3)
may break the rotation matrix SO(3) constraints (det(R) = +1 and RTR = I).
To prevent this, the SE(3) matrix should first be converted into a vector. The
general equation for the interpolation of an SE(3) matrix after the conversion to
a vector is as follows:

fof;
Lyigatt

(1)

Trgar =g @ e — Bppe)

where x4, 1, = f(Th 1), f:SE@B) — R™! and n is the dimension of the
transformed vector space. The above equation was used to interpolate poses in a
variety of vector spaces and the results of the interpolation served as the baseline
for comparison with the proposed algorithm. The spaces formed by XYZ and
the translation portion of the se(3) were used to represent translation while
Euler angle, quaternion, and so(3) spaces were used to express rotations. As
mentioned above, if even just one component of x fifit is small, the resulting
interpolation factor becomes numerically sensitive. In particular, if a front-view
camera is mounted on a mobile robot or a vehicle, the motion in the z-axis which
is the direction of the camera light rays becomes dominant, meaning that the
changes in the x and y-axis will be extremely small. Such conditions have a high
possibility of resulting in the aforementioned singular case.

4 Pose Correction Algorithm

In this section, the proposed pose correction algorithm is described in detail. The
algorithm can be easily integrated into existing keyframe-based SLAM methods
as shown in the Fig. 2. Typical SLAM front-end systems estimate the rela-
tive pose between the newly acquired image and the most relevant keyframe.
Back-end systems select keyframes from the input images and perform graph-
based optimization with the keyframes as nodes to improve the keyframe poses.
Measurement constraints have been typically used to formulate the likelihood
function in optimization methods, but not used in non-optimization methods
for faster computation. The aim of the proposed algorithm was to preserve the
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Fig. 2: The overall framework of a keyframe-based SLAM system with the added
the pose correction module.

measurement constraints for robustness and accuracy similar to that of the op-
timization methods, but with a fast computation time similar to that of the
non-optimization methods.

The algorithm is triggered when the keyframes are updated and corrects the
relative frames connected to the updated keyframes. KF,, in Fig. 2 represents
the index of the keyframe refined by the back-end and RF; is the relative frame
index connected to the i*" keyframe. The correction Tf;; fit of the relative frames

{1} positioned between the i** and i + 1*" keyframes can be computed using
the keyframe update information Tf(g‘fg* and Tf3+1f3+1»«.

4.1 Measurement Constraints

The correction model will now be derived using the measurement constraints.
To simplify the notation, we will omit f from the frame notations { f;} and show
{i;} when the frame notations are used as subscripts or superscripts. Equations
(2) and (3) show the projection equation of {f¢} and {fi*} respectively.

{fs}: P =""NK 0wy (2)
U5} R = KT g (3)
10 X 10 wu
where P, = Y|, 0.4, = v
Z]y L,

Here, Py, “%j, and ), are the 3-D position, the homogeneous pixel coordi-
nates, and depth of the k' feature with respect to {f¢}, respectively. K is the
intrinsic parameter matrix, and the position of the updated landmark *° Py can
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be expressed using (2) and (3) as follows:

0 P = Rigeig (P + 90P;) + tiges,
~ M o p, ( - iog, — io*ak> (4)
ZQ)\k :

where Rj,+;, and t;,-;, are the rotation and translation from {f3"} to {f¢},
respectively. 6 P, is the variation of the k" landmark position by the refinement
process of SLAM. (4) was derived using the condition that the measurement of
the landmark remains constant regardless of the pose corrections. The projection
equation of {f7} and {f]’*} with respect to the updated landmark " P} shown

in (4) can now be expressed as follows:

o), . iy prlis -
{fi} = I Rijig™ Py +tijig = Y MK 0, (5)
k
{sz*} :Rij*io*io*P]: +tij*i0* = 7:j*/\Zl(ilij*ﬂk (6)
Ce i"*)\*ij)\k 1 — LY
oopr= # Ry, K i gy, +- T)\: Ligi, (7)
i RiO*ij*Kflij*ak + tignize - (8)

Using the fact that the measurement %, observed in each image remains con-
stant regardless of the update, (9) can be derived from (7) and (8).

() )\;;ij/\kR R AN io X 0 9
Toagn T ~ Ry ) 5K @ by — b =0 (9)

The depth value of each feature increases as the translational difference be-
tween the keyframes in which the features were observed increases. Using this
characteristic and assuming that the translation ratio and the depth ratio are
equal, the following condition is derived:

- 2 . )
oA Mgl A
g 'Lo)\k ||2 ’ ij*)\zig)\k
2

~ (10)
[tio(i41),

Applying the (10) to (9) yields an identical equation (11) for (" \fK 1% ay).
For the identical equation to hold for all measurements, the solution must be
expressed as in (12).

(Rigi, = Rigeiys) 7 MK g + s tigi, — tigeiye = 0 (11)
Rigvij« = Rigijy  Tigrijx = Si Ligiy - (12)

(12) was derived using the measurement constraint between the i*® keyframe
and {f;} Applying the same procedure to the i + 1*" keyframe yields (13).

R(i+1)o*ij* = R(i+1)oij’ t(iJFl)o*ij* =Si t(iJFl)oij . (13)
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4.2 Fusion with Two Constraints

By fusing the conditions (12) and (13) derived previously, Tj,;,« can now be
computed. The gap between the solutions to the aforementioned conditions can
be expressed as follows:

KF, T KFit1
OR = Rii e Rig=(i41)," Biyn) i, (14)
T
= Rigi;~ Rigr(i+1)," Bit1),i;
KF;
Ot = tipei e+ Rijrigrtios (i41)," + Rijn (41,7

’i[)*’LJ

KFi
(i+1)0*ij*

= Ri;=ig~ (tig=(i1),* — Si(tini; — Rig=(i41)," t(i+1)i0))

where ng f;'j* and tfg i . are the corrected relative rotation and translation com-

-
puted from (12), and Rij%“ and tfjf;]“ are the correction terms computed from
(13). The 6R and 6t terms in (14) are expressed with respect to {f;*}, which is
estimated under the conditions given in (12). To compensate for the gap, fusion
as expressed in (16) is performed to estimate the corrected relative frame.

Riyei» = R .- SLERP (OR, of) (15)
tigwiy = thJ + LERP (Ry,-4,-0t, o) (16)

where SLERP(-) and LERP(-) are spherical linear interpolation and linear in-
terpolation functions, respectively. R is converted to a quaternion space to be
utilized in the SLERP function. aé is the interpolation factor which should re-
flect the reliability of conditions given by (12) and (13). Since the number of
reliable edges increases as the distance between frames decreases due to the in-

crease in the number of shared features, the ratio of the distance from { f;} to

{4} and the distance from {f;} to {f&*1) was used as the interpolation factor
in this paper.

5 Experimental Result

This section provides the results of the proposed pose correction algorithm in-
tegrated with ORB-SLAM2 [1] which is one of the most popular keyframe-
based SLAM. As mentioned above, the existing interpolation-based methods
were tested in various vector spaces to function as a baseline for comparison.
The interpolations for translation were done in XYZ and the translation com-
ponent v of the se(3) spaces, while the rotation components were interpolated
in Euler angles, quaternion, and so(3) spaces. The stereo images of KITTT [16]
and EuRoC [17] benchmarks datasets were used for analysis. ORB-SLAM?2 was
used to generate the poses of frames, though any appropriate keyframe-based
SLAM can be applied.

There are two types of refinements that occur in the back-end of SLAM: local
BA and global BA. Local BA occurs when a new keyframe is added and refines
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only keyframes that have a strong connection to the newly added keyframe.
Global BA occurs when a loop is detected and refines all keyframes that are in
the map. The proposed pose correction module is triggered whenever local or
global BA takes place and uses the updated keyframes and their relative frames
as inputs. We analyze the accuracy of the corrected relative frame poses and
the computation time required to compute the correction. However, because
the keyframe poses computed by the SLAM system inherently contain error,
the difference between the corrected relative frames poses and the ground truth
(GT) may not purely reflect the correction performance. Therefore, an additional
post processing step was introduced to the SLAM system to directly evaluate
the correction performance of the algorithm. The poses of keyframes that lie
on the estimated trajectory by ORB-SLAM2 with the correction module was
additionally updated to their GT poses so that the keyframes now lie on the
GT. The proposed algorithm was used to correct the relative frames so that
the final output of the SLAM is corrected to the GT. The difference between
these final corrected relative frame poses and the GT poses was used as the error
metric for correction. Tests were performed on a laptop (Y520-15IKBN, 16GB
RAM with Intel i7-7700HQ @ 2.80GHz x 4cores).

5.1 KITTI Dataset

The KITTI dataset [16] is generated from a stereo camera mounted on top of a
vehicle, where the yaw motion and the camera z-axis movement are dominant
with minimal motion along other axis due to the characteristics of a vehicle
platform.

The ORB-SLAM2 and correction algorithm results obtained from the se-
quences (00-10) of the KITTI dataset are summarized in table 1 and 2 respec-
tively. No-correction in table 2 refers to the results obtained from the simple con-
catenation of relative frames and keyframes without correction. The proposed
algorithm outperformed all the baseline interpolation methods in all sequences
except for sequence 01. As can be seen in table 1, almost all image frames became
keyframes using ORB-SLAM?2 in sequence 01, meaning that the correction mod-
ule had a minimal effect. For translation, the proposed algorithm nearly doubled
the mean accuracy of the baseline method in sequences 00, 02, 03, 07 and 08.
Furthermore, the algorithm yielded a lower standard deviation when compared
to the baseline methods. Since standard deviation indicates the robustness of
the system in a variety of situations, it can be concluded that the proposed algo-
rithm is not numerically sensitive compared to the baseline methods. Rotation,
on the other hand, does not exhibit significant differences in accuracy between
methods. This is because the KITTI dataset was acquired using a ground vehicle,
resulting in very little rotation aside from yaw. There are, however, significant
differences in the standard deviation for rotation, meaning that singular cases
occur in certain areas of the sequences, resulting in significant error. In some
sequences, especially for rotations, the baseline methods yielded worse results
than the no-correction method. Because rotation has such a small error even
prior to correction, the numerical error has a significant effect on the results.
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The resultant trajectory from each translation space for the select segments
A and B in sequence 00 is shown in figure 3. Segment A visualizes the varying
performance of the baseline methods, as both the XYZ and v interpolations
stray wildly from the GT poses, even more so than the no-correction method.
The proposed method, however, was able to remain consistent with the GT
poses throughout the entire segment. Segment B shows the singular case in v,
resulting in a huge deviation away from the GT. It is worth noting that the
singularity occurred only in the v space interpolation and not the XYZ space
interpolation. This is a clear depiction of the numerical sensitivity of the existing
baseline methods, as such deviations can result in large error that may be even
worse than the cases without correction at all. The proposed algorithm, however,
performed robustly in both cases, demonstrating the improved accuracy and
numerical robustness the algorithm has over the baseline methods.

Table 1: The results of ORB-SLAM?2 in KITTI dataset. The number of
keyframes and all frames and loop closures are indicated as shown.

KITTI 00 01 02 03 04 05 06 07 08 09 10
# of Keyframes 1355 1047 1742 226 155 717 473 251 1199 588 321
# of All Frames 4541 1101 4661 801 271 2701 1101 1101 4071 1504 1201
Loop O X O X X O O (0] X X X

Table 2: The summary of results for the KITTI dataset. The blue indicates the
lowest error while red indicates the highest error. Each cell contains the mean
+ standard deviation, and (median). v represents the translation component of
se(3) space.

Translation (cm) Rotation (x10~"deg)
Seq. No-Correction XYZ v Proposed No-Correction — Euler Quat s0(3) Proposed
00 2.034£1.76 1.91943.91 2.949+9.84 0.947£0.79  0.61840.59 0.891+£1.37 0.95441.60 0.955+1.60 0.473+0.35
(1.425) (0.984) (1.037) (0.698) (0.445) (0.472) (0.473) (0.473) (0.378)
01 1.874+0.52  0.88540.46 1.0834+0.84 0.915+0.46  0.190£0.08 0.19040.08 0.191+0.09 0.191£0.09 0.18840.08
(1.890) (0.788) (0.876) (0.833) (0.188) (0.188) (0.189) (0.189) (0.188)
02 1.7374£1.13  1.535+1.90 1.786+2.37 0.916+£0.61  0.4424+0.31 0.561+£0.56 0.59140.67 0.59240.67 0.392+0.25
(1.458) (0.993) (1.05) (0.762) (0.362) (0.377) (0.382) (0.383) (0.327)
03 1.45540.87 1.610+2.07 1.692+2.10 0.775£0.47  0.47840.23 0.594+0.53 0.5584-0.40 0.55940.40 0.456+0.21
(1.228) (0.985) (1.002) (0.665) (0.403) (0.417) (0.417) (0.417) (0.393)
04 1.04540.50 0.798+0.50 0.8184+0.52 0.726+0.42  0.267+0.15 0.346-0.32 0.346+0.32 0.346+0.32 0.254+0.14
(1.021) (0.701)  (0.731)  (0.658) (0.023) (0.242)  (0.240)  (0.239)  (0.225)
05 1.495+1.32  1.00840.83 1.166+1.31 0.849+0.63  0.469+0.34 0.67240.85 0.746+1.14 0.746+1.14 0.4054-0.28
.074 . .75 .65 375 . .42: 0.422 R
o 1.074 0.747 0.757 0.656 0.375 0.420 0.422 0.422 0.328
06 1.204£1.06  0.81340.81 0.81440.80 0.639+0.43  0.33940.25 0.71141.78 0.658+1.47 0.723+£1.97 0.283+0.17
(0.855) (0.591) (0.585) (0.509) (0.258) (0.292) (0.292) (0.295) (0.248)
o7 2.034£2.17 2.6484+4.74 2.784+5.02 1.372+£2.12  0.5374+0.42 0.717+1.03 0.67940.84 0.679+0.84 0.418+0.28
.26 .875 0.886 B . 428 .42¢ . .3
1.267 0.875 6 0.701 0.428 0.423 0.423 0.423 0.342
08 2.1534+2.01 1.464+1.72 1.571+£1.89 0.883+0.62  0.481+0.35 0.658+0.74 0.759+1.13 0.76241.14 0.3944+0.26
(1.49) (0.925) (0.957) (0.714) (0.394) (0.420) (0.425) (0.425) (0.335)
09 1.36240.82  0.997£0.70 1.179+1.12 0.868+0.52  0.415+0.27 0.499£0.44 0.527+0.53 0.527+0.53 0.381£0.24
) (1.167) (0.819) (0.875) (0.755) (0.367) (0.378) (0.382) (0.383) (0.334)
10 1.48441.22 1.07840.98 1.443+1.77 0.806+£0.62  0.502+0.32 0.71940.71 0.730+0.76 0.730-£0.76 0.438+0.28

(1.108) (0.788)  (0.854)  (0.626) (0.447) (0.536)  (0.536)  (0.537)  (0.386)
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Fig. 3: The translational results of the correction algorithm for two select seg-
ments in sequence 00 of KITTI.

5.2 EuRoC Dataset

The EuRoC dataset [17] is generated from a stereo camera mounted on a micro
aerial vehicle (MAV) and contains a more diverse range of motion compared
to the KITTI data. The MAV was flown in an industrial environment (machine
room) and two different rooms with a motion capture system in place. There are a
total of 11 sequences, with each sequence classified as easy, medium, and difficult
depending on the motion of the MAV and the room environment. Since ORB-
SLAM?2 does not provide sufficient results for V2_03_difficult due to significant
motion blur in some of the frames, the particular sequences were not used in
this paper.

The results of the ORB-SLAM2 and correction algorithm obtained from the
remaining ten sequences are described in tables 3 and 4, respectively. The Eu-
RoC dataset is generated in a much smaller environment than the KITTT dataset,
resulting in sparser keyframes. Furthermore, because the motion of a MAV is er-
ratic compared to a ground vehicle, the pose error from SLAM is more significant
than the KITTI dataset. Hence, the need for a correction algorithm is more ap-
parent. The proposed algorithm demonstrates significantly improved results for
both translation and rotation and the improvements are clearer than the KITTI
dataset. In sequence V102, for example, the standard deviation of the algorithm
was almost four times lower than that of the second best method for translation
(no-correction) and five times lower than that of the second best method for
rotation (no-correction), demonstrating its robustness. The mean and median
values have also been halved, showcasing the accuracy of the algorithm.

The corrected trajectory for select segments of sequence V102 is shown in fig-
ure 4. Unlike the KITTT dataset, the no-correction method becomes meaningless,
as the concatenation of relative frames and keyframes results in discontinuous
trajectories as shown in both segments A and B. Furthermore, in both seg-
ments, the baseline methods failed to remain consistent with the GT, showing
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significant deviations in particular around the second keyframe in segment A. In
segment B, the numerical sensitivity of the v space interpolation method causes
the corrected poses to deviate significantly from the GT trajectory. The XYZ
space interpolation method is also unable to achieve the desired correction and
results in significant clustering around the midpoint between the two keyframes.
The proposed method, on the other hand, was able to remain close to the GT
trajectory with no singularities. Hence, even under erratic motion that causes
the baseline methods to fail, the proposed algorithm was still able to generate
accurate and robust corrections.

Table 3: The number of keyframes and all frames within the EuRoC dataset.
The sequences with loop closures are indicated.

Machine Hall

Vicon Room

EuRoC 01 02 03 04 05 101 102 103 201 202
# of Keyframes 483 431 436 302 353 109 151 208 216 271
# of All Frames 3638 2999 2662 1976 2221 2871 1670 2093 2148 2309
Loop X X X X O X X (0] X X

Table 4: The summary of results for the EuRoC dataset. The conventions are
same as in table 2.

Translation (cm)

Rotation (deg)

Seq. No-Correction XYZ v Proposed  No-Correction Euler Quat s0(3) Proposed

MHO1 8.1304+7.53  4.38549.58 5.026+£10.84 1.937£2.28  5.90447.69  4.01445.14  3.827+4.68 3.840+4.70 3.21444.78
(4.817) (1.076) (1.219) (1.076) (2.095) (1.453) (1.529) (1.532) (1.110)

MHO02 7.5924+7.90  3.0284+5.03  2.9474+4.87 1.97442.75  2.21242.70  2.456+4.20 2.6324+4.73  2.654+4.79 1.67242.17
(4.783) (0.913) (0.977) (0.766) (1.174) (0.724) (0.706) (0.706) (0.759)

MHO03 22.693424.15 11.755416.50 15.135424.25 5.047+6.31 4.455+5.20  3.687£5.12  4.028+6.64 4.247£7.55 3.236+3.79
(15.429) (4.596) (5.254) (2.244) (2.852) (1.502) (1.479) (1.496) (1.374)

MHO4 15.201£15.92 6.229+10.01 6.427+£9.93 2.994+4.88  2.605+2.81 2.3014+3.64  2.239+3.53  2.221+£3.49 1.260+1.34
(10.145) (1.260) (1.468) (0.913) (1.669) (0.747) (0.735) (0.735) (0.772)

MHO5 13.922415.47 5.928+15.00 4.84749.92 1.753+£2.47  2.3764+3.08 1.660+2.59 1.885+3.14 1.9514+3.34 0.969+1.27
(9.143) (1.374) (1.497) (0.686) (1.090) (0.598) (0.595) (0.597) (0.443)

V101 25.2564:27.57 23.6944:38.42 24.674432.08 9.682+13.43 17.598420.90 13.402£19.10 17.400£25.00 17.844425.86 5.73249.19
(16.314) (8.886) (10.596) (5.475) (9.802) (5.417) (6.230) (6.230) (3.008)

V102 28.821433.85 24.904445.06 26.179439.96 6.548+£9.65 22.823438.48 24.537+43.96 20.791439.68 20.973+39.66 4.84145.74
(15.540) (4.680) (7.292) (2.651) (9.039) (5.196) (5.332) (5.428) (2.475)

V103 17.162+19.95 15.725+30.72 24.530+£52.15 6.4104+9.15  13.051+13.45 10.6024+14.66 8.516+12.07 8.441+11.94 6.457+9.22
- (9.932) (3.755) (4.757) (2.027) (8.663) (4.226) (3.584) (3.560) (2.674)

V201 5.090+4.36  2.7714+4.57 2.617+3.53 1.488+1.72  3.78444.22  4.486+7.77 5.421+10.84 5.664+11.64 1.473+1.63
(3.877) (1.110) (1.217) (0.747) (2.375) (1.400) (1.401) (1.407) (0.878)

V202 11.916£11.99 11.250£22.75 10.486+20.86 4.308+5.47  8.69449.44 7.329+10.264 8.677+14.22 8.760+£14.42 3.5394+4.07
(8.187) (2.764) (2.841) (1.890) (5.637) (3.300) (3.062) (3.071) (1.883)
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Trajectory of V102 A Segment B Segment

=@= Ground Truth ~—ffl= v == No-correction
Proposed —— xvz

Fig. 4: The results of the corrected translation for two select segments in V102
of EuRoC.

5.3 Computation time

The proposed correction module triggers whenever keyframe refinement, or in
other words BA, occurs in keyframe-based SLAM. Table 5 shows the amount of
time required for the algorithm to compute a single correction in a MATLAB
environment. Although there were no significant differences between the pro-
posed and baseline algorithms for translation, the proposed algorithm required
the most time for rotation. This is because the SLERP algorithm used in the
proposed algorithm requires more computations than a simple interpolation ap-
proach. However, the difference in the median computation time is approximately
1 millisecond and the algorithm only runs when a new keyframe is selected or
when a loop is closed, meaning that the computation time required is insignif-
icant when compared to the entire SLAM pipeline. In addition, the standard
deviation of the computation time is large compared to the median value. This
is due to the presence of loops within certain sequences, which results in a global
BA. As discussed previously, global BA updates all keyframes, meaning that all
relative frames must be corrected. Hence, typical computation time for a typical
local BA is similar to that of the median value.

Table 5: The computation time taken for a single correction operation. The
conventions are same as in table 2.

Translation (msec) Rotation (msec)
XYZ v Proposed Euler Quat so(3) Proposed
0.34010.86 0.698+1.74 0.3564+0.89 1.781£4.66 2.20545.66 0.689+1.69 3.916£9.87
(0.170)  (0.313)  (0.135)  (0.702)  (0.944)  (0.318)  (1.441)
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6 Conclusion

In this paper, we have proposed a lightweight pose correction algorithm for
relative frames between keyframes that can be easily integrated into existing
keyframe-based SLAM systems. The algorithm was derived by preserving the
measurement constraints of two updated keyframes and utilizing the notion that
the measurement observed in both keyframes remains constant regardless of the
update. By doing so, the algorithm avoids singularities and numerical sensitivity
that existing interpolation-based methods suffer from. The algorithm was applied
to poses generated from the current state-of-the-art ORB-SLAM2 in KITTT and
EuRoC datasets. The algorithm demonstrated results superior to the existing
interpolation methods in both translation and rotation for all three datasets. The
computation time of the proposed algorithm was only a few milliseconds longer
than the baseline methods, which is negligible in the overall SLAM process.
Applications requiring visual information that may appear in non-keyframes can
benefit from the proposed algorithm with negligible cost to computation time.
Since the proposed module can be easily attached to existing keyframe-based
SLAM systems, the algorithm may be used in a wide range of fields.
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