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Abstract. FPN (Feature Pyramid Networks) and many of its variants
have been widely used in state of the art object detectors and made
remarkable progress in detection performance. However, almost all the
architectures of feature pyramid are manually designed, which requires
ad hoc design and prior knowledge. Meanwhile, existing methods focus on
exploring more appropriate connections to generate features with strong
semantics features from inherent pyramidal hierarchy of deep ConvNets
(Convolutional Networks). In this paper, we propose a simple but effec-
tive approach, named BBFE (Backbone Based Feature Enhancement),
to directly enhance the semantics of shallow features from backbone Con-
vNets. The proposed BBFE consists of two components: reusing back-
bone weight and personalized feature enhancement. We also proposed
a fast version of BBFE, named Fast-BBFE, to achieve better trade-off
between efficiency and accuracy. Without bells and whistles, our BBFE
improves different baseline methods (both anchor-based and anchor-free)
by a large margin (∼2.0 points higher AP) on COCO, surpassing com-
mon feature pyramid networks including FPN and PANet.

Keywords: Feature enhancement · Object detection.

1 Introduction

As one of the most fundamental and challenging tasks in computer vision, ob-
ject detection aims to accurately detect the objects of predefined categories in
digital images. Benefited from the development of deep ConvNets (Convolu-
tional Networks) [1] and GPUs computing power in recent years, modern object
detectors (e.g., SSD [2], YOLO [3], RetinaNet [4], Faster R-CNN [5], Cascade
R-CNN [6]) have achieved impressive progress. However, object detection still
faces many challenges, e.g. there usually exists objects with various scales in
the same picture. To solve this problem, a traditional idea is to use an image
pyramid [7] to build a feature pyramid and then detect objects of different scales
in different feature maps, which is effective but brings huge computing cost. As
shown in Fig. 1(b), SSD (Single Shot Detector) [2] is one of the first attempts
to combine the predictions from pyramidal feature hierarchy directly to handle
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Fig. 1. (a) Designing additional augmentation to enhance detection capability of orig-
inal features. (b) Using pyramidal feature hierarchy that have semantics from low to
high levels. (c) Building a strong pyramid from backbone directly. In this figure, thicker
outlines denote semantically stronger features.

objects of various sizes, but the performance is limited due to the limited seman-
tics available in shallow level feature maps. After that, FPN (Feature Pyramid
Network) [8] proposes to create a feature pyramid with strong semantics at all
scales by developing an efficient top-down pathway with lateral connections after
the bottom-up pathway, which shows significant improvements with small extra
cost.

The success of FPN attracts wide attention from the community. After that,
a series of subsequent works, such as FPR [9], PANet [10], and M2Det [11],
propose to further improve the pyramid architectures like FPN from different
aspects to obtain enriched features. As shown in Fig. 1(a), Most of the existing
works related to pyramidal feature fusion can be summarized into two steps:
(1) select one or more feature maps from multiple levels of deep ConvNets and
denote them as {C2, C3, . . . }; (2) carefully design the multi-scale features fusion
module and augment {C2, C3, . . . } to {P2, P3, . . . } that contain richer semantic
information. Finally, these high-level features are applied to the subsequent de-
tection process. Although these works promote detection accuracy remarkably,
designing a suitable feature fusion scheme is of great challenge, which requires
rich experience and prior knowledge.

The feature hierarchy computed by backbone has an inherent multi-scale,
pyramidal shape, which we call SSD-like pyramid. In SSD-like pyramid, while
the deepest feature map has the strongest semantic features, the shallower fea-
ture maps have lower-level features. What if we continue to apply the subsequent
layers of ConvNets to the shallow feature maps of the SSD-like pyramid? Inspired
by that, we proposed a new method, named BBFE (Backbone Based Feature
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Enhancement), to build strong feature pyramids. As shown in Fig. 1(c), the basic
motivation of BBFE is to: (1) avoid using hand-crafted feature fusion architec-
ture and (2) directly produce a feature pyramid that has strong semantics at all
scales from backbone. To achieve this goal, we first generate an SSD-like pyramid
from a deep ConvNet, as most other detectors do. Next, we employ the RBW
(reusing backbone weight) module to reuse the original convolutional layers of
backbone ConvNet and enhance the semantics of shallow-layer features, without
introducing extra parameters. Then we attach a very simple PFE (personalized
feature enhancement) block on each semantically stronger feature, to further
boost the detection performance with marginal extra cost. After that, we pro-
posed a faster version of BBFE, named Fast-BBFE, to achieve better trade-off
between accuracy and speed.

In our experiments, we compared the standard FPN with our BBFE using
different types of detection algorithms, and demonstrate competitiveness of the
proposed method. The main contributions of this work can be summarized as:

– Propose a RBW module to get semantically strong features directly from
the standard backbone, without additional hand-crafted architectures;

– Propose a more powerful BBFE approach consisting of RBW and a light-
weight detection neck PFE, which can be generalized to all detectors and
replace FPN for better detection performance;

– Without using any tricks, our approach achieves a consistent improvement
(∼2.0 points higher AP) on both anchor-based and anchor-free detectors.

2 Related Work

Benefited from the success of deep ConvNets [1] and the great increase in com-
puting power, the CNN-based object detectors have greatly advanced the per-
formance of hand-crafted features [12, 13]. In order to efficiently detect objects
of various scales simultaneously in a single image and further push the upper
bound of detection accuracy, deep object detectors usually adopt multiple fea-
ture layers. Using image pyramid [7] to construct feature pyramid is a reasonable
solution, but it is time-consuming because of the large computation burden to
independently generate features on each image scale. To better address this issue,
lots of works have been proposed.

Applying Multi-layer Features. Reusing feature maps from different lay-
ers computed in the forward propagation of ConvNet is a useful way to deal
with the problem of scales. SSD [2] directly utilizes several original feature maps
of backbone layers to improve detection performance. SDP+CRC [14] uses fea-
tures in multiple layers to detect objects of different scales by using the proposed
scale-dependent pooling and cascaded rejection classifiers. MSCNN [15] applies
deconvolutional layers on multiple feature maps of a CNN to increase their res-
olutions, and later these refined feature maps are used to make predictions.
RFBNet [16] proposes a multi-branch convolution block similar to the Inception
block, and combine them with the dilated convolution to further enhance the
discriminability and robustness of features.
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Fusing Multi-layer Features. Recent works exploit lateral or skip connec-
tions to fuse information between different layers to produce combined features.
DSOD [17] follows the SSD framework and fuses multi-scale prediction responses
with an elaborated dense structure. FPN [8] passes semantic information from
deep layers to shallow layers by a concise top-down pathway, which further shows
the power of feature fusion. Furthermore, a series of improved FPN are proposed.
PANet [10] adds another bottom-up path with lateral connections on the basis of
FPN to shorten the information path. FPR [9] adaptively concatenates multiple
layers extracted from backbone network and then spread semantics to all scales
through a more complex module. Libra R-CNN [18] proposes a BFP (Balanced
Feature Pyramid) to aggregates multiple features and refine the integrated fea-
ture with the non-local module [19], then scatter it to all scales. NAS-FPN [20]
adopts NAS (Neural Architecture Search) [21] to find a new feature pyramid ar-
chitecture, which consists of free connections to fuse features of different scales.
Other representative methods, such as DSSD (Deconvolutional Single Shot De-
tector) [22], TDM (Top Down Modulation) [23], STDN (Scale Transfer Detection
Network) [24], RefineDet [25] and M2Det [11], also made impressive progress in
multi-layers fusion.

Most of the existing studies, except NAS-FPN, manually design the con-
nection between backbone features and pyramidal features. Considering that it
might be ad hoc to manually design architectures for fusing features across scale,
our work focuses on building a semantic feature pyramid directly from the back-
bone, which is a simple and near parameter-free method that only reuses the
original convolutional layers.

3 Method

The overall pipeline of BBFE is shown in Fig. 2. Taking a single-scale image
of an arbitrary size as input, our goal is to directly build a high-level semantic
feature pyramid by reusing original layers. All the components and details will
be introduced in this section.

3.1 Reusing Backbone Weight

As shown in Fig. 2, the dotted box represents the proposed RBW (reusing back-
bone weight) module, which is based on the backbone ConvNet’s pyramidal
feature hierarchy {C2, C3, C4, C5}. {C2, C3, C4, C5} are the output of different
convolutional blocks and have semantics from low to high levels. The deepest
layer C5 has the strongest semantics and can be used for subsequent detection
without further improvement. For other layers, we continue to apply the later
convolutional blocks to shallower features to enrich their semantics. For exam-
ple, C3 is the output of conv2, so we continue to apply conv3 and conv4 to C3 to
enrich its semantic information. When reusing a convolutional block, we need to
change the down-sampling operation in order to keep the spatial size of output
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Fig. 2. Overview of the proposed BBFE. {C2, C3, C4, C5} denotes the original pyra-
midal feature hierarchy of backbone ConvNets, C5 and P5 are identical. Feature maps
with red crosses are not required and will not be generated in our approach. We firstly
enhance the middle-level features {C2, C3, C4} into semantically strong features {P2,
P3, P4} by reusing the backbone weight (no extra parameters) while maintaining their
original resolutions. Then {P2, P3, P4, P5} are further enriched by detection neck (e.g.
the PFE block) before the subsequent detection.

and input layer consistent. To be specific, if the down sampling operation is re-
lated to the stride of the convolution kernel, we will reset the stride and padding
value. If the downsampling operation is associated with the pooling layer, we
simply skip that layer.

We strengthen multi-scale feature presentations by reusing the original con-
volution blocks, with the removal of down-sampling operation. Compared to
previous studies, our method can obtain semantic features without requirement
of complex structures for feature fusion and feature enhancement. The proposed
RBW does not require any additional parameters and can be easily generalized
to other detectors. It’s a parameter-free approach for feature pyramid enhance-
ment.

3.2 Personalized Feature Enhancement

Object detectors leverage feature pyramid to detect small objects from high reso-
lution images and detect large objects from low resolution images. Because many
convolution kernels are shared for feature extraction, RBWmodule may generate
similar semantic information for feature maps generated by different branches,
which limit the representation ability cross scales. To alleviate the problem, we
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Fig. 3. The overview of the personalized feature enhancement block.

introduce the PFE (personalized feature enhancement) block shown in Fig. 3
and separately attach it on each layer to make features more discriminative. To
avoid complex manual design, we simply adopt a residual block consisting of a
3×3 convolution and ReLU function. Inspired by ResNet [26], our hypothesis is
that the shortcut enables input features to retain their original representation
if extra convolution destroys the learned semantic information. Based on RBW,
the PFE block can further improve the detection accuracy with marginal extra
cost.

In addition, the detection neck (PFE block) can be replaced by other existing
components (e.g. Non-Local [19]) for better accuracy, which may introduce too
much calculations. In this paper, simplicity is central to our design.

3.3 Fast-BBFE

The combination of RBW module and PFE block forms a simple and effective
approach named BBFE (backbone based feature enhancement) for enhancing
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Fig. 4. The overview of the Fast-BBFE: Using BBFE to obtain semantic features ex-
cept C2. P2 is generated by merging C2 and P3 after simple dimension transformation.
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detection ability of each feature map. The speed of BBFE is inversely propor-
tional to the scale of the feature map. Backbone ConvNet computes a feature
hierarchy consisting of feature maps at several scales with a scaling step of 2,
and the largest feature map will cost most of the time due to the removal of
down-sampling.

To address this issue, we apply BBFE to the original features except the
biggest one, which is built through FPN-way separately. We denote the output
of each residual blocks of ResNets as {C2, C3, C4, C5}, and note that they have
strides of {4, 8, 16, 32} pixels with respect to the input image. We firstly utilize
BBFE to enhance {C3, C4, C5} to {P3, P4, P5}, and then generate P2 by merging
C2 and P3, as shown in Fig. 4. We up-sample the spatial resolution of P3 by a
factor of 2 using nearest neighbor up-sampling, and use a 1×1 convolutional layer
to reduce the channel dimensions of C2, then merge the up-sampled map with
C2 by element-wise addition to produce P2. Unlike FPN, we use the PFE block
to reduce the aliasing effect of up-sampling. We call BBFE with this module
Fast-BBFE, which achieves better trade-off between accuracy and efficiency. As
Table 2 shows, RetinaNet [4] using Fast-BBFE surpasses FPN based RetinaNet
in both accuracy and speed.

4 Object Detection

State of the art object detectors available in literature can be mainly categorized
into anchor-based and anchor-free approaches. Our method is a generic solution
for building strong semantic feature pyramids based on backbone ConvNets.
In this section, we generalize BBFE to different types of object detectors. To
demonstrate the effectiveness and simplicity of BBFE and Fast-BBFE, we make
minimal and reasonable modifications to these algorithms to adapt them to our
methods.

4.1 Anchor-based Detector

RetinaNet [4] and Faster R-CNN [5] are widely used one-stage and two-stage
methods. As shown in Fig. 5(a), RetinaNet uses feature pyramid levels P3 to
P7, where P3 to P5 are computed from the output of the corresponding residual
stage (C3 through C5) of ResNets [26] using FPN. P6 is computed via a 3×3
stride-2 convolution on P5, and P7 is obtained by applying ReLU followed by
a 3×3 stride-2 convolution on P6. Since we did not use FPN, in order to get
the same number of feature layers as RetinaNet, we simply append two 3×3
stride-2 convolution layers on ResNets to generate C6 and C7, which are then
enhanced to P6 and P7 by BBFE. Fig. 5(b) shows the architecture of RetinaNet
with BBFE.

Faster R-CNN based on FPN (for short we still call it Faster R-CNN) uses
feature pyramid levels P2 to P6, where P2 to P5 are the output of ResNets cor-
responding to C2 to C5, and P6 is generated by applying max-pooling on P6.
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Fig. 5. (a) Original RetinaNet that uses FPN by default. (b) Replacing FPN with
BBFE and appending two extra 3x3 conv layers on backbone to generate the same
number of feature maps as FPN.

Analogous to the RetinaNet combined with BBFE, we firstly add a 3x3 convolu-
tional layer to Faster R-CNN backbone and generate the feature hierarchy {C2,
C3, C4, C5, C6}, where C6 is the output of the extra conv layer, then use BBFE
to directly obtain feature pyramid {P2, P3, P4, P5, P6}.

4.2 Anchor-free Detector

Anchor-free detectors can be divided into center-based and keypoint-based meth-
ods. For example, FCOS [27] proposes a novel centerness score and predicts ob-
ject bounding box with four distances. RepPoints [28] represents objects as a
set of sample points and learns to automatically arrange themselves in a par-
ticular manner. Although the algorithm details are different, both FCOS and
RepPoints use common backbone networks and detection necks to extract and
enhance features. Similar to RetinaNet, we replace FPN with BBFE in FCOS
and RepPoints using the approach shown in Fig. 5.

5 Experiments

5.1 Datasets and Evaluation Metrics

We conduct all experiments on the challenging COCO dataset [29], which con-
sists of 115k images for training (train-2017 ) and 5k images for validation (val-
2017 ). We use the train-2017 split for training and perform all ablation studies
on the val-2017 subset, then report our main results on the test dev split (20k
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Table 1. Comparison with the state-of-the-art methods on COCO test-dev. The symbol
“*” means our implementation. The number in [ ] denotes the relative improvement.
We exclude all the training and testing tricks in our experiments for fair comparison.
All the settings are the same as the default settings provided in the MMDetection.

Method Backbone AP AP50 AP75 APS APM APL

YOLOv3 [33] DarkNet-59 33.0 57.9 34.4 18.3 35.4 41.9
SSD513 [2] ResNet-101-SSD 31.2 50.4 33.3 10.2 34.5 49.8

DSSD513 [22] ResNet-101-DSSD 33.2 53.3 35.2 13.0 35.4 51.1
RefineDet512 [25] ResNet-101 36.4 57.5 39.5 16.6 39.9 51.4
Mask R-CNN [34] ResNet-101-FPN 38.2 60.3 41.7 20.1 41.1 50.2
Mask R-CNN [34] ResNeXt-101-FPN 39.8 62.3 43.4 22.1 43.2 51.2
Libra R-CNN [18] ResNet-101-FPN 40.3 61.3 43.9 22.9 43.1 51.0
ExtremeNet [35] Hourglass-104 40.2 55.5 43.2 20.4 43.2 53.1
CornerNet [36] Hourglass-104 40.5 56.5 43.1 19.4 42.7 53.9

Faster R-CNN* ResNet-50-FPN 36.5 58.6 39.2 21.5 39.4 44.7
FCOS* ResNet-50-FPN 37.1 56.5 39.6 20.5 39.8 46.7

RepPoints* ResNet-50-FPN 38.6 59.7 41.5 22.7 41.8 47.2
RetinaNet* ResNet-50-FPN 35.8 56.0 38.3 20.0 39.0 43.9
RetinaNet* ResNet-101-FPN 38.0 58.7 40.8 21.3 41.6 47.5
RetinaNet* ResNeXt-101-FPN 40.2 61.3 43.5 23.1 43.9 50.9

Faster R-CNN (ours) ResNet-50-Fast-BBFE 38.1[+1.6] 59.9 41.5 23.2 40.9 47.4
FCOS (ours) ResNet-50-Fast-BBFE 38.3[+1.2] 57.9 40.9 22.0 40.9 48.4

RepPoints (ours) ResNet-50-Fast-BBFE 39.5[+0.9] 60.8 42.5 23.6 42.7 48.6
RetinaNet (ours) ResNet-50- Fast-BBFE 36.9[+1.1] 57.5 39.7 21.4 40.2 45.5
RetinaNet (ours) ResNet-101- Fast-BBFE 38.9[+0.9] 59.6 42.0 22.3 42.4 49.0
RetinaNet (ours) ResNeXt-101- Fast-BBFE 41.1[+0.9] 62.4 44.5 23.9 44.8 51.7

Faster R-CNN (ours) ResNet-50-BBFE 38.6[+2.1] 60.4 41.7 23.7 41.3 47.6
FCOS (ours) ResNet-50-BBFE 39.4[+2.3] 58.9 42.2 24.1 41.7 48.9

RepPoints (ours) ResNet-50-BBFE 40.3[+1.7] 61.4 43.5 25.2 43.2 48.8
RetinaNet (ours) ResNet-50-BBFE 37.8[+2.0] 58.5 40.8 22.6 40.8 46.7
RetinaNet (ours) ResNet-101-BBFE 40.0[+2.0] 60.7 43.3 24.0 43.1 49.9
RetinaNet (ours) ResNeXt-101-BBFE 41.6[+1.4] 62.8 44.8 25.0 45.0 52.4

images with disclosed labels) by uploading our detection results to the evalua-
tion server. All the experiment results are reported using standard COCO-style
AP (Average Precision) metrics, including AP, AP50, AP75, APS , APM , APL.

5.2 Implementation Details

All the experiments are implemented based on PyTorch [30] and MMDetection
[31] for fair comparisons. For the main results, we select four representative
detectors as our baseline, and use ResNet backbone initialized with the weights
pretrained on ImageNet [32]. The input images are resized to have their shorter
side being 800 and their longer side less or equal to 1333. We use 4 GPUs (2
images per GPU) to train detectors with SGD (Stochastic Gradient Descent) for
12 epochs, which is commonly referred as 1x training schedule. According to the
linear scaling rule, the initial learning rate was set to 0.005 and decreased by 0.1
after epoch 8 and 11. Weight decay and momentum are set as 0.0001 and 0.9,
respectively. All other hyper-parameters follow the settings in MMDetection.
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5.3 Main Results

Without loss of generality, we verify the effectiveness of BBFE and Fast-BBFE
on different types of detectors and compare them with other state-of-the-art de-
tectors on test dev split of COCO benchmark. The results are reported in Table
1. Many researches adopt longer training schedule and scale jitters as well as
multi-scale/flip testing to make their detectors achieve better results. For a fair
comparison, we exclude all the training and testing tricks in all experiments.
We firstly reimplement the baseline methods equipped with FPN, which gener-
ally perform better than that reported in their papers. Then we make minimal
changes to the original object detectors to fit our BBFE and Fast-BBFE intro-
duced in Section 4.

As Table 1 shows, by replacing FPN with Fast-BBFE and BBFE, Faster R-
CNN based on ResNet-50 achieves 38.1 AP and 38.6 AP, respectively, which is
1.6 points and 2.1 points higher than ResNet50-FPN based Faster R-CNN. As for
one-stage detector, The AP of RetinaNet with BBFE using different backbones
is improved by 1.4 ∼ 2.0 points. As for anchor-free detectors, BBFE improves
the AP of FCOS and RepPoints by 2.2 and 1.6 points, respectively, when using
ResNet50 as backbone. The improvement of RepPoints is relatively small, be-
cause the original RepPoints uses Group Normalization [37] in standard FPN to
boost performance. Without bells and whistles, The proposed BBFE bring sig-
nificant improvements to various backbones and detectors, which demonstrates
the robustness and generalization ability of our method.

5.4 Ablation Studies

Overall Ablation Studies. For a better understanding to our approach, we
further conduct a series of ablation studies and report results in Table 2. We
gradually add RBW (reusing backbone weight), PFE (personalized feature en-
hancement) and the fast version of the combination of the previous two modules
on ResNet-50-FPN RetinaNet600 baseline. The first row of Table 2 shows the
result of the original RetinaNet600, which use FPN by default. We replace the
FPN architecture in RetinaNet with our methods and show the corresponding
results in rows 2 through 6.

Table 2. Ablation studies on COCO test-dev.

w/ RBW? w/ PFE? Fast-BBFE? FPS AP AP50 AP75 APS APM APL

13.3 34.4 54.0 36.7 17.8 38.3 47.0
X 10.8 36.1 56.3 38.8 19.7 40.0 48.2

X 13.4 34.4 54.1 36.8 18.0 38.4 46.7
X X 14.6 35.0 54.7 37.2 18.4 39.2 47.1
X X 10.7 36.4 56.4 39.1 20.4 40.5 48.5
X X X 14.6 35.4 55.4 38.0 18.6 39.6 47.7
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Reusing Backbone Weight. Reusing backbone weight achieves 1.7 points higher
box AP than the ResNet-50-FPN RetinaNet600 baseline, demonstrating the
power of this simple approach, which does not introduce any additional pa-
rameters or utilize any FPN-like feature fusion methods.

Personalized Feature Enhancement. Personalized feature enhancement fur-
ther improves the box AP from 36.1 to 36.4, where most of the improvements
are from APS , i.e. 0.7 points increase. Row 5 of Table 2 indicates that the PFE
block can boost performance with marginal extra cost (FPS reduced from 10.8
to 10.7).

Fast-BBFE. Based on BBFE, Fast-BBFE achieves a better trade-off in ac-
curacy and efficiency. The last row in Table 2 shows that Fast-BBFE achieves
better precision and increasing speed over the baseline, which can even compete
with ResNet-50-FPN RetinaNet800 (35.5 AP and 12.6 FPS).

Table 3. Comparisons with other feature pyramidal architectures on COCO test-dev.

Architecture AP AP50 AP75 APS APM APL

FPN [8] 35.5 55.6 38.1 21.2 39.3 45.9
BFP [18] 35.7 56.2 38.0 20.8 40.2 46.2
PANet [10] 35.9 55.9 38.4 20.9 40.1 46.3
FPN + BFP 36.4 56.9 38.6 21.2 40.4 48.1
BBFE (ours) 37.3 57.6 40.0 22.9 41.2 47.6

BBFE + FPN 36.8[−0.5] 57.8 39.4 23.4 40.4 46.3
BBFE + PANet 38.2[+0.9] 58.5 41.2 23.7 42.4 49.4
BBFE + BFP 38.3[+1.0] 59.3 41.0 24.7 42.1 47.8

Comparisons with Other Feature Pyramid. To further demonstrate the
effectiveness of our method, we compared in Table 3 with common hand-crafted
feature pyramidal networks including FPN, BFP, and PANet. Our experiments
are performed on ResNet-50 RetinaNet with the image scale of [1333, 800]. NAS-
FPN is not involved because its experimental conditions in MMDetection are
quite different from other algorithms. As Table 3 shows, our BBFE yields 0.9
∼ 1.8 points higher AP over other FPNs on the same baseline. In particular,
compared with the method of FPN combined with BFP in row 4, BBFE has a
more balanced increase in APS (+1.7 points), APM (+1.9 points) and APL (+1.7
points), which further demonstrates that our method consistently enhances the
feature map of all scales.

Our BBFE is able to achieve 37.3 AP on COCO dataset, which is 1.8 points
higher than ResNet-50-FPN RetinaNet. Furthermore, we tried to combine BBFE
with other feature pyramid structures to achieve further improvements and the
corresponding results are shown in the last three rows of Table 3. BBFE increases
the AP of PANet and BFP by 0.9 and 1.0 points, respectively. However, using
standard FPN after BBFE gets worse performance. As FPN focus on passing
the semantic information down to the shallow layers one by one to enhance low-
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level features, it is not suitable for features already containing strong semantic
information, which is the case of BBFE.

6 Discussion

Why can BBFE Improve Detection Performance? We take ResNet-50
Faster R-CNN (without FPN) for example. The feature activations output by
all stages of ResNet-50 are denoted as {C2, C3, C4, C5}, which have semantics
from shallow to deep layers. Inspired by CAM [38], we visualize the features to
better understand their properties. As shown in Fig. 6, the redder area means
richer semantic information. Intuitively, low-level features focus on the edge in-
formation, while high-level features focus on the semantic information of the
object. The shallow layers are not suitable for detection due to the weak seman-
tics. BBFE use the same convolutional layers on feature maps of different scales,
which greatly alleviates this problem. The comparison of C2 and P2, C3 and P3

as well as C4 and P4 in Fig. 6 shows that BBFE can add semantic information
into low level features and retain the original edge feature at the same time, so
as to reasonably improve the detection capability.

Fig. 6. Heatmap visualization. From top to bottom: the original image, feature maps
from different depths of ConvNets. The odd columns represent the original features,
and the even columns represent features enhanced by BBFE.

Runtime Analysis. ResNet-50-FPN can run at 12.6 FPS on 800 × 1333 in-
put images, which outperforms ResNet-50-Fast-BBFE (11.7 FPS) . However, as
listed in Table 2, ResNet-50-Fast-BBFE runs at 14.6 FPS while ResNet-50-FPN
only operates at 13.3 FPS on 600 × 1000 input images. Although the proposed
BBFE obtains feature maps in parallel, the inference time of BBFE is limited on
the slowest branch. Increasing the input resolution cause heavy computations,
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due to the size of largest feature maps. Conventional FPN runs slower than
Fast-BBFE on smaller images as it needs to wait for the backbone to generate
pyramidal feature hierarchy. However, it is less sensitive to the image resolutions,
due to the down-sampling layers. All the runtimes are tested on a single Tesla
V100 GPU.

7 Conclusion

In this paper, we propose a near parameter-free approach, named BBFE, to
directly build a semantic feature pyramid from detection backbone without ad-
ditional feature fusions. Compared with existing FPNs, our BBFE is simple and
requires no hand-crafted effort by exploring the potential of backbone ConvNets.
The experiments on COCO dataset demonstrate that our method can produce
significant improvements upon mainstream detectors without any training or
testing tricks. We also proposed Fast-BBFE to achieve better trade-off between
accuracy and efficiency. Moreover, our approach can be combined with other
FPNs to further improve the performance of object detection.
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