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Abstract. Recently, online transactions have had an exponential growth
and expanded to various cases, such as opening bank accounts and fil-
ing for insurance claims. Despite the effort of many companies requiring
their own mobile applications to capture images for online transactions,
it is difficult to restrict users from taking a picture of other’s images
displayed on a screen. To detect such cases, we propose a novel approach
using paired images with different depth of field (DoF) for distinguishing
the real images and the display images. Also, we introduce a new dataset
containing 2,752 pairs of images capturing real and display objects on
various types of displays, which is the largest real dataset employing DoF
with multi-focus. Furthermore, we develop a new framework to concen-
trate on the difference of DoF in paired images, while avoiding learning
individual display artifacts. Since DoF lies on the optical fundamentals,
the framework can be widely utilized with any camera, and its perfor-
mance shows at least 23% improvement compared to the conventional
classification models.

1 Introduction

With rapid growth of vision technologies, online transactions have expanded its
influence and even surpassed the proportion of offline transactions. Especially in
the financial sector, various time-consuming and cumbersome offline procedures
have been transformed into simple online procedures, including processing e-
commerce payments, opening bank accounts, and filing for insurance claims.

Taking advantage of a contact-free environment of online transactions, scam-
mers with malicious purposes use manipulated images for online frauds. Various
schemes for image forgery are exploited, such as submitting other people’s images
as one’s own for rental listing scams [1], or manipulating images using profes-
sional image editing tools, such as Adobe Photoshop, for a compensation fraud
of railway delay [2]. As GAN-based synthesized images known as deepfakes have
achieved highly realistic results, image forgery has become a potential threat in
political, economic, and social aspects [3].

⋆ These authors contributed equally.
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(a) Real image with 
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(b) Real image with 

background focus

(c) Re-captured with 

center focus

(d) Re-captured with 

background focus

Fig. 1: Real images and display images with different focus length

Fortunately, due to advancement in deep learning, the manipulating schemes
for image forgery can be detected by the recent detection algorithms for deepfake
images [4–7] and Photoshopped images [8] with superior performance.

When other people’s images are re-captured and submitted as one’s own, it
is difficult to distinguish such cases by the current detection methods, since the
re-captured images are also technically ‘real’ and not manipulated according to
the current standards. To prevent such cases, many companies, especially in the
insurance industry [9–11], provide mobile applications specifically developed for
secure capturing and submission of images to file claims.

Unfortunately, some forgery methods are still available to fool detection, e.g.,
taking pictures of printed pictures or displayed objects on the screen. With
the advancement of display panels with high resolutions, the display artifacts
appear almost invisible when captured in images, which makes it challenging to
distinguish between real images (Fig. 1(a)) and display images (Fig. 1(c)). From
this point forward, we call the images taken of the real objects as real images,
and the images taken of the displayed objects on the screen as display images.
Regarding the current issues in online transactions, a new approach needs to be
developed, not only to detect the cases of image forgery but also to prevent the
initiation of frauds and scams.

In this paper, we propose a new approach to detect image forgery by an-
alyzing the paired images of real and display, which are supposed to capture
the difference in focal lengths as shown in Fig. 1. We begin our study with an
intuition that the paired images of real objects contain variance in depth of field
due to difference in focal lengths, while pictures of screen panels with displayed
objects show consistency in depth. Based on the new dataset with over 2,700
paired images of real or displayed objects, we propose a novel framework for
detection of the re-captured images of displayed objects.

The paired images in the dataset can be divided into two categories: the
real images and display images. While the real objects are captured for real
images, several monitors and a projector with displayed objects are captured for
display images. With a detailed analysis of the dataset introduced in this paper,
we observe that the appearance of the artifacts varies by the type of displays.
Thus, if a classification model concentrates on the presence of the artifacts to
distinguish the display images, the model cannot recognize the unknown artifacts
outside of training settings. In such cases, failure in detection occurs.
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To enhance the generality of the classification model across various types
of displays, the proposed framework trains the model to concentrate on the
difference in the variance of the depth of the paired images themselves, instead
of the artifacts that may diversify based on the display types. With a detailed
analysis of our new dataset, we validate the proposed framework through various
ablation tests and confirm its superior performance on detecting the display
images even with variance in display models across training and test phases.

This paper makes the following contributions:

– Our approach is the first study to detect pictures of display images by exploit-
ing the difference between the paired images with a different focal length.

– We introduce a new dataset of 2, 752 paired images, all of which are labeled
as ‘real’ or ‘display.’

– Based on the new network architecture processing the paired images simulta-
neously, we propose a new mechanism for the classification model to restrain
from concentrating on the specific artifacts limited to the display types.

– With a detailed analysis of the new dataset and the superior performance
of the proposed framework, we present the results of ablation analysis that
validates the effectiveness of our approach.

Our dataset and source code are available online for public access. 1

2 Related Work

In this section, we discuss the three lines of work most related to this paper:
image forgery detection, depth of field, and multi-focus and focusing attention.

2.1 Image forgery detection

The rapid technological advancement of computer vision has made possible to
produce high-quality forged images. Synthesized images are difficult to distin-
guish by naked eyes of human and have become almost impossible to detect
without an in-depth analysis via trained AI models.

Currently, the most challenging forged images to detect is the GAN-based
synthesized images known as deepfakes. With numerous generation models in-
cluding ProGAN [12], BigGAN [13], CycleGAN [14], StarGAN 1,2 [15,16], Style-
GAN 1,2 [17, 18], deepfakes have improved to become highly realistic, and the
object categories are expanded to include not only human faces but also animals
like cats, dogs, and horses, and objects as automobiles, buildings, and paint-
ings. Deepfake detection methods can be divided into two categories: natural
characteristic based approach and synthesized artifact based approach. First,
natural characteristic based approach focuses on the natural traits such as the
details on head poses and movements [19], the absence of eye-blinking [20], the
effect of biological signals as heart rate [21], and variance in lighting conditions

1 https://github.com/SamsungSDS-Team9/DoFNet
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and shadows [22–25]. Synthesized artifacts based approach focuses on observing
the artifacts generated by GAN and can be categorized into pixel-based and
frequency-based methods. The pixel-based method takes image pixels as an in-
put of the classification network [4, 8, 26–32] while the frequency-based method
converts the pixel domain (i.e., 2D data) into the frequency domain to take the
frequency spectrum as an input of the classification network [5–7,33–37].

Another image forensic method is to detect the image areas manipulated
by Adobe Photoshop. Wang et al. [8] proposes a method for detecting facial
warping using the liquifying tool on Adobe Photoshop and reconstructing the
original image. Our approach is differentiated that we analyze and prevent image
forgery from the initial stage of taking photos, instead of detecting forgeries after
being manipulated already.

2.2 Depth of field

Popularized in photography and cinematography for directing the attention of
the viewer, depth of Field (DoF) is an effect when objects within a certain range
of distance appear clearly in focus and objects outside of the range, either closer
or farther, appear blurry out of focus [38]. As in the work of Wu et al., DoF
can be utilized for generating holographic imaging using autofocusing and phase
recovery based on deep-learning [39]. Similarly, we also employ the difference of
DoF in images to train our model for image forensics.

2.3 Multi-focus and Focusing Attention

Due to limited performance range of DoF of cameras, it can be difficult to take
a picture with a clear focus on the entire image. In order to improve this issue,
various frameworks have been studied regarding image focusing, including multi-
focus and focusing attention mechanisms.

Multi-focus image fusion is fusing multiple images to produce an all-in-focus
image. Guo et al. employed conditional generative adversarial network (cGAN)
[40] for image-to-image fusion, which is known as FuseGAN [41]. Also, Zhang
et al. introduced a large dataset containing realistic multi-focus images paired
with their corresponding ground-truth images [42]. As Cheng et al. proposed,
when focus is drifted to an unintentional region of the image, focusing attention
mechanism can be employed to draw back the attention automatically using
Focusing Attention Network (FAN) [43]. Different from the existing methods,
we introduce a large dataset containing paired images intentionally focusing in
the center and the background of the scene, respectively, and their corresponding
display images captured in the same fashion.

To our knowledge, it is the first framework capable of analyzing image foren-
sics from the moment when photos are taken. We achieved superior performance
by employing a unique approach to develop our classification model based on
the large dataset collected for this study.
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3 Depth of Field Dataset

In this section, we introduce our new dataset containing paired images captured
with different focal lengths to contain Depth of Field (DoF). DoF shows the
variance in depth, especially when the objects located within a specific range
of distance called midground appear in focus, while the other objects outside of
the range called background appear blurry. The effect of DoF arises due to the
physical properties of lenses. As the light passes through the lens of a camera
or in our eye, the light source must keep a certain distance away from the lens
to converge to a single point on the film or our retina. Based on DoF, we are
enabled to not only predict the distances of various objects captured in images
but also clearly express the concentrated areas or targeted objects.

3.1 Detecting Display Images using Paired Images with DoF

Conventionally, the target objects captured for e-commerce transactions are lo-
cated at the center of the picture and the background is usually more distanced
than the objects from the camera lens. Thus, in reality, each and every picture of
real objects must contain DoF information. However, DoF captured in a single
image is not a crucial factor in detecting image forgery, since both real and dis-
play images contain a certain level of DoF in the single image. To distinguish the
real images from the display images, we utilize the paired images with variance
in focal lengths. The one focusing in the center is called a center image, while the
other focusing in the background is called background image. In the case of dis-
play images, the variance in depth would be relatively small between the center
and the background images due to similar focal lengths from the camera lens to
the display screen. On the contrary, the paired images of real objects contain a
wide range of variance in depth between the center and the background regions.

It is beneficial in three aspects to exploit paired images with variance in
depth. First, it does not require any additional sensor other than the camera
lens itself, which indicates its simplicity in operation and scalability in any type
of mobile device with embedded cameras. Second, it is not bound by any type of
camera, since DoF is based on the physical properties of the camera lens. Finally,
it is not based on the display artifacts, which indicates the generality of our
model to accommodate any types of displays, including those unseen during the
training phase. Therefore, by training the classification model to concentrate on
the difference of DoF between the paired images, our model can distinguish the
display images from the real images with superior performance. Unfortunately,
the conventional classification model can be easily trained to focus on detecting
the artifacts, which leads to limited generality of the classification model for the
unknown artifacts in the test phase.

3.2 Data Collection

The DoF dataset is collected by five different models of mobile devices with
the mobile application specifically developed to obtain the paired images with
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Table 1: Comparison of various multi-focus datasets.
Dataset Data acquisition method Size(pair) Resolution Realistic Ground Truth

Lytro [44] Captured by light field camera 20 520×520 Yes No
CNN [45] Generated based on ImageNet dataset 1,000,000 16×16 No Yes
BAnet [46] Generated based on Matting dataset 2,268,000 16×16 No Yes
FuseGAN [41] Generated based on segmentation datasets 5,850 320×320 No Yes
Real-MFF [42] Captured by light field camera 800 625×433 Yes Yes
Our dataset Captured by cameras on mobile devices 2,752 720×1,280 Yes Yes

Table 2: Classification performance with a single image and the paired images.
Single image classification Paired image classification

Train
Display

Test Displays
Train
Display

Test Displays
i-Mac Samsung Projector i-Mac Samsung Projector

Acc. A.P Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P.
5K LCD 99.25 99.26 94.96 85.19 50.00 50.00 5K LCD 100.00 100.00 87.97 87.79 55.97 55.97
WQHD LED 50.38 51.12 100.00 100.00 76.52 76.52 WQHD LED 53.38 52.68 99.25 99.24 85.07 85.07
Projector 49.62 50.38 49.62 50.38 100.00 100.00 Projector 50.8 49.62 50.38 49.62 100.00 100.00

difference in depth. The application allows users to take two pictures at once as a
package using the auto-focusing feature of the mobile camera. The paired images
focus on the objects located at the center and the background, respectively.
Among the various regions other than the center, the top of the center has the
largest probability to be the background region. Thus, we set the focus setting
to clearly capture the region at the top of the center by auto-focusing.

We construct the dataset into two categories: the paired images of real ob-
jects and the paired images of display objects. Since the display images should
be similar to the real images, we first collect the paired images of real objects
and then gather the paired images of display objects by re-capturing the real
images displayed on the screens. To validate the algorithm with various target
objects, we employ several object categories including shoes, cosmetics, music
albums, DVD, household goods, and beverages. Furthermore, for the robust per-
formance of the classification model in the various capturing environment, we
have diversified the background settings, the distance to the target objects, and
the capturing angle with the displays. To validate the robustness of the classifica-
tion model with various unknown artifacts, we employ various models of displays
for data collection, including a 5K LCD display of Apple iMac (Retina 5K, 27-
inch, 2017), a WQHD LED display of Samsung monitor (LS27H850QFKXKR),
and a display screen of NEC projector (NP-M311XG). In this way, we collect
a large dataset composed of 2,752 pairs of images with 720 × 1, 280 resolution
for six different object categories. Each object category consists of four pairs of
images: a pair of real images, and three pairs of display images obtained from a
5K LCD monitor, a WQHD LED monitor, and a projector screen, respectively.
In addition, we compare the DoF dataset with other datasets containing paired
images with variance in focal lengths. As indicated in Table 1, our dataset is the
largest in size with the highest resolution of paired images among the realistic
datasets, which demonstrates the scalability of DoF dataset in various tasks.
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Fig. 2: Various display artifacts in DoF dataset

3.3 Analysis of Display Artifacts

As illustrated in Figure 2, some artifacts can be easily discovered in certain
parts of the display images. The shapes of the artifacts are various according
to the types of displays and the capturing angle with the display panel, so it is
impossible to consider all kinds of artifacts in the training phase. Furthermore, it
is challenging to train the model to consider every single new artifact whenever
a brand-new display is launched.

To show the limited generality of the artifact-based classification, we train
a neural network of ResNet-18 [47]. We utilize the center image of the paired
images as the input of ResNet-18, which is a binary classification model that de-
termines whether the input is a real image or a display image. This classification
model with the single image is noted by SingleNet-18, and its detailed settings
are given in Section 5.1.

As shown in the left side of Table 2, SingleNet-18 has shown a great perfor-
mance when the same displaying device is considered in both of the training and
test phases, while the performance dramatically drops to almost 50% when new
types of displays outside of training phase are employed in the testing phase. This
result validates that artifact-based training should be avoided for generalizing
the classification model across various displays.

A similar situation happens even when paired images are used as the input of
the neural network. We extend the ResNet-18 to accept paired images as inputs.
For the input of the paired images, the channel size of the input image of ResNet-
18 has been expanded to 6 channels, and the input is obtained by concatenating
the paired images in the channel dimension. This classification model with the
paired images is noted by DualNet-18, and its settings and hyperparameters are
all equivalent to SingleNet-18.

The results of DualNet-18 are given in the right side of Table 2, which are
similar to the results of SingleNet-18. Even when the paired images are given for
the classification model, the wrong direction, cannot be corrected because the
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Fig. 3: Overall architecture of the proposed framework

artifacts are much easier to be trained than the variance of depth in the paired
images. Thus, when we just train the classification model with the conventional
training methods, the classification model drives to focus on the artifacts given
in the training phase, which reduces the generality of the model dramatically.

4 DoF-based Detection of Display Images

We propose a new classification model and its training mechanism to concentrate
on the variance in depth rather than the display artifacts. When the paired
images are given for training, we denote the image with centered focus and the
image focused on the background by Ic and Ib, respectively.

4.1 Network Architecture

The proposed classification model contains two feature extractors and one fully-
connected layer, as shown in Fig. 3. Each of the feature extractors is fed by Ic
and Ib, respectively. To let the feature extractors focus on the difference of DoF,
the two feature extractors always share their weight parameters. Thus, we use
the corresponding notation of f(I) for the two feature generator, which means
that the feature vector is the output for the given image of I.

Then, the fully-connected layer determines the classes of the two feature vec-
tors (i.e. f(Ic) and f(Ib)) given from the feature extractors. By using f(Ic) and
f(Ib), we consider the three combinations of the features. The first one is the
dual combination where the two features are summed before the estimation of
the fully-connected layer as f(Ic)+f(Ib). The second and third combinations are
the single ones where the individual features of f(Ic) and f(Ib) are fed into the
fully-connected layer. When we denote the operation of the fully-connected layer
by the function of g(•), the proposed network gives three outputs for one pair
of images as: g(f(Ic)+ f(Ib)), g(f(Ic)), and g(f(Ib)). For the simple representa-
tion, we denote the three outputs by h(Ic, Ib), h(Ic), and h(Ib), respectively. By
summing the two features before the fully-connected layer, we can obtain two
advantages: first, since the two different features share the weight parameters
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ofthe fully-connected layer, it results in a more balanced model considering the
paired images simultaneously; second, we can avoid overfitting by reducing the
size of the fully-connected classifier.

To reduce the computational load and the necessary resources, for the feature
extractors, we select the ResNet-18 [47] that is the smallest model among the
various ResNet models. Since the network architecture is different from the model
with the single image, rather than using the pre-trained network, we initialize
the weight parameters according to the He initialization [47].

4.2 Artifact-free Training Method

The objective of the proposed classification model is to distinguish the display
images from the real images by using the difference of DoF in the paired images
while ignoring the effect of artifacts. To consider the objective, we build the
training loss as follows:

L(Ic, Ib) = (1− λ)Ldual(Ic, Ib) + λLdof (Ic, Ib) (1)

where λ is the scaling factor to control the effect of the two loss terms: Ldual

and Ldof . We call Ldual and Ldof by the dual classification loss and the DoF
loss, respectively. Ldual works as the conventional classification loss to let the
neural network classify the given pair of images well. In contrast, Ldof prevents
the neural network from being trained by considering the display artifacts. The
detailed role and the derivation of Ldual and Ldof are given in the following.

Dual Classification Loss. The dual classification loss is the fundamental loss
to classify the real and display images according to their own labels. Thus, the
dual classification loss is derived as:

Ldual(I
(i)
c , I

(i)
b ) = CE

(

h(I(i)c , I
(i)
b ), l(i)

)

, (2)

where I
(i)
c and I

(i)
b are respectively the center and the background images of

the i-th pair of images, l(i) ∈ {0, 1} is their ground-truth label, and the CE(y, l)
means the softmax cross-entropy loss letting y go to the one-hot vector of l. In
l(i) ∈ {0, 1}, 0 represents the label for the real images, while 1 means the label for
the display images. Thus, the dual classification loss drives the neural network
to predict the correct labels of the given pair of images.

DoF Loss. For the neural network to ignore the effect of the artifacts, the DoF
loss utilizes the two outputs from the single inputs, which are h(Ic) and h(Ib).
Before deriving the single DoF loss, we first describe the difference between
the center and background images. When we consider only the center images
to detect the display images, the classification model focuses on the display
artifacts, since the two images cannot be distinguished from each other without
the artifacts. On the contrary, employing the background images of real paired
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images enables the model to distinguish the display images without the artifacts,
since the centered regions of the background images become blurry, in contrast
to the display images. Thus, the center and the background images play different
roles in the DoF loss, which results in two separated loss terms as follows:

Ldof (Ic, Ib) =
1

2
Ldof−c(Ic) +

1

2
Ldof−b(Ib), (3)

where Ldof−c is the DoF center loss that considers the center images only and
Ldof−b indicates the DoF background loss utilizing only the background images.

Since the classification based on the center images lead the neural network
to focus on the artifacts, we adversarially derive the DoF center loss as follows:

Ldof−c(I
(i)
c ) = CE

(

h(I(i)c ), 1
)

. (4)

According to Ldof−c, when only a single center image is given to the network,
both of the real and display images are predicted by the same class of 1. Thus,
the classification concentrating on the artifacts can be suppressed by the DoF
center loss, since the loss drives the neural network to ambiguously detect the
display images with only the center images.

In contrast to the center images, the background images are essential for
training the difference of DoF. Thus, we derive the DoF background loss by the
conventional classification loss as follows:

Ldof−b(I
(i)
b ) = CE

(

h(I
(i)
b ), l(i)

)

. (5)

1
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Fig. 4: Analysis for Loss

After summing up the entire losses of Eq. 6
for the paired images sampled in the itera-
tive mini-batch, we optimize the neural net-
work by the momentum stochastic gradient
descent algorithm [48]. Although the two dis-
tinct losses are summed up together, we do
not consider any step-by-step training scheme
for stable training.

Ldual and Ldof−c contradict each other to
adversarially train the backbone. To show the
effectiveness of the adversarial training, we es-
timate the test accuracy at every epoch as illustrated in Fig. 4. While the
proposed framework improves the cross-display and self-display accuracies, the
cross-display accuracy dramatically declines without Ldof−c.

4.3 Implementation Details

Before the training phase, all the input images are pre-processed by resizing
and random cropping operations. In resizing operation, the original image of
720×1280 pixels is resized into 256×256 pixels, and random cropping operation
crops the image into 253×253 pixels from the resized image. Resizing operation
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is applied to increase the computational efficiency of the neural network, while
random cropping operation is necessary to cover the slight movement that can
happen essentially during capturing the consecutive paired images. In the test
phase, we consider h(Ic, Ib) as the prediction of the given pair of images.

The proposed framework is optimized by the Stochastic Gradient Descent
method (SGD) with the batch size of 16, executing 50 epochs, and the learning
rate begins with 0.1 and later adjusts to 0.01 after 40 epochs. For the stable
updates, we utilized the momentom SGD with the momentum of 0.9 and the
decay weights of 5× 10−4. The λ, that is a scaling factor in Eq. 6, is set to 0.6.

5 Experimental Result

5.1 Setup of Experiments

Table 3: Training of single display

Train Displays Models
WQHD LED Projector
Acc. A.P. Acc. A.P.

5K LCD

SingleNet-18 84.96 85.19 50.00 50.00
SingleNet-50 89.47 88.23 47.72 50.00
DualNet-18 87.97 87.79 55.97 55.97
DualNet-50 88.72 86.87 47.73 50.00
Ours 92.48 90.55 84.85 82.84

Train Displays Models
5K LCD Projector

Acc. A.P. Acc. A.P.

WQHD LED

SingleNet-18 50.38 51.12 76.52 76.52
SingleNet-50 50.38 51.17 87.12 87.12
DualNet-18 53.38 52.68 85.07 85.07
DualNet-50 53.38 54.08 90.91 90.91
Ours 90.98 90.38 98.48 98.53

Train Displays Model
5K LCD WQHD LED

Acc. A.P. Acc. A.P.

Projector

SingleNet-18 49.62 50.38 49.62 50.38
SingleNet-50 49.62 50.38 61.65 50.38
DualNet-18 50.38 49.62 50.38 49.62
DualNet-50 50.38 51.12 58.65 59.26
Ours 62.41 62.29 81.95 80.95

Dataset Setup and Measure-

ment. Based on the object cate-
gories, we split the dataset as fol-
lows: 80% as a training set, 10% as
a validation set, and the last 10%
as a test set. The first experiment
trains the model with all of the real
images and the display images of a
single type of display in the train-
ing set. Then, the trained model is
evaluated with the display images of
two remaining types of displays in the
test set. In the second experiment,
the display images of two types of
displays are utilized in the training
phase, while the images of the remain-
ing type of display are used for evalu-
ation in the test phase. To effectively
express the performance of our ap-
proach, we employ the measurements
commonly used in deepfake detection:
accuracy (Acc.) and average precision
(A.P.) [4–6,8,19–21,30–32,35,37]. For experiments, we use GPUs of RTX Titan.

Comparison of Models. For comparison of performance of our model with
others, we designed the two simple networks described in Section 3.3. SingleNet-
18 exploits only a single image in a classifier, assuming the case of an image
forgery by capturing other people’s image as one’s own. Similar to the backbone
of our model, the classification model employs ResNet-18 as the CNN model for
distinguishing the real and display images. Moreover, to assess performance with
various depth of networks, ResNet-50 is also employed as SingleNet-50.
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DualNet-18 exploits the paired images with variance in depth; by concatenat-
ing the two RGB images, the network considers six channels in total as an input
to distinguish between the real images and the display images. We also extend
DualNet-18 by employing ResNet-50, is named as DualNet-50. The comparison
models including SingleNet-18, SingleNet-50, DualNet-18, and DualNet-50 are
trained by ADAM optimizer [49], with the learning rate of 10−4 and the batch
size of 16, executing the same number of epochs with the proposed framework.
We utilize the ADAM optimizer for the comparison models since the SGD fails
to train the neural network with the setting.

5.2 Experiment with Training of Single Display

Table 4: Training of multi-
ple displays

Train display Model Acc. A.P.

WQHD LED
&

Projector

SingleNet-18 54.89 54.20
SingleNet-50 54.89 55.56
DualNet-18 55.64 54.97
DualNet-50 57.14 57.78
Ours 81.95 77.34

5K LCD
&

Projector

SingleNet-18 82.71 82.44
SingleNet-50 90.23 88.05
DualNet-18 92.48 92.59
DualNet-50 88.72 86.87
Ours 94.74 93.93

5K LCD
&

WQHD LED

SingleNet-18 67.91 67.91
SingleNet-50 66.67 65.97
DualNet-18 61.19 61.19
DualNet-50 60.61 58.40
Ours 93.28 92.56

In the DoF dataset, three types of displays are
employed to obtain the display images. To show
the robust performance of the framework on the
unknown displays, we utilize only the display im-
ages captured on a single type of display in the
training phase, while the remaining types of dis-
plays are employed during the test phase. Thus,
we can perform the three experiments respectively
utilizing the 5K LCD monitor, the WQHD LED,
and the projector in the training phase.

As shown in Table 3, the proposed framework
has achieved the state-of-the-art performance in
all cases. Even though SingleNet-50 and DualNet-

50 utilize the deeper models than SingleNet-18

and DualNet-18, the performance does not im-
prove at all, which represents the depth of the neu-
ral network is not essential to detect DoF in paired
images. As the proposed framework, DualNet-18

and DualNet-50 also utilize the paired images,
their performance declines by 37.12% at most compared to our algorithm. From
the result, we can confirm that the proposed framework concentrates on the vari-
ance in DoF in the given paired images, while avoiding the supervision affected
by the display artifacts. Thus, our algorithm can be trained well by using the
DoF properties of the paired images, which indicates that the training dataset
with a limited type of display is sufficient for detection.

5.3 Experiment with Training of Multiple Displays

In this experiment, we utilize two types of displays to train the neural network,
while the remaining type of display is considered as the test dataset. Thus, we
can validate the robustness of the algorithm in the complex environments due
to various models of displays. As shown in Table 4, our algorithm achieves the
state-of-the-art performance for every combination of the dataset. Interestingly,
despite that the display artifacts of the projector are vastly different from the
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other two types of displays, the proposed framework shows the highest accuracy
over 93%, which is superior to other algorithms with accuracy under 68%.

5.4 Ablation Study

To validate the roles of the proposed loss terms in Eq. 6, we conduct several
ablation studies. First, we reformulate the entire loss of Eq. 6 to consider the
DoF center loss and the DoF background loss separately as follows:

L(Ic, Ib) = λdualLdual(Ic, Ib) + λdof−cLdof−c(Ic) + λdof−bLdof−b(Ib), (6)

where λdof−b and λdof−c control the scales of Ldof−c and Ldof−b, respectively.
With the reformulated equation, we can investigate the individual effect for
Ldof−c and Ldof−b. When one of the three loss terms is missing, the scale factor
corresponding to the missing loss term is set to 0, while the other factors are set
to 0.5, respectively. When two loss terms are missing, only the scale factor for
the remaining loss term is set to 1, and the other factors become 0.

Table 5: Ablation study with training of single display

Train
Display

Objectives 5K LCD WQHD LED Projector
Ldual Ldof−c Ldof−b Acc. A.P. Acc. A.P. Acc. A.P.

5K LCD

X 95.54 92.96 89.11 86.78 65.28 62.05
X 58.93 58.93 55.34 55.34 50.00 50.00

X 69.64 66.00 61.39 58.73 22.83 43.96
X X 82.14 76.74 71.29 66.98 29.35 49.02
X X 90.18 85.71 83.17 78.70 52.17 51.18

X X 58.93 58.93 54.46 54.46 45.65 47.73
X X X 96.99 94.37 92.48 90.55 84.85 82.84

WQHD LED

X 64.27 73.52 98.02 96.49 94.57 92.58
X 58.93 58.93 54.46 54.46 50.00 50.00

X 58.93 71.37 100.00 100.00 82.61 82.61
X X 52.68 66.23 99.01 98.21 95.65 94.61
X X 63.39 74.49 100.00 100.00 92.39 92.39

X X 68.75 65.35 64.36 60.44 58.70 54.78
X X X 90.98 90.38 98.48 98.53 99.25 98.53

Projector

X 37.50 58.93 64.36 67.31 96.74 93.88
X 58.93 58.93 54.46 54.46 50.00 50.00

X 41.96 59.55 45.54 54.46 100.00 100.00

X X 43.75 60.80 81.19 84.27 100.00 100.00

X X 41.07 58.93 45.54 54.46 100.00 100.00

X X 49.11 60.62 73.26 70.80 88.04 80.70
X X X 62.41 62.29 81.95 80.85 98.48 97.06

The first ablation
study evaluates the
variation of perfor-
mance when a part of
the three loss terms
are missing, through
the experiments with
the training dataset
of a single display as
in Section 5.2.

Table 5 represents
the results of the first
ablation study. From
the results, we can
confirm that the pro-
posed framework con-
sidering all the loss
terms construct the
most general model
across various types
of displays. Interest-
ingly, the model only with Ldual shows superior performance than the mod-
els without Ldof−c or Ldof−b, which validates the complementary relationship
between the two loss terms in Ldof . In addition, the performance declines dra-
matically when Ldual is missing, which verifies the importance of the paired
images to improve the generality of our model.

In the second ablation study, we perform the experiment where all displays
are considered for both training and test phases. In this ablation study, we
can validate the effect of the three loss terms when the display artifacts in the
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training dataset also appear in the test phase. As listed in Table 6, interestingly,
even when the framework ignores Ldual and Ldof−c, the performance does not
decrease much from the full framework because the artifacts can be trained only
by Ldof−b. Although the performance with Ldof−b seems stable when trained
with all displays, it declines dramatically when tested with unseen displays. The
results validate that the three losses are necessary to ignore the display artifacts.

Table 6: Ablation study
with every display

Ldual Ldof−c Ldof−b Acc. A.P.
X 89.80 84.16

X 54.46 54.46
X 90.10 84.53

X X 95.05 91.61
X X 89.77 84.13

X X 54.46 54.46
X X X 96.04 93.17

Stacking Feature 90.70 84.39
Color Augmentation 94.23 89.66
Separated Backbone 89.95 83.33

As indicated in the bottom three rows of
Table 6, we conduct additional experiments to
demonstrate the effectiveness of our framework.
Stacking Feature concatenates the two features
and masks the unused feature by 0, which val-
idates that our scheme of feature summation is
superior than the feature concatenation method.
Color Augmentation considers the additional aug-
mentation method for the color variation, and the
consistent results validate that color inconsistency
does not affect the classification accuracy. Finally,
we validate the effectiveness of our adversarial
training scheme with the shared backbone based
on the experiments of separating the backbone,
which is listed as Separated Backbone. Through
various ablation studies, we can validate the effec-
tiveness of the proposed framework for DoF-based
image forgery detection.

6 Conclusion

Recently, online transactions have had an exponential growth and expanded to
various applications from e-commerce payments to managing financial accounts
from mobile phones. Despite the effort of many companies requesting the usage of
their own camera applications for submission of images for online transactions, it
is difficult to restrict users from taking a picture of a screen displaying objects,
instead of real objects. To detect such cases, we introduce a novel approach
utilizing paired images with different depth of field (DoF). In contrast to the flat
display panel, the target objects in the real environment are located at various
focal lengths from the camera lens, creating difference in DoF in captured images.
By utilizing this difference, we can distinguish between the real images and the
display images. We introduce a new dataset with 2,752 pairs of images capturing
real objects or displayed objects on various types of displays. It is the largest real
dataset employing DoF with multi-focus. We also propose a new framework for
detecting forged images to focus on the difference of DoF in paired images while
avoiding learning individual display artifacts. With numerous ablation studies,
we validate that our newly proposed framework achieves the state-of-the-art
performance using various displays, including those unseen during training.
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