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Abstract. Weakly supervised object localization (WSOL) aims to lo-
calize the target object using only the image-level supervision. Recent
methods encourage the model to activate feature maps over the entire
object by dropping the most discriminative parts. However, they are
likely to induce excessive extension to the backgrounds which leads to
over-estimated localization. In this paper, we consider the background as
an important cue that guides the feature activation to cover the sophis-
ticated object region and propose contrastive attention loss. The loss
promotes similarity between foreground and its dropped version, and,
dissimilarity between the dropped version and background. Furthermore,
we propose foreground consistency loss that penalizes earlier layers pro-
ducing noisy attention regarding the later layer as a reference to provide
them with a sense of backgroundness. It guides the early layers to acti-
vate on objects rather than locally distinctive backgrounds so that their
attentions to be similar to the later layer. For better optimizing the above
losses, we use the non-local attention blocks to replace channel-pooled
attention leading to enhanced attention maps considering the spatial sim-
ilarity. Last but not least, we propose to drop background regions in addi-
tion to the most discriminative region. Our method achieves state-of-the-
art performance on CUB-200-2011 and ImageNet benchmark datasets
regarding top-1 localization accuracy and MaxBoxAccV2, and we pro-
vide detailed analysis on our individual components. The code will be
publicly available online for reproducibility.

1 Introduction

Fully supervised approaches have demonstrated excellent performance by train-
ing convolution neural network (CNN) with human annotations, e.g., bounding
box for object localization, pixel-wise class labels for semantic segmentation
[1-5]. However, they cost huge human labor to obtain accurate annotations.
Therefore, weakly supervised approaches that use only image-level supervision
have received significant attention over the various computer vision tasks [6-12].
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Fig. 1. Comparison of methods for generating activation maps on the CUB [16] dataset.
We display the final results obtained by ADL [9] (first row), SPG [8] (second row),
and our method (last row). The red boxes are the ground-truth and the green boxes
are the predicted ones. Activation maps are illustrated in heatmap color scale. ADL
tries to activate more on less discriminative parts but ends in excessive extension
to background. SPG tries to suppress background but still over-estimates the object
regions. In contrast, our method covers the whole object delicately without extending
to background.

Especially, weakly supervised object localization (WSOL) is a challenging task
that pursues both classification and the localization of the target object where
the training datasets provide only the class labels.

For example, Zhou et al. [6] generate class activation maps (CAM) using the
classification model with a global average pooling (GAP). CAM highlights the
class-specific discriminative regions in a given image [7-9, 13]. The crucial pitfall
of the activation maps is that it focuses on discriminative parts (e.g., the head
of a bird) rather than including the full extent of the object. To mitigate this
limitation, recent methods [9, 14, 15] propose to erase the most discriminative
parts by thresholding to spread out the activations to less discriminative regions.
However, they are likely to induce excessive extension to the backgrounds which
over-estimates bounding boxes (Fig. 1).

In this paper, we propose four ingredients for more accurate attention over the
entire object: contrastive attention loss, foreground consistency loss, non-local
attention block and dropped foreground mask. The contrastive attention loss
draws the foreground feature and its erased version close together, and pushes
the erased foreground feature away from the background feature (Sec. 3.2). It
helps the learned representation to reflect only the object region rather than
the backgrounds which are usually helpful for classification but harmful to lo-
calization. The foreground consistency loss penalizes disagreement of attentions
between layers to provide early layers with a sense of backgroundness (Sec. 3.3).
While usual low-level features are activated on locally distinctive regions (e.g.,
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edges) regardless of the presence of the objects, adding foreground consistency
loss boosts the activations on the object regions while suppressing the activa-
tions on the background regions. Furthermore, we apply the non-local attention
blocks to produce enhanced attention maps considering the similarity between
locations in a feature map (Sec. 3.4). It allows boosting weights on the regions
having similar features with the most discriminative parts to pursue correct ac-
tivation. Last but not least, we propose a dropped foreground mask which drops
the background region as well as the most discriminative region. It prohibits the
model from excessively spreading attention to backgrounds.

Our method achieves state-of-the-art performance in terms of the conven-
tional top-1 localization accuracy and the MaxBoxAccV2 [17].

In summary, our main contributions are:

e We propose a contrastive attention loss that favors similarity between fore-
ground feature and its dropped version and dissimilarity between the dropped
foreground feature and background feature.

e We propose a foreground consistency loss that provides a sense of localization
to earlier layers by guiding their features to be consistent with a high-level
layer.

e We propose a dropped foreground mask which drops the background region
and the most discriminative region.

e Our method achieves state-of-the-art performance on CUB-200-2011 and
ImageNet benchmark datasets in terms of top-1 localization accuracy
and MaxBoxAccV2.

2 Related Work

Weakly supervised object localization (WSOL). Given only the class la-
bels with the images, most of the WSOL methods train a classifier and extract
CAM [6]. CAM indicates the strength of activation in every location in the
feature map to stimulate the corresponding class [7-9,13]. Recent methods [6-
10,13] propose erasing the most discriminative region of the feature map to
spread out the activations to the regions which are less discriminative but still
in the object. Hide-and-Seek (HaS) [13] divides a training image into a grid of
evenly-divided patches and selects a random patch to be hidden. Adversarial
complementary learning (ACoL) [7] and attention-based dropout layer (ADL)
[9] partially drop the most discriminative region by thresholding on the feature
map. MEIL [18] runs two branches, one with erasing and one without erasing,
and impose both branch with classification task. These approaches guide the
models to discover previously neglected object regions. Our method steps fur-
ther to consider background as a region to drop so that the model does not
spread the activation excessively to the background.

Several methods have been proposed to suppress the background and localize
the whole object. Zhang et al. [8] present self-produced guidance (SPG) that
generates three pixel-wise masks (foreground, background, and undefined areas).
Fach mask is used as auxiliary supervision. However, it requires to find the
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Fig. 2. Overview of the proposed method. The non-local attention block generates
the enhanced attention map reflecting the similarity between locations. We create a
dropped foreground mask and an importance map using thresholding and sigmoid
activation, respectively. The selected map is multiplied with the input feature to feed
the next layer. Foreground consistency loss encourages the consistency between the
early and last layer. We calculate the contrastive attention loss at each convolution
layer where our non-local attention block is inserted.

optimal six hyperparameters for producing the three masks. We also focus on
the background but introduce simpler and more effective way.

Yang et al. [10] use a non-local block following every convolution-pooling
block. While their non-local blocks are inserted within the main stem of the
network, our non-local attention blocks are branch from the main stem and
produce attention maps to be multiplied to the main convolutional features at
chosen layers.

Contrastive visual representation learning. Contrastive learning [19] tries
to distinguish similar and dissimilar pairs of samples by embedding the sam-
ples as feature representations. Recent self-supervised learning methods [20, 21]
learn representations by maximizing agreement between differently augmented
views of the same image. They also consider the different images to minimize
the agreement for negative pairs.

Inspired by [20,21], we define a contrastive prediction task for WSOL. In-
stead of building similar and dissimilar pairs of image samples, we regard the
foreground region except for the most discriminative part (i.e., the dropped fore-
ground) as an anchor, and build the positive pair with the original foreground
and the negative pair with the background. Our contrastive objective does not
require a large batch size or large queue because it finds the pairs within an
image. Separating the foreground representation and the background represen-
tation is suitable for WSOL task.
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3 Proposed Method

This section describes elements of the proposed method and how we employ
them on the networks.

3.1 Network overview

As shown in Fig. 2, we augment classification network with the non-local atten-
tion blocks (Sec. 3.4) and train it with the contrastive attention loss (Sec. 3.2)
and the foreground consistency loss (Sec. 3.3). The non-local attention block
receives a feature map F and provides an enhanced attention map A which
becomes an importance map A through sigmoid activation and a dropped fore-
ground mask Mggs by thresholding (Eq. 1). The dropped foreground mask or
the importance map is randomly chosen based on a drop_rate and the chosen
one is applied to the input feature by pixel-wise multiplication (element-wise
multiplication with broadcasting over the channel dimension). The importance
map is not to be dropped but to be applied to the feature map. The dropped
foreground mask encourages activation of the input feature on less discrimina-
tive parts except background to maximize classification accuracy without losing
localization accuracy, while the importance map rewards higher activation on
the most discriminative part.

In the attention branch, the enhanced attention map and the dropped fore-
ground mask from a non-local attention block are used to compute the con-
trastive attention loss. In addition, the enhanced attention maps from multiple
non-local attention blocks are used to compute the foreground consistency loss.

The differences with ADL [9] in the forward process are that we use the
dropped foreground mask instead of drop mask and the attention map is pro-
duced by our non-local attention block instead of vanilla convolutional feature.
Fig. 3 illustrates the importance map, our dropped foreground mask, and the
drop mask in [9]. Our dropped foreground mask Mg, is defined by:

Mdfg =1[A < Qfg] A LA > Gbg], (1)

where 1 denotes a matrix with the same shape with the input having ones
according to the logical operation, A denotes logical and operation, and 8’s are
the pre-defined thresholds. Unlike the drop masks from ACoL [7] and ADL [9],
our dropped foreground mask remedies excessive expansion of activation on the
backgrounds by further erasing background regions in the mask.

The contrastive attention loss and the foreground consistency loss are com-
puted wherever the attention maps are extracted.

3.2 Contrastive attention loss

Contrastive loss [20] is a function whose value is low when a query is similar to its
equivalent instance and dissimilar to its different instances. Likewise, we design a
contrastive attention loss whose value is low when a dropped foreground feature
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Fig. 3. Examples of the importance map A, the drop mask from [9], and our dropped
foreground mask Mgy, -

Z4fg is similar to a foreground feature zg, and dissimilar to a background feature
zpg (Fig. 4). The features z, are obtained by masked global average pooling of
F o M, where

Mfg = ]1[A > ebg]’

_ (2)
Mg = 1[A < 6],

and the masked global average pooling is spatial average pooling of the pixels
whose value on the mask is 1. Then, the contrastive attention loss is given by

Lea = x[[(d(zdfg, ng) - d(deg, Zbg) +ml4], (3)

where [-]; = max(+,0) and d(-, -) denotes Lo distance in auxiliary 128-dimensional
embedding by 1x1 convolution. m denotes the margin.

Our contrastive attention loss guides the attention map to spread until it
reaches boundary because including backgrounds in the attention map is penal-
ized by the dissimilarity term. In addition, the similarity term favors homogenous
features between the most discriminative part and less discriminative parts in
the foreground region. Our contrastive attention loss does not require mining
positive and negative samples as in triplet loss [22] nor managing large negative
samples [20, 21]. Since we regard the masked features zqs,, 25, and zp, from one
image as an anchor, a positive sample and a negative sample, respectively.

3.3 Foreground consistency loss

Attention maps roughly are the magnitude of activation on every location. Con-
volutions in early layers activate more on locally distinctive regions such as edges
and corners [23], without inspecting the entire extent of objects due to their lim-
ited receptive field. To relieve this problem, we propose a foreground consistency
loss that encourages attention maps from early layers to resemble later layers
(Fig. 2).

Let A; and A; are the attention maps from early and later layers, respectively.
Then we define the foreground consistency loss as:

Lye = lAi - A, (4)
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Fig. 4. The details of the contrastive attention loss, where A denotes an enhanced
attention map from a non-local attention block. We generate three maps and features
to compare the similarity in embedding space. ® denotes pixel-wise multiplication. The
contrastive attention loss is computed on an embedding space.

where || - ||z denotes Ly norm of a matrix.

Gradients from the foreground consistency loss only run through the early
layer to achieve the abovementioned goal. It reduces the noisy activations outside
the object and boosts activations in the object.

3.4 Non-local attention block

In order to provide additional capacity for the network to produce a correct
attention map, we employ non-local block [24] instead of average channel pooling
of the convolutional features [9, 25]. Given a feature map, our non-local attention
block embeds it into three different embeddings and outputs spatial summation
of the third one weighted by similarity between the first two embeddings. Then
the enhanced attention map is defined by its channel-pooled result.

Specifically, the block receives a feature map x € REH>*W from a convolution
layer. For simplicity, we omit the mini-batch dimension. We define f(x),g(x) €
REXHXW 7(x) € REHXW that use 1 x 1 convolution layer for embedding. Then,
f(x),g(x) and z(x) are reshaped to f(x),g(x) € RE*HW z(x) € RE*HW respec-
tively.

The enhanced attention map A is given by:

A = Ec[Softmax(f ()" g(x)) © z(x)], (5)

where E¢ denotes average pooling over the channel dimension.
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The non-local attention block produces the enhanced attention map regard-
ing similarities between locations. It unleashes the receptive field of the layer
and provides an additional clue for deciding where to attend. Our non-local at-
tention block is different from [10] in that we organize it only when generating
several enhanced attention maps. Yang et al. [10] apply the non-local module to
all layers in the main branch with residual connection.

3.5 Training and Inference

We train the base network and non-local attention block with the full objective:

Liotal = Leis + Lea + -Efc (6>

We employ a GAP layer at the end of the network to produce softmax output
y and compute classification loss given the one-hot ground truth label y:

L5 = CrossEntropy (¥, y) (7)

All network weights are updated wherever all losses send their gradients to-
wards the input, while the foreground consistency loss does not convey gradients
to its reference layer.

Our non-local attention block is applied only during training and deactivated
in the testing phase. The input image goes through only the vanilla model to
produce the class assignment. Then we follow [17] to extract the heatmap which
leads to the bounding boxes by thresholding and its connected multi-contour.

4 Experiments

4.1 Experimental setup

Datasets. We evaluate the proposed method on two benchmark datasets: CUB-
200-2011 [16] and ILSVRC [26] (ImageNet) for WSOL task, from which only the
image-level labels are used in training. Many weak-supervision methods have
used full supervision to some extent, directly or indirectly for hyperparameter
tuning. Since the amount of full supervision used for hyperparameter tuning
is not consistent, it has been ambiguous using the previous evaluation metric
for a fair comparison. We follow the recent evaluation metric [17] which fixes
the amount of full supervision only for hyperparameter search. Each dataset
is divided into three subsets: train-weaksup, train-fullsup and test. The
train-weaksup includes images only with the class labels for training. The
train-fullsup contains images with full supervision, which has bounding boxes
as well. It is left free for the users to use the train-fullsup for hyperparame-
ter search. They collected five images per class (total 1,000 images) from Flickr
for CUB experiments, and ten images per class (total 10,000 images) from Im-
ageNetV2 [27] for ImageNet experiments, respectively. The test split for the
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Table 1. Hyperparameters (drop-rate, ys, ¥bg) for each backbone.

Backbone ‘ drop_rate Yig Ybe
VGG [29] 0.33 0.72 1.2
InceptionV3 [30] 0.69 0.86 1.2
ResNet50 [31] 0.85 0.95 1.2

final number is the same as the standard WSOL settings on CUB and ImageNet
experiments [7-9,17, 28]. In the CUB dataset, there are 5,994 images for training
and 5,794 for testing from 200 bird species. ImageNet consists of 1.2M training
images and 10K test images for 1,000 classes. All experimental analyses of the
proposed method are conducted on the test split of the two abovementioned
datasets.

Evaluation metrics. We use top-1 classification accuracy and top-1
localization accuracy, and MaxBoxAccV2 [17].

Top-1 classification accuracy is the ratio of correct classification. The
conventional top-1 localization accuracy measures ratio of the samples with
the right class and the bounding box of IoU greater than 0.5.

MaxBoxAcc measures ratio of the samples with the correct box, while the
correctness is defined by an IoU criterion § at the optimal activation threshold.
MaxBoxAccV2 averages MaxBoxAcc at three IoU criterions 6 € {30,50,70} to
address diverse demands for localization fineness. It is similar to the common
GT-known metric but differs in that it evaluates on three IoUs by extracting
the bounding box with the optimal score map threshold. We use % symbol as a
percent point for mentioning differences on comparisons.

Implementation details. We build the proposed method upon three CNN
backbones: VGG16 [29], InceptionV3 [30], and Resnet50 [31]. We need three
hyperparameters: drop_rate for randomly choosing the importance map or the
dropped foreground mask, 0g, and 6yg for thresholding. The threshold 6, is set
to the maximum intensity of A times pre-defined ratio yg. The 6yg is set to
average intensity of A times pre-defined ratio .. The specific values of the
hyperparameters for each backbone are shown in Table 1.

The layers, from which the enhanced attention maps are extracted, are chosen
to be the same with the baseline method [9]. We also calculate our contrastive
attention loss and foreground consistency loss for all layers where attention maps
are produced. We set the batch size to 32, weight decay to 0.0001, margin m to 1.
The initial learning rate and the momentum of the SGD optimizer are set to 0.001
and 0.9, respectively. We start from loading weights from the model pre-trained
on the ImageNet classification [26] and then fine-tuned the network. Our model
is implemented using PyTorch and trained using two NVIDIA GeForce RTX
2080 Ti GPUs for approximately three hours. The input images are randomly
cropped to 224 X 224 pixels after being resized to 256 X 256 pixels. During
testing phase, we directly resize the input images to 224 x 224.
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4.2 Ablation study

We first show detailed experiments to validate effectiveness of each component.
We fix the ResNet50 [31] as a backbone and add or remove each component. The
experiments are performed on the CUB test split. The difference in performance
in % represents percent points.

Ablation of the proposed losses. Table 2 shows that both the contrastive
attention loss and the foreground consistency loss are the crucial element for
the improved performance. Ours without the contrastive attention loss achieves
2% lower performance than the full setting. The loss has positive effect on all
three IoU thresholds. The foreground consistency loss also plays an important
role of improvement by 0.79%. It especially boosts the accuracy at IoU 0.7. We
suggest that the loss helps precisely estimating the location of the object in the
early layer by providing the hints from the later layer. Using the both losses
leads to balanced improvements over all IoU thresholds. In addition, contrastive
attention loss with the normalized temperature-scaled cross-entropy loss (NT-
Xent) [20,21] also shows improvements to some extent. Its result can be found
in the supplementary material.

Effectiveness of the non-local attention block. If we use the vanilla at-
tention map which is the channel-pooled result of the convolutional feature, the
performance drops by 0.62% (the fourth row in Table 2). It shows that consid-
ering the relationship between pixels in feature map helps localizing where to
attend.

Effectiveness of the dropped foreground mask. Here we validate the effec-
tiveness of replacing the drop mask [9] with the dropped foreground mask Magg.
Without the replacement, the model achieves 1.12% lower performance than the
full setting (the fifth row in Table 2). Also, only replacing the drop mask with
the dropped foreground mask improves the performance of the baseline [9] by
0.87%. We suppose that the dropped foreground mask improves ours more than
the baseline because the additional two losses and the non-local attention block

Table 2. The ablation study for each element of our method on Resnet50 [31] back-
bone in terms of MaxBoxAccV2. Contrastive: contrastive attention loss. Lg.: foreground
consistency loss. Non-local: non-local attention block. Mg¢g: dropped foreground mask.
All elements contribute to the performance improvement.

MaxBoxAccV2@IoU (%)

Methods 0.3 0.5 0.7 Mean

Baseline [9] 91.82 64.78 18.43 58.34 (-4.86)
Ours w/o contrastive| — 94.79 70.84 17.98  61.20 (-2.00)
Ours w/o Lse 96.51 72.14 1857  62.41 (-0.79)
Ours w/o non-local 95.80 71.62 20.32  62.58 (-0.62)
Ours w/o Mg 96.42 72.21 17.62 62.08 (-1.12)
Ours (full) 96.18 72.79 20.64 63.20
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Table 3. Performance comparison regarding at which layer to insert our attention
block. The contrastive attention loss and the foreground consistency loss are in use for
all cases. The conv_5_3 layer is fixed as the reference layer and its performance is left
empty because the foreground consistency loss requires at least two layers. We add the
layers from later to earlier and report their performance in a cumulative setting.

Location ‘ Top-1 classification | MaxBoxAccV2
conv_5_3 - -

+ pool 4 74.23 64.67

+ pool_3 73.35 66.72

+ pool_2 66.26 63.25

+ pool_1 62.68 62.18

provide an extra guide for better importance map.

Location of our attention block. We investigate the influence of where to
insert our non-local attention block on VGG16 [29], and report the results in
Table 3. The conv_5_3 layer is fixed as the reference layer for the foreground
consistency and its preceding layers are added one by one cumulatively. The
setting with top three layers, which is the same as the baseline [9], achieves
the best performance in terms of MaxBoxAccV2. Adding the attention blocks
on pool_1 and pool_2 layers decreases the performance. We suppose that the
reason is their small receptive field which leads to noisy activations on extremely
locally salient regions. Hence, we do not use the attention mechanism on the two
earliest layers.

Table 4. MaxBoxAccV2 [17] comparison with the state-of-the-art methods. The results
for each backbone represent the average of the three IoU thresholds 0.3, 0.5, and 0.7.
VGG: VGG16 [29]. Inc: InceptionV3 [30]. Res: ResNet50 [31]. The best and the second
best entries in a column are marked in boldface and italic, respectively.

Methods ImageNet CUB-200-2011

VGG Inc Res Mean| VGG Inc Res Mean
CAM [6] 60.0 63.4 63.7 624 | 63.7 56.7 63.0 61.1
HaS [13] 60.6 63.7 63.4 62.6| 63.7 53.4 64.7  60.6
ACoL [7] 57.4 63.7 62.3 61.2 57.4 56.2 66.5 60.0
SPG [g] 59.9 63.3 63.3 622 | 56.3 55.9 60.4 57.5
ADL [9] 59.8 61.4 63.7 61.7| 66.3 58.8 58.4  61.1
CutMix [28]| 59.4 63.9 63.3 62.2 62.3 57.5 62.8 60.8

Ours ‘61.3 62.8 65.1 63.1| 66.7 60.3 63.2 63.4
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Table 5. Detailed MaxBoxAccV2 [17] comparison with the runner-up methods on each
dataset. We compare ours and the second best methods on each dataset and each
backbone in terms of MaxBoxAccV2 including individual measures on the three IoU
criterions. Mean indicates that the average value of the three IoU thresholds. VGG:
VGGI16 [29]. Inc: InceptionV3 [30]. Res: ResNet50 [31]. Bold texts denote the best
performance in each column.

MaxBoxAccV2@QIoU (%)
Method Backbone| Top-1 0.3 05 07 Mean
= ADL VGG 54.95 97.72 78.06 23.04 66.28
S| Ours VGG 73.35 | 96.20 (-1.5) 77.20 (-0.8) 26.75 (+3.7) 66.72 (+0.5)
%' ADL Inc 41.03 93.77 65.79 16.86 58.81
Nl Ours Inc 64.01 | 95.89 (+2.1) 67.93 (+2.2) 17.20 (+0.4) 60.34 (+1.2)
% ADL Res 66.60 91.82 64.76 18.43 58.34
O| Ours Res 80.35 | 96.18 (+4.3) 72.79 (+8.0) 20.64 (+2.2) 63.20 (+4.9)
HaS VGG 68.26 80.72 62.15 38.89 60.59
| Ours VGG 69.21 | 81.45 (+0.7) 63.20 (+1.1) 39.35 (+2.2) 61.33 (+0.8)
Z [ HaS Inc 69.07 83.95 66.27 40.94 63.72
¥| Ours Inc 71.31 | 82.44 (-1.5) 65.21 (-1.0) 40.87 (-0.1) 62.84 (-0.9)
.g HaS Res 75.39 83.71 65.22 41.26 63.40
Ours Res 76.54 | 84.26 (+0.5) 67.62 (+2.4) 43.58 (+2.3) 65.15 (+1.7)

4.3 Comparison with state-of-the-art methods

We compare our method with the state-of-the-art WSOL methods in terms of the
MaxBoxAccV2 [17], top-1 localization and top-1 classification accuracy.

MaxBoxAccV2 [17]. Table 4 shows comparison of MaxBoxAccV2 across all
competitors on ImageNet and CUB. Our method outperforms all existing meth-
ods in terms of MaxBoxAccV2 (Mean) and most of backbone choices. Table 5
shows detailed comparison with the runner-up methods of each dataset. Our
method boosts performance especially when IoU criterions are 0.5 and 0.7 ex-
cept when Inception network is the backbone. Our method exhibits the largest
improvement when employed on ResNet backbone.

Top-1 localization accuracy. Top-1 localization accuracy on the Ima-
geNet and CUB datasets is shown in Table 6. Our model outperforms the state-
of-the-art methods on most settings. Note that we do not perform hyperparam-
eter tuning using the train-fullsup split following the competitors for a fair
comparison.

Top-1 classification accuracy. Table 7 compares our method with the state-
of-the-art methods in terms of top-1 classification accuracy. While some
other methods compromise classification accuracy for improving locazliation,
our method achieves the best MaxBoxAccV2 and localization accuracy without
damaging the classification accuracy.
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Table 6. Conventional Top-1 localization accuracy comparison with the state-of-
the-art methods. The values are taken from their respective papers. Bold texts denote
the best performance in each backbone network.

ImageNet CUB-200-2011
Methods VGG Inc Res VGG Inc Res
CAM [6] 42.8 46.3 - 37.1 43.7 49.4
Ha$ [13] - - - - - -
ACoL [7] 45.8 - - 45.9 - -
SPG [8] - 48.6 - - 46.6 -
ADL [9] 44.9 48.7 - 52.4 53.0 -
CutMix [28]| 435 - 47.3 - 525 54.8
MEIL [18] 46.8 49.5 - 57.5 - -
Ours | 47.2 49.3 484 | 575 56.1 56.1

Table 7. Top-1 classification performance of the state-of-the-art methods. Hyper-
parameters for each method are optimally selected for the localization performances
on train-fullsup split. Bold texts denote the best performance. MEIL does not pro-
vide code for reproduction and its values are taken from the paper. Other values are
reproduction from [17].

Methods ImageNet CUB-200-2011

VGG Inc Res Mean| VGG Inc Res Mean
CAM [6] 66.48 70.56 75.05 70.70| 50.10 70.70 71.50 64.10
HaS [13] 68.26 69.07 75.39 70.91| 75.90 64.50 69.70 70.10
ACoL [7] 64.55 71.81 73.09 69.82| 71.80 71.50 71.10 71.40
SPG [8] 67.76 71.12 73.26 70.71| 72.10 46,20 50.50 56.30
ADL [9] 67.58 61.17 71.99 66.91| 55.00 41.00 66.60 54.20
CutMix [28] 66.36 69.16 75.71 70.41| 48.40 71.00 73.00 64.10
MEIL [18] 70.27 73.31 - - 74.77 74.55 -
Ours ‘ 69.21 76.54 71.31 72.35| 73.40 64.00 80.40 72.60

4.4 Qualitative results

Fig. 1 compares activation maps and estimated bounding boxes from ADL [9],
SPG [8] and ours. ADL excessively covers backgrounds because it simply en-
courages the model to use less discriminative parts, and SPG still over-estimates
the bounding boxes although it tries to suppress background. In contrast, our
method focuses on the entire object more accurately and estimates tighter bound-
ing boxes. Fig. 5 illustrates more examples from our model. Our method not only
spreads out of the most discriminative parts, but also restrains the activations
in the object regions. Note that the water and mirrored image of the pelican
does not earn large activation even though they are helpful cue for classification
(the second row of the second column).
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ImageNet [26] CUB-200-2011 [16]

Fig. 5. Qualitative examples of activation map and localization produced by our model
on the ImageNet and CUB test split. The red boxes are the ground-truth and the green
boxes are the predicted ones. These maps output with colors ranging from red (higher
importance) to blue (lower importance like a background).

5 Conclusion

In this paper, we consider the background as an important clue for localizing
the entire object without excessive coverage and present two novel objective
functions. The crucial weakness of the previous methods is that they focus on
discriminative parts rather than localizing the whole object, or extend too much
on the background. The proposed contrastive attention loss guides the model
to spread the attention map within the objects. The foreground consistency
loss decreases the activation to backgrounds in the early layers. The generated
attention map not only better localizes the target object but also suppresses the
background concurrently. In addition, our non-local attention block enhances the
attention map with a larger capacity to better optimize the proposed losses. We
achieve state-of-the-art performance on ImageNet and CUB-200-2011 datasets
and provide detailed analysis on the effects of our individual components.
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