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Abstract. Outperforming the previous state of the art, numerous deep
learning models have been proposed for image classification using the
ImageNet database. In most cases, significant improvement has been
made through novel data augmentation techniques and learning or hyper-
parameter tuning strategies, leading to the advent of approaches such as
FixNet, NoisyStudent, and Big Transfer. However, the latter examples,
while achieving the state-of-the-art performance on ImageNet, required a
significant amount of extra training data, namely the JFT-300M dataset.
Containing 300 million images, this dataset is 250 times larger in size
than ImageNet, but is publicly unavailable, while the model pre-trained
on it is. In this paper, we introduce a novel framework, Extra Represen-
tation (ExRep), to surmount the problem of not having access to the
JFT-300M data by instead using ImageNet and the publicly available
model that has been pre-trained on JFT-300M. We take a knowledge

distillation approach, treating the model pre-trained on JFT-300M as
well as on ImageNet as the teacher network and that pre-trained only
on ImageNet as the student network. Our proposed method is capable
of learning additional representation effects of the teacher model, bol-
stering the student model’s performance to a similar level to that of the
teacher model, achieving high classification performance even without
extra training data.

1 Introduction

The success of deep learning has been prominent in the image classification
domain [1,2,3,4], partly, yet most importantly, since the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) 2012 with the development of the Im-
ageNet database. Even after ILSVRC 2012, ImageNet has been the de facto
standard benchmark dataset for image classification. A sizeable body of re-
search [5,6] involved the ImageNet data for the evaluation of their methods in
terms of classification accuracy. However, the proposed methods typically relied
on convolutional neural networks (CNNs), facing inevitable limitations due to
their lack of generalization ability to the ImageNet validation set.
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Fig. 1. Top-1 accuracy on ImageNet. Dotted lines represent the performance without
extra training data, whereas solid lines represent that with extra training data. RA
denotes RandAugment.

Only a few approaches managed to overcome these limitations by self-
training with a noisy student (NoisyStudent) [7], fixing the train-test resolution
(FixNet) [8], or scaling up pre-training (Big Transfer or BiT) [9]. From Fig. 1, we
can observe that the latter (solid red, yellow, and blue lines in Fig. 1) approaches
achieve higher top-1 accuracy than the state-of-the-art architecture, EfficientNet
(black dotted line in Fig 1), using extra training data. NoisyStudent introduced a
novel training strategy, that is, self-training with a noisy student; FixNet proposed
an effective training method, using the train-test image resolution discrepancy;
BiT took a transfer learning approach similar to that used for language modeling,
whereby a model pre-trained on a large task is fine-tuned for use in a smaller task.
The achievement of high top-1 accuracy of these three methods is attributed
to multiple factors, such as a massive number of parameters (NoisyStudent
and FixNet each has about 480 million parameters), high resolution images
by 800×800 interpolations, AutoAugment [10] by policy gradient agents, and
optimized architectures by neural architecture search [11]. Most importantly,
however, all three methods exploit vast amounts of extra training data, which, as
shown in many cases, such as for CIFAR10 and CIFAR100 [12], and SVHN [13],
generally leads to higher classification performance.

Developed by Google for internal use, the JFT-300M dataset [14] consists of
300 million images labeled with 18,291 categories. While offering an impressive
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Fig. 2. Overview of our ExRep framework. The input distiller (red box) learns the
discrepancy between ImageNet and JFT-300M and the output is fed to the student
model. From the final feature maps of the teacher and student models are computed
three loss functions — the critic loss, the knowledge distillation (KD) loss, and the
contrastive representation distillation (CRD) loss.

amount of 1.2 million images, ImageNet pales in comparison to the JFT-300M
dataset, solely considering the number of samples. Nonetheless, the JFT-300M
dataset is not publicly available, making it nearly impossible to reproduce the
results yielded by approaches using this data. In this work, we aim at achieving a
classification performance that is on par with those of the aforementioned models,
which used the JFT-300M dataset as extra training data. In particular, based on
the hypothesis that the model pre-trained on both ImageNet and JFT-300M (the
“teacher model”) contains significantly more representational information than
that pre-trained only on ImageNet (the “student model”), as demonstrated by
the high classification performance of NoisyStudent [7], FixNet [8], and BiT [9],
we leverage the discrepancy (the “extra representation”) between the teacher
and student models; if the student model learns to replicate the representational
behavior of the teacher model, then the student model would be able to achieve
equally high classification performance on ImageNet as the teacher model.

As shown in Fig. 2, we apply knowledge distillation [14] to achieve our learning
objective, which is to transfer the knowledge acquired by the teacher model during
pre-training to the student model. We introduce an autoencoder-based input

distiller (red box in Fig. 2) to replicate the effect of training on JFT-300M by
feeding the reconstructed output of the input distiller to the student model,
which differs from many prior works that directly train the weights of the student
model. We also propose a novel adversarial training [15] technique to effectively
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train our input distiller, which acts as the generator in Generative Adversarial
Networks (GANs). We place the discriminator at the final feature layer of the
pre-trained models to distinguish whether the output is from the teacher model or
the student model. Finally, we compute the loss function by aggregating the critic
loss, the knowledge distillation (KD) loss [14], and the contrastive representation
distillation (CRD) [16] loss obtained by comparing the final feature maps of the
teacher and student models, as shown in Fig. 2. Consequently, we can effectively
represent the additional representation that would have been available had we
had direct access to the JFT-300M dataset itself. This training procedure thus
renders the model representation more informative, enabling us to achieve high
classification performance as if our training set also consisted of JFT-300M; we
refer to the integrated, end-to-end framework comprised of these components
as ExRep. We also demonstrate that ExRep can be used to train a randomly
initialized model without any extra training data and that ExRep is reproducible
even if models are trained using randomly initialized weights.

2 Related Work

Image classification. Since the advent of Xception [5], CNN architectures have
been deeper and broader: combining ResNet [4] and Xception, ResNeXt [17]
achieved high classification performance on ImageNet. Also, the use of optimal
CNN blocks, enabled by neural architecture search [11], led to popular models,
such as EfficientNet (B0 through B7 or L2, depending on the compound scal-
ing) [6]. Since most approaches exploiting extra training data use EfficientNet
as their backbone network, we also use EfficientNet to prepare our teacher and
student models for knowledge distillation. However, previous methods also incor-
porate other methods, such as novel learning strategies or data augmentation
techniques, to further improve the ImageNet classification performance beyond
the one that can be achieved by the sole use of EfficientNet as the backbone.
Image classification with extra training data. Many prior works utilize
large datasets for model representations by weakly supervised learning [18,19,9].
Joulin et al. [19] used the Flickr-100M dataset [20], although the performance
was lower than that of approaches using JFT-300M [14] or Instagram-1B [21],
which is an internal dataset for Facebook generated from Instagram images.
NoisyStudent [7], FixNet [8], and BiT [9] used the JFT-300M dataset, based on
weakly supervised learning. NoisyStudent applied self-training, where the teacher
model and a bigger and noisy student model guide each other by exchanging
feedback. FixNet employed different train-test resolutions, demonstrating that a
low train resolution with a fine-tuning of the model at the test resolution improves
the test classification accuracy. BiT combined well-organized components and
simple heuristic methods from prior works on image classification, using upstream
pre-training and downstream fine-tuning (a huge pre-trained model and a tiny
fine-tuned model), Group Normalization [22], and Weight Standardization [23].
BiT has BiT-S, BiT-M, and BiT-L as the model size grows. As of now, these
methods constitute state of the art for image classification on ImageNet (see
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Fig. 1), but are not reproducible using a randomly initialized training model due
to the limited access to the JFT-300M dataset; that is, only the model pre-trained
on JFT-300M is publicly available instead of the dataset itself.

Image classification without extra training data. Leveraging policy gradi-
ent agents for parameter search for image augmentation, AutoAugment (AA) [10]
achieved high classification accuracy on ImageNet without extra training data.
RandAugment (RA) [24], of which the performance is shown in Fig. 1, reduced
the search space of AA, achieving the highest accuracy with the EfficientNet-B8
backbone; however, RA is computationally expensive. Unlike other methods
using adversarial examples [25,26], which only focus on model robustness against
adversarial attacks, AdvProp [27] aims at improving model generalization as
well. They apply Auxiliary Batch Normalization (ABN) [28] for the training of a
novel classifier. Based on these prior work, we attempt to further improve the
classification performance without using any extra training data.

Knowledge distillation. Applied for the computation of our loss function
as well, knowledge distillation [14] (KD) has been proposed to alleviate the
computational cost resulting from training a large model or an ensemble of
models by transferring the acquired knowledge to a smaller model. The latter
student model is trained under the guidance of the large pre-trained teacher
model, such that the student model replicates the soft targets of the teacher
model. Yim et al. [29] proposed a weight-based knowledge distillation method,
where the flow of solution procedure (FSP) matrix, defined by the Gramian
matrix of adjacent layers in the same model, is learned during the training
phase. This approach is similar to ours in that an additional layer is added, but
ours, which is the input distiller, is added to the input images and not to the
intermediate layers [29].

Zagoruyko and Komodakis [30] proposed to transfer the neuron responses
during the process by which the student model learns to classify images; this work
additionally suggests an attention transfer method whereby the activation-based
and gradient-based spatial attention maps are matched. The attention-based
method has been further generalized by Huang and Wang [31], who proposed to
minimize the Maximum Mean Discrepancy (MMD) metric of the distributions
of neuron selectivity patterns between the teacher and student models. Heo et
al. [32] proposed an activation transfer loss that is minimized when the activation
boundaries formed by hidden neurons in the student model coincide with those
in the teacher model.

However, most prior works, attempting to minimize the Kullback–Leibler
(KL) divergence between the probabilistic outputs of the teacher and student
models, tend to overlook important structural knowledge of the teacher model.
Motivated by InfoNCE loss [33], Tian et al. [16] thus proposed CRD, which
formulates a contrastive learning objective by which the student model is trained
to capture additional information in the teacher model’s data representation,
achieving superior performance to those of previous approaches using attention-
based KD [30,31] and initialization-based KD [34,32]. Therefore, in our work, we
use an autoencoder-based input distiller, which learns the discrepancy between
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Fig. 3. Illustration of our training pipeline. CE, KD, and CRD denote Cross Entropy,
Knowledge Distillation, and Contrastive Representation Distribution, respectively. Mod-
els in the two black boxes at the lower right corner represent the teacher model (top)
and the student model (bottom). The CE, KD, and CRD losses are used to predict
1,000 labels, whereas the critic loss is used to predict whether the final feature map
is from the teacher model or the student model. Inside a blue box is a model with
trainable weights, while inside a black box is a model with frozen weights.

the teacher and student models by accounting for the loss computed by the
aggregation of the critic loss, the KD loss [14], and the CRD loss [16].

3 Our Method

As shown in Fig. 3, depicting the details of our proposed method ExRep, the
first step is to distill the knowledge of the teacher model for the student model.
Here, the input distiller is trained using the pre-trained models.
EfficientNet. We implemented EfficientNet-B1 NoisyStudent, our teacher model,
and EfficientNet-B1, our student model. Our choice of EfficientNet-B1 as the
backbone is attributed to its relatively small number of parameters (7.8M), which
enables efficient computation. The weights of the model pre-trained on JFT-300M
in PyTorch are available here3.

3.1 Input Distiller

Our input distiller, shown in Supp. Section C, is a ResNet-based autoencoder
comprised of simple residual blocks, each of which consists of convolution (Conv),
Instance Normalization (IN), and LeakyReLU layers. In ExRep, the input distiller
learns the representational discrepancy between the teacher and student models

3 https://github.com/rwightman/pytorch-image-models
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through knowledge distillation. More specifically, let xi denote the ith input
image and θg denote the weights of the input distiller f ; then, the output x̃i of f
with the same dimension as xi is defined as

x̃i = fθg (xi) + xi, (1)

which is then fed into the student model. The output of the input distiller x̃i

acts as a weight-based noisy sample equivalent to augmented data or adversarial
examples.
Role of the input distiller. Our proposed pipeline comprises three stages: 1)
knowledge distillation using the input distiller (Table 1), 2) application of the
input distiller to the training of a classifier lacking extra training data (Table ??

in Supp.), and 3) inference without using the input distiller (Table 1). Note that
in the first stage, we distill the knowledge acquired during training into the KD
and CRD losses for the input distiller to learn the representation effect of the
extra training data. Hence the role of the input distiller is not to enhance the
effect of knowledge distillation itself, but to capture and later reuse the extra
representation to assist the training of another classifier lacking extra training
data. Removing the input distiller, we would fail to effectively capture the extra
representation due to the insufficient number of trainable parameters.

3.2 Knowledge Distillation Loss

Using the KD function, proposed by Hinton et al. [14], the student model is
trained such that its output is similar to that of the teacher model by minimizing
the KL divergence. However, our approach differs in that we aim to imitate the
teacher model’s representation and produce the effect of using extra training
data without actually using it by adding trainable weights to the input images.

Let yi, ŷ
T
i , and ŷSi denote the ith label, the label predicted by the teacher

model, and that predicted by the student model, respectively. Then, the respective
outputs zT and zS of the teacher and student models following activation by a
softmax function σ are defined as

zT = σ

(

ŷTi
τ

)

, zS = σ

(

ŷSi
τ

)

, σ =
exp(ŷi)

Σj exp(ŷj)
, (2)

where τ is the temperature. Using the softmax outputs zT and zS in Eq. 2, we
first compute the KL divergence loss as follows:

LKL = τ2KL(zT , zS). (3)

We also compute the CE loss using ŷSi and yi as follows:

LCE = J(ŷSi , yi),

J(ŷi,yi) = −yilog(ŷi).
(4)

We then compute the final KD loss, which ought to be minimized during training,
as the sum of the KL divergence loss and the CE loss, each weighted by λKL and
λCE , respectively, as follows:

argmin
θT

LKD = λKLLKL + λCELCE . (5)
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3.3 Contrastive Representation Distillation Loss

The CRD loss [16] applies contrastive learning, whereby the model learns a closer
representation for the pairs of the same class (positive sample pairs) than for
those of different classes (negative sample pairs) in ImageNet.
Feature embedding. Let oT and oS denote the respective final feature maps
of fθT (the teacher model) and fθS (the student model) before the logit layer.
The embeddings of oT and oS through the linear transformation functions lθS
and lθT , e

T and eS are normalized using the L2 norm as follows:

eT = lθT (o
T
i )/Σi‖lθT (o

T
i )‖

2
2,

eS = lθS (o
S
i )/Σi‖lθS (o

S
i )‖

2
2,

oTi = fθT (x̃i), oSi = fθS (x̃i).

(6)

The linear transformation functions lθT and lθS in Eq. 6 are updated by iterative
gradient descent.
Negative sampling. Since the negative sample space is significantly larger than
the positive sample space (999 classes v. 1 class), negative sampling is used for an
efficient computation of negative sample pairs. A negative sample xj is defined
such that yi 6= yj . Tian et al. [16] demonstrated that negative sampling leads to
higher classification performance than when using intra-class sampling. We define
the score function s, the range of which falls within 0 and 1, based on negative
sampling for the discriminator, which estimates the class probability as follows:

s(eT , eS) =
exp(eT eS/τ)

exp(eT eS/τ) + (N/M)
, (7)

where N is the number of negative sample pairs and M is the dataset cardinality.
Contrastive loss. Let C denote a random variable equal to 0 when the input
pairs are positive samples and 1 when they are negative samples. Since s is a score
function, we treat the contrastive loss as a binary CE term, where the number
of negative samples N is multiplied by the positive sample variable (C = 0) to
offset the effect of larger samples among negative ones:

fCRD = Es(eT ,eS |c=1)[log s(e
T , eS)] +NEs(eT ,eS |c=0)[log(1− s(eT , eS)], (8)

where fCRD denotes the CRD function. The CRD loss is then defined as:

argmin
θT

min
o

LCRD = −λCRDfCRD, (9)

where λCRD is a balancing parameter. Our final CRD loss term accounting for
feature embedding and negative sampling in Eq. 9 is denoted by LCRD.

3.4 Adversarial Training Loss

Adversarial training was first introduced in GANs [15]. In our work, we use
adversarial training to provide extra representation to the student model. Similarly
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Algorithm 1 Adversarial training algorithm, where m is the minibatch size.

1: Require: a target data {(x1, y1), (x2, y2), ..., (xn, yn)}.
2: for each epoch do

3: Sample minibatch Xm, Ym = {(xi, yi), ..., (xm, ym)}
4: Input distiller X̃m = fθg (Xm)

5: oTm, oSm = fT

θT
(Xm), fS

θS
(X̃m)

6: Update the critic by ascending the stochastic gradient:
∇θd

1

m
Σm

i=1[logD(oTm) + log(1−D(oSm))].
7: Update the input distiller by descending the stochastic gradient:

∇θg

1

m
Σm

i=1 log(1−D(G(oTm))).
8: end for

to a discriminator, we introduce a critic that decides whether the final feature
map is from the teacher model or the student model, while the input distiller
plays the role of a generator. Let fθg and fθd , referred to as G and D, denote
the input distiller and the critic model, respectively. From Eq. 1 and Eq. 6, we
obtain the final feature map oS of the student model as follows:

V (D,G) = Ex∼P (x)[logD(oT )] + Ex̃∼P (x̃)[log(1−D(oS)],

oS = fθs(G(x) + x).
(10)

Then, the critic loss LCritic is defined as follows:

min
G

max
D

LCritic = λCriticV (D,G), (11)

where λCritic is a balancing parameter. The critic loss LCritic in Eq. 11 enables
the input distiller to generate a representation much closer to that of the teacher
model from that of the student model. Although our critic objective is similar
to the projected gradient descent (PGD) [26], where examples generated by G
attempt to deceive D through imitation of the teacher model’s representation,
ours differs in that our perturbation has trainable weights obtained from the
input distiller.

Final loss function. Our final loss function LFinal is computed as the sum of
LKD, LCRD, and LCritic as follows:

LFinal = LKD + LCRD + LCritic. (12)

Practical implementation of critic loss. The implementation of LCritic is
presented in Algorithm 1. Note that in practice, we update D and G sequentially:
D is updated first and then G is updated to deceive D. To perform this, we split
LFinal into LCritic and the remaining terms; D is updated separately, while G
is updated based on LKD and LCRD, while fixing the critic loss. Algorithm 2
shows the entire pipeline of ExRep, where stages 1 to 5 represent the procedures
depicted in Fig. 3.
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Algorithm 2 Pseudo code of ExRep, where n is the ImageNet size and (xi, yi)
is the ith input image and label.

Require: ImageNet data {(x1, y1), (x2, y2), ..., (xn, yn)}, the input distiller fθg , the
teacher model fθT , the student model fθS , the critic model fθCritic

and the weights
θCRD of LCRD.
1: Input Distiller: {(x1, y1), (x2, y2), ..., (xn, yn)} is fed to fθg , and generates
{x̃1, x̃2, ..., x̃m}.

Input: Data (xi, yi)
Output: Data (x̃i, yi)
Objective: x̃i = fθg (xi) + xi.

2: Teacher Model: The input images are fed to fθT .
Input: Data (xi, yi)
Output: Final feature map oT and prediction ŷT

i

3: Teacher Model: {(x1, y1), (x2, y2), ..., (xn, yn)} added to the output of fθg is fed to
fθS .

Input: Data (x̃i, yi)
Output: Final feature map oS and prediction ŷS

i

4: Knowledge Distillation: Using oT , oS , ŷT
i
, and ŷS

i
, compute LCE and LKL.

Input: Final feature maps oT , oS , and predictions ŷT
i
, ŷS

i

Output: LKD

Objective: argmin
θT

LKD = λKLLKL + λCELCE .
5: Adversarial Training: The critic model decides whether the final feature map is
from the teacher model or the the student model.

Input: Final features oT , oS

Output: LCritic

Objective: minG maxD LCritic = λCriticV (D,G).

3.5 Inference and Application

During training, the input distiller is also trained based on the CE, KD, CRD,
and Adv losses. During inference, the input distiller is not used; only the student
model is evaluated on the validation set of ImageNet. We can also apply ExRep to
other datasets, such as CIFAR10, to train a novel classifier in that dataset, using
the input distiller pre-trained during training. We refer to this phase as the
application stage, which is explained in Supp. Section A.

4 Experimental Results

In this section, we provide the details of our experiments, including the datasets,
the baseline and pre-trained models, and the results. Our training process is
presented in detail in Supp. Section D.

4.1 Datasets

ImageNet 2012. ImageNet [35] contains around 1.2 million images labeled with
1,000 categories. To standardize all images with different sizes, we resize them
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to 224×224 and 240×240 using bicubic interpolation in EfficientNet-B0 and
EfficientNet-B1, respectively. For efficient negative sampling, we use a memory
buffer as in [16]. The classification performance is evaluated on the ImageNet
validation set.

4.2 Baselines

EfficientNet. We conduct experiments on ImageNet with EfficientNet-B0 and
B1 as the backbone networks. With a small number of parameters, EfficientNet
achieved a performance comparable to those of ResNext [17] and NASNet [11].
We decide to use a small sized EfficientNet (B0 and B1) for efficient computation.
NoisyStudent. NoisyStudent used JFT-300M as extra training data for self-
training. We implement NoisyStudent (EfficientNet-B1 and B0) to evaluate the
performance on ImageNet, using the pre-trained models in PyTorch. The input
image size is 240×240 (B1) and 224×224 (B0), and random crops are applied
during the pre-training phase of NoisyStudent. We set the percentage of the
center crop to be 88.2% for B1 and 87.5% for B0.
FixNet. FixNet also used JFT-300M as extra training data. However, their
pre-trained weights in EfficientNet-B0 and B1 are not released. Therefore, we
refer to the performance results presented by Touvron et al. [8] for comparison.
AdvProp. AdvProp achieved high performance without using extra training
data by using adversarial examples to improve the classification performance
through self-supervised training. We set the input size and the percentage of the
center crop to be the same as those for NoisyStudent. Similarly, we use the L2
norm as in the original AdvProp [27] for our evaluation.

4.3 Pre-trained Models

We use NoisyStudent (EfficientNet-B0 and B1) as the teacher model, and
EffcientNet-B0 and B1 pre-trained only on ImageNet as the student model.
NoisyStudent is trained on samples of the extra training data through self-
training, using additional data augmentation. On the contrary, FixNet’s training
process is more complicated: the model is pre-trained on a smaller size of inputs
and fine-tuned on a larger size of inputs. Since our goal is to produce the effect
of using extra training data without actually using it, we chose NoisyStudent as
our teacher model.

4.4 Performance Evaluation

Top-1 accuracy and top-5 accuracy. We used top-1 and top-5 accuracy for
the evaluation of the classification performance. Top-1 accuracy measures how
the model correctly predicts the target label. Top-5 accuracy checks if the target
label is included in one of the top 5 predictions. We chose these two metrics to
examine how our model accurately selects the correct label, as well as how often
the model includes the correct label within the top 5 predictions.
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Table 1. Performance results. EfficientNet PyTorch represents the original Efficient-
Net model pre-trained on ImageNet without extra training data. All methods use
EfficientNet-B0 and EfficientNet-B1 as the backbone networks. Note that both NoisyS-
tudent and FixNet use extra training data (JFT-300M) during training on ImageNet,
whereas AdvProp, EfficientNet PyTorch, and ExRep only use the ImageNet training
data. The best results are highlighted in bold.

Method Extra Training Data Size Top-1 ACC Top-5 ACC

EfficientNet-B1 NoisyStudent JFT-300M 240 81.3% 95.7%
EfficientNet-B0 NoisyStudent JFT-300M 224 78.6% 94.3%

EfficientNet-B1 FixNet JFT-300M 240 82.6% 96.5%
EfficientNet-B0 FixNet JFT-300M 224 80.2% 95.4%

EfficientNet-B1 AdvProp - 240 79.2% 94.3%
EfficientNet-B0 AdvProp - 224 77.0% 93.2%

EfficientNet-B1 PyTorch - 240 78.8% 94.1%
EfficientNet-B0 PyTorch - 224 77.6% 93.5%

EfficientNet-B1 ExRep - 240 79.8% 94.5%
EfficientNet-B0 ExRep - 224 77.9% 93.6%

ExRep Performance. We present our performance results in Table 1, where
the same test dataset (ImageNet 2012 benchmark) is used. Note that we use
NoisyStudnet as the teacher model and EfficientNet PyTorch as the student
model. We also use EfficientNet-B0 and EfficientNet-B1 as the backbone networks
with input sizes 224×224 and 240×240, respectively. ExRep achieves 79.8%
top-1 accuracy and 94.5% top-5 accuracy for EfficientNet-B1, and 77.9% top-1
accuracy and 93.6% top-5 accuracy for EfficientNet-B0 without extra training
data, outperforming AdvProp.

EfficientNet PyTorch vs. ExRep. EfficientNet PyTorch is trained on Ima-
geNet with the model in the work of Tan and Le [6], which is pre-trained on
ImageNet without extra training data. We used EfficientNet PyTorch as the
student model of ExRep. As shown in Table 1, ExRep achieves 1.0% higher top-1
accuracy and 0.4% higher top-5 accuracy for EfficientNet-B1 and 0.3% higher
top-1 accuracy and 0.1% higher top-5 accuracy for EfficientNet-B0 compared to
those of EfficientNet PyTorch for both EfficientNet-B1 and B0. EfficientNet-B1
shows a higher performance increase compared to that of EfficientNet-B0, because
the teacher model (NoisyStudent) in EfficientNet-B0 NoisyStudent has lower
incremental performance than that of EfficientNet-B1 NoisyStudent.

AdvProp vs. ExRep. AdvProp achieves 0.4% higher top-1 accuracy and 0.2%
higher top-5 accuracy than those of EfficientNet PyTorch for EfficientNet-B1 but
achieves lower performance for EfficientNet-B0. However, ExRep achieves 0.7%
higher top-1 accuracy and 0.1% higher top-5 accuracy for EfficientNet-B1, and
0.9% higher top-1 accuracy and 0.4% higher top-5 accuracy for EfficientNet-B0.
Therefore, ExRep exhibits greater generalization ability on ImageNet regardless
of the model size (B1 and B0).
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Table 2. Ablation study for the input distiller and adversarial training. Adv-training
denotes adversarial training. In this experiment, we use EfficientNet-B0 and EfficientNet-
B1 as the backbone network.

Method Base Model Top-1 ACC Top-5 ACC Reusable

w/o input distiller (KD+CRD) EfficientNet-B0 78.0% 93.8% X
w/o input distiller (KD+CRD) EfficientNet-B1 80.1% 95.1% X

w input distiller (KD+CRD+Adv) EfficientNet-B0 77.9% 93.6% O
w input distiller (KD+CRD+MSE) EfficientNet-B0 77.6% 93.5% O
w input distiller (KD+CRD+Adv) EfficientNet-B1 79.9% 95.1% O
w input distiller (KD+CRD+MSE) EfficientNet-B1 79.7% 95.1% O

EfficientNet-B0 vs. EfficientNet-B1. ExRep with EfficientNet-B1 achieves
the highest top-1 and top-5 accuracy compared to ExRep with EfficientNet-B0.
While EfficientNet-B1 achieves 1.2% higher top-1 accuracy and 0.6% higher
top-5 accuracy compared to those of EfficientNet-B0, ExRep with EfficientNet-B1
achieves 1.9% higher top-1 accuracy and 0.9% higher top-5 accuracy.

NoisyStudent vs. FixNet. FixNet shows higher top-1 accuracy and top-5
accuracy for both EfficientNet-B1 and EfficientNet-B0 in general. As the teacher
model has more informative representation, the student model learns useful rep-
resentation as well. Therefore, we expect that FixNet will have higher distillation
performance using our framework, although not experimented in this work, since
the FixNet weights are currently unavailable.

5 Ablation Study

In this section, we present an ablation study to demonstrate the effectiveness of
the input distiller and adversarial training (Section 3.1, Section 3.4, and Eq. 11)
used in our ExRep: 1) the KD and CRD losses without the input distiller, 2) the
KD, CRD, and adversarial losses with the input distiller, and 3) the KD, CRD,
and Mean Squared Error (MSE) losses with the input distiller.

Input distiller effect. As shown in Table 2, we experiment with ExRep, which is
trained on ImageNet. The input distiller may harm the performance of the original
knowledge distillation, but only to a minimal degree, and most importantly, it
renders the extra representation reusable for the training of a novel classifier
without any available extra training data. In the ablation study presented in
Table 2, the performance was compared for the exclusion of the adversarial and
MSE losses using the input distiller to demonstrate the effects of those terms.

ResNeXt and Billion-scale dataset. We also carried out an experiment to
validate the generalization of our method. Semi-weakly supervised ResNeXt
(ResNeXt SWSL) is trained on the Billion-scale dataset [36], which is an internal
dataset of Facebook. This ResNeXt SWSL achieves 82.1% top-1 accuracy on
224×224 size of ImageNet. On the other hands, The vanilla ResNeXt achieves
79.7% top-1 accuracy. Our ExRep achieves 81.1% top-1 accuracy. It represents
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Table 3. Performance results on ResNeXt. ResNeXt SWSL represents semi-weakly
supervised ResNeXT.

Method Extra Training Data Size Top-1 ACC Top-5 ACC

ResNeXt SWSL [36] Billion-scale 224 82.1% 96.2%
ResNeXt - 224 79.7% 94.6%

ResNeXt ExRep - 224 81.1% 95.1%

that ExRep can adjust to different CNN architecture (EfficientNet and ResNeXt)
and other extra training dataset (JFT-300M and Billion-scale).

6 Conclusion

In this paper, we introduce ExRep, a novel ImageNet image classification frame-
work. Our proposed method does not require direct access to extra training data
to achieve high classification performance, unlike the previous state-of-the-art
approaches that exploited the JFT-300M dataset, which is not publicly available.
We instead use a teacher model pre-trained on ImageNet as well as on JFT-300M
to distill its knowledge acquired during training for the student model pre-trained
only on ImageNet. ExRep outperforms AdvProp, the state-of-the-art, which
does not use extra training data as in our case, and achieves a performance
comparable to those of NoisyStudent and FixNet, which use JFT-300M data
for training in addition to ImageNet. We show that ExRep can be applied to
other datasets as well, demonstrating the effectiveness of our proposed method.
While ExRep achieves a performance comparable to those of previous state-of-
the-art approaches, there is still room for improvement. For instance, we plan
to integrate BiT, NoisyStudent, and FixNet based on more complex backbone
architectures, such as EfficientNet-B7, EfficientNet-L2, and BiT-L, which are
more computationally expensive and time-consuming. We expect that the use of
more complex teacher models will improve the classification performance; we also
aim to further optimize ExRep. Our ExRep implementation is available here4.
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