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Abstract. Robust and accurate object detection on roads with various
objects is essential for automated driving. The radar has been employed
in commercial advanced driver assistance systems (ADAS) for a decade
due to its low-cost and high-reliability advantages. However, the radar
has been used only in limited driving conditions such as highways to de-
tect a few forwarding vehicles because of the limited performance of radar
due to low resolution or poor classification. We propose a learning-based
detection network using radar range-azimuth heatmap and monocular
image in order to fully exploit the radar in complex road environments.
We show that radar-image fusion can overcome the inherent weakness of
the radar by leveraging camera information. Our proposed network has
a two-stage architecture that combines radar and image feature repre-
sentations rather than fusing each sensor’s prediction results to improve
detection performance over a single sensor. To demonstrate the effective-
ness of the proposed method, we collected radar, camera, and LiDAR
data in various driving environments in terms of vehicle speed, light-
ing conditions, and traffic volume. Experimental results show that the
proposed fusion method outperforms the radar-only and the image-only
method.

1 Introduction

A frequency-modulated continuous-wave (FMCW) radar and RGB camera have
been widely used in advanced driver assistant systems (ADAS) thanks to their
many advantages for mass production. Commercial radars and cameras have
advantages of low-maintenance, high-reliability, and low-cost due to their stable
design and mature market. Despite the many advantages of radar, the radar used
in ADAS is limited to detecting a few forwarding vehicles as the radar data is
processed using traditional signal processing algorithms. Learning-based meth-
ods are expected to show better performance when replacing existing rule-based
algorithms. However, 3D object detection utilizing low-level radar data in deep
learning frameworks has not yet been thoroughly investigated.
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The automotive FMCW radar can measure distances to distant objects and can
operate robustly even in harsh weather conditions due to the nature of funda-
mental design and long wavelength. However, the long wavelength of radar also
restricts its performance. The radar suffers from a low angular resolution and
accuracy that makes it challenging to separate adjacent vehicles. Contrarily, the
camera has a high angular resolution due to the dense pixels and dense RGB
pixels can provide visual cues to classify the category of objects. As shown in
Table 1, the camera and radar have very complementary properties. Therefore,
the camera-radar sensor fusion is promising to complement the shortcomings of
each sensor and improve the detection performance.

This paper aims to detect 3D vehicles by sensor fusion network using the radar
range-azimuth heatmap and image data, as illustrated in Fig. 1. To demonstrate
the effectiveness of the proposed fusion method on the various driving environ-
ment, we constructed a dataset because none of the public datasets contains the
low-level radar with 3D annotations.

Fig. 1. Detection results of the proposed fusion method on the camera image (top),
radar range-azimuth heatmap in the polar coordinate system (left), and radar in the
Cartesian coordinate system (right). White and green boxes refer to ground truths and
prediction results.
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Table 1. Characteristics of sensors widely used in vehicle intelligence.
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Fig. 2. Data processing sequence of FMCW radar. The proposed method uses 2D
Range-Azimuth heatmap representation (c) instead of point cloud (d) or object-level
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We summarize the basic principle and data processing process of the FMCW
radar in Fig. 2. The FMCW radar transmits a chirp signal that linearly in-
creases frequency and receives the reflected signal. The frequency difference be-
tween transmitted and received signal obtained by Analog-to-Digital Converter
(ADC) is calculated by Fast Fourier Transform (FFT) to calculate the distance
(Fig. 2-a). The velocity and angle are estimated by measuring the phase dif-
ference across signals. The velocity can be calculated by two chirps measured
at a successive time (Fig. 2-b), and the angle is calculated by the same chirp
measured from multiple RX antennas. As a result, a 3D radar tensor with a
range-azimuth-Doppler dimension is obtained as a result of FFTs (Fig. 2-c). In
this paper, this radar representation is referred to as a radar heatmap. After
that, conventional signal processing techniques such as Constant False-Alarm
Rate (CFAR) [1] process low-level data to identify valid point targets among
clutters (Fig. 2-d). Finally, objects are detected by a clustering algorithm and
verified using filtering and tracking algorithms (Fig. 2-e). Conventional signal
processing algorithms using hand-coded features (e.g., CFAR, MUSIC) works



4 J. Kim et al.

robustly in simple scenarios, but their performance drops significantly in com-
plex urban driving environments with many metal objects such as streetlights.
To be able to use radar in complex environments, we design a learning-based
method to fully exploit information on image-like radar range-azimuth heatmap
representation (Fig. 2-¢) rather than object-level representation (Fig. 2-e).

3 Related Work

Dataset for Autonomous Driving. A number of public datasets for au-
tonomous driving have recently been published. KITTI [2] provides a monocular
and stereo camera, 3D LiDAR for many computer vision tasks such as 3D object
detection, tracking, and depth prediction. However, it is pointed out that the
diversity of the dataset may not be sufficient because data is only collected dur-
ing the daytime and on sunny days. Apolloscape [3] collected a total of 143,969
frames, which contains the largest labels among public datasets and it claims to
have a higher diversity compared to KITTI. However, KITTI and Apolloscape
do not provide radar data. NuScenes [4] is a multimodal dataset for 3D object
detection and tracking tasks and contains radar data, but radar data is processed
as a point cloud representation. We argue that a lot of valuable information can
be lost during the signal processing. Oxford RobotCar [5] provides camera, 3D
LiDAR, and radar data as range-azimuth heatmap representation, which is the
same representation used in this paper. However, RobotCar [5] does not provide
3D object labels because the dataset is aimed at the odometry task. The syn-
thetic datasets such as Virtual KITTI [6] are used as alternatives to address the
data limitation issue. However, it is known to be challenging to generate syn-
thetic radar data since the radar beam is difficult to simulate due to the nature
of electromagnetic waves.

Learning-based Object Detection using Low-level Radar data. Only a
few studies have been conducted using low-level radar data for object detection.
We assume this is because of the absence of the public dataset containing low-
level radar data and the ground truth label. He et al. [7] and Kwon et al. [8] use a
time-serial micro-Doppler map to classify human activities using a convolutional
neural network (CNN) and multi-layer perceptron (MLP), but their works do
not consider detecting the position of the object. Brodeski et al. [9] and Zhang et
al. [10] utilize U-Net [11] like architecture to detect objects on the range-Doppler
map. These studies, however, are demonstrated in restricted environments such
as a chamber and a vacant lot. Major et al. [12] collect radar range-azimuth-
Doppler data on highway driving scenario and detect vehicles on a bird’s eye view
(BEV). They employ a one-stage detection network SSD [13] and it provides good
detection performance in highway environment, but it is not be guaranteed to
work well in complex urban situation.

Sensor Fusion-based Object Detection. The number 3D object detection
studies have been conducted using multiple sensors, mainly LiDAR and camera.
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MV3D [14] generates 3D proposals from BEV LiDAR feature map and projects
proposals into a front view LiDAR and image feature map to fuse a projected
region of interest (Rol). Similarly, AVOD [15] projects 3D anchors to LIDAR and
image feature maps, respectively. Rols from different feature maps are fused on
region proposal network (RPN) stage and generate high-recall object proposals.
Few methods exploit radar and camera sensors but not fully investigated on
detecting 3D objects. Chadwick et al. [16] focus on detecting distant vehicles by
using object-level radar data. It projects radar data into the image plane and
detects a 2D bounding box using SSD [13] in the image pixel coordinate system
rather than vehicle coordinate system. Meyer and Kuschk [17] exploit radar point
cloud and camera to detect 3D vehicle using AVOD [15] architecture. Lim et al.
[18] utilize low-level radar and camera. Images are projected into the BEV plane
using Inverse Perspective Mapping (IPM) to match the coordinate system with
radar, on the dataset collected in [12]. However, their experiments are conducted
in the highway driving scenario and assume a planar road scene to use IPM, but
IPM approach is difficult to be adopted to the road with slope.

4 Dataset

4.1 Sensor Configuration

We use the Hyundai Ioniq vehicle platform equipped with a camera, radar, and
LiDAR to collect data. Sensor specifications and placements are described in
Table 2 and Fig. 3. We mount radar and LiDAR on the front bumper parallel
to the ground, while the camera is mounted on the top of the vehicle.

Table 2. Sensor specification.

Sensor Specification

Camera 1xFLIR Blackfly, 10Hz capture frequency, RGB, 1/1.8” CMOS,
1920704 resolution, auto exposure, JPEG compressed

Radar 1xTI AWR1642; 10Hz capture frequency, 77 to 81-GHz FMCW,
4Rx and 2Tx antennas, 120° horizontal FoV, <55m range

LIDAR 3xIBEO LUX, 25Hz capture frequency, 4 beams, 85° horizontal

FoV, <80m range

We carefully calibrated intrinsic parameters and extrinsic parameters to ob-
tain a reliable ground truth and to transform the coordinate system between
sensors. First, we calibrated the camera to be undistorted and rectified by in-
trinsic parameters, then calibrated extrinsic parameters between camera and
LiDAR using the approach proposed in [19]. After that, 6-DOF rigid transfor-
mation parameters between LIDAR and radar are obtained using a laser scanner
while keeping the two sensors are mounted in parallel.
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Fig. 3. Sensor placements of vehicle platform.

For the radar, built-in subsystems such as analog-to-digital converter (ADC),
digital signal processing (DSP), and ARM-based processer are integrated with
the radar sensor and process the signal as Fig. 2. In this paper, we use low-level
range-azimuth data instead of a point cloud or object-level data to fully exploit
the potential of radar. We modify the C++ implemented radar firmware of chip
to access 2D range-azimuth data from the radar.

In order to reduce the data misalignment between multiple sensors, we synchro-
nize data using CPU time. As a result, radar and LiDAR data captured closest
to the camera are used, and data is sampled at 2Hz.

4.2 Data Acquisition and Annotation

Driving data has been recorded while driving around campus, urban areas, and
motorways in Daejeon, Korea. After recording raw data, we select interesting
scenes considering the diversity of data with respect to the speed of ego vehicle,
the volume of traffic, and lighting conditions. ’Stop’ means that the ego vehicle
slows down and stopped while surrounding vehicles are moving (e.g., stopping
at intersection or red traffic light), "Low’ means that the ego vehicle drives be-
low 40kph (e.g., campus), and 'Normal’ is a general road driving environment
that drives above 40kph. The scenes according to the light condition consist of
"Sunny,” ’Cloudy,” and ’Night.’

This paper focuses on demonstrating the effectiveness of the proposed method on
detecting car class. We carefully annotated the 3D position, size, and orientation
of the car. The ground truths label are annotated using LiDAR point clouds and
transformed into the radar coordinate system. Note that we annotated vehicles
with more than half of the vehicle is inside the image frame, and vehicles located
within 50 meters.

4.3 Dataset Analysis

We carefully split collected data into a train set and test set while making sure
that training and testing data does not come from the same scene. We analyze
the distribution of the dataset in terms of the ego vehicle speed, lighting condi-
tions, distance to annotation, and the number of annotation in frame in Table 3
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and Fig. 4. The distribution analysis shows that our dataset can represent the
complex urban driving scenarios.

Table 3. Statistics of collected dataset.

. . Number of Number of
Split Size (Hr) .
frames annotations
Training set 0.78 5512 9115
Test set 0.32 2232 5853
Total 1.10 7744 14968
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Fig. 4. Distributions of collected dataset consists of ratio of driving conditions, distance
of annotation from the ego vehicle, and the number of annotations in each frame.

5 Methodology

The performance of the sensor fusion-based object detection network can vary
depending on the stage in which the two modalities are combined. Sensor fusion
methods can be broadly categorized into early, middle, and late fusion, and each
method has its strengths and weaknesses. The conventional sensor fusion method
for ADAS is the late fusion method that combines object-level outputs processed
by each modality, which has advantages of high flexibility and modularity. How-
ever, it discards the benefit of rich information of intermediate features. While,
the early fusion method combines the two raw sensor data and feeds it into the
network. It can utilize the information of the raw data, however, two modalities
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have to be on the same coordinate system so that two modalities can be aligned.
Meanwhile, middle fusion is a compromise between early and late fusion because
it combines feature representations from two modalities at intermediate layers.
It can fully exploit both input data by using appropriate feature extractor for
each modality, and network design is advantageous because the coordinate sys-
tems of the two sensors do not have to be the same.

As illustrated in Fig. 5, our proposed method has a middle fusion method that
combines the region of interest (Rol) features from two modalities based on a
two-stage object detection architecture with region proposal network (RPN) and
detection head following AVOD [15] architecture.

Backbone 3DRPN Detection Head
Monocular Image
Image | | Image | _____........] Image
Backbone Feature Map Feature Map

Final
3D Anchors Predictions
- o Fusion
Range-Azimuth :--*’ Projection &
Heatmap (Polar) Rol Align
Radar Radar Radar
> Feature Map|-==============3Feature Map
Backbone | Coords. ) ) Extracted
Transform | (Cartestan) (Cartesian) Rol Features

Fig. 5. Overall architecture of the proposed radar-image fusion method.

5.1 Radar Representation and Backbone

The 2D range-azimuth heatmap is naturally obtained in range-azimuth (polar)
coordinate system, but the polar coordinate system has several shortcomings to
detect objects on 3D space. In the polar coordinate system, the physical distance
between two adjacent data in the polar space increases as the radial distance
increases. As also claimed in [12], detecting objects in polar feature map has
inferior performance than detecting objects in Cartesian space. Following [12],
we extract features in polar space then explicitly transforms the extracted feature
map into Cartesian space using bilinear interpolation.

The radar and image backbone has a modified VGG16 [20] model and a feature
pyramid network (FPN) [21]. The width and height of input decrease by half
using max pooling, while the number of feature increases from 32 to 256 every
2,2, 3, and 3 layers. The network takes the image with a size of 1920 x 704 and
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range-azimuth radar in polar space with a size of 128 x 64. The radar input has a
resolution of 0.4392 m and 1.9 degree. The last radar feature map is transformed
to Cartesian space with a size of 560 x 610 with 0.1 m resolution.

5.2 3D Region Proposal Network

In the 3D region proposal network (RPN) stage, a 3D anchor is used to generate
proposals. Similar to 2D RPN, 3D RPN generates anchors in 3D space within a
range of radar Cartesian space. Two Region of Interests (Rols) are obtained by
projecting given 3D anchor into two feature maps of each modality, and Rols are
cropped into 7 x 7 size feature by Rol Align [22]. Here, Rol Align is adopted to
minimize the quantization effect occurring near the Rol boundary. Minimizing
the quantization effect is especially important for the radar because the resolu-
tion of radar is low and a single pixel misalignment can lead to large localization
error. Two extracted Rols are fused by concatenation operation and fed to two
branches of fully connected layers with two layers of size 256. One branch per-
forms 3D box regression and the other outputs the objectness score. Smooth L1
loss is used for the 3D box regression and focal-loss [23] for objectness.

For training RPN, assigning a positive and negative (foreground and back-
ground) label to each anchor is required to compute the loss as introduced in
Faster R-CNN [24]. Intersection-over-Union (IoU) is widely used for the match-
ing metric in the object detection task, defined as:

IoU = |B N B%|/|BU B (1)

where B9t = (29 y9%, w9t h9t) and B = (z,y,w,h) is the center position and
size of ground truth and prediction results, respectively. However, we claim that
IoU is not the best choice for the vehicle and radar application. Since the vehi-
cle in BEV space has a long rectangular shape, small lateral displacement can
greatly reduce the IoU, as an example shown in Fig. 6. The IoU can be espe-
cially fatal to the radar because the radar has low lateral accuracy. We claim that
the IoU threshold is inconsistent and it can inhibit the network generalization.
Therefore, we proposed the distance matching metric using L2 norm between
center positions of ground truth and prediction as follows:

Distance matching = ||(x9%,y9") — (z,v)||2 (2)

In the RPN stage, anchor closer than 2 m are regarded as positive, and farther
than 2.5 m are regarded as a background during training schemes. Predicted pro-
posals are filtered by 2D non-maximum suppression (NMS) at an IoU threshold
of 0.8 in BEV space.

5.3 Detection Head

In the detection head stage, the top 100 proposals from the RPN are projected
onto each coordinate system again, and the Rol fusion proceeds as same in
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Fig. 6. Example of the IoU matching metric and the distance matching metric. The
prediction 1 is closer to the ground truth than prediction 2 but it has a lower score
when using IoU due to the shape of the vehicle.

the RPN. The extracted features are cropped and resized to 7 x 7 and fused
through a concatenation operation used as an input to fully connected layers.
The final detection head consists of one branch of a fully connected layer, which
consists of three layers of size 2048 to output object probability, box regression,
and orientation. Similar to RPN, proposals closer than 1 m are considered as
positive, and farther than 1.25 m are negative. NMS threshold of 0.001 IoU is
used to remove prediction results that are overlapped with each other.

5.4 Implementation Details

We apply multi-task loss for position and size regression, orientation, and clas-
sification in an end-to-end fashion same as [15].

Ltotal = /\clchls + )\regLTeg + AdirLdir (3)

In (3), the regression and orientation terms use smooth L1 loss and weights are
experimentally set to A\os = 5, Areg = 3, and Ag;r = 5. The classification loss for
RPN has the focal loss [17] following:

FL (p) = —ou (1 —py)” log(py) (4)

We use a = 0.3 and v = 2.25 to enforce positive and negative samples to have
a 1:3 ratio. The proposed network was trained using Adam optimizer, with an
initial learning rate of 0.0001 with a decay of 0.8 for every 33k iterations until
220k iterations.

6 Experiments

We evaluate the performance of the proposed method using three different met-
rics and compare with a radar-only and an image-only method. The radar base-
line method has the same architecture as the proposed two-stage method without
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the image branch. For the image baseline, the state-of-the-art image-based 3D
detection method M3D-RPN [25] is trained and evaluated on our dataset.

We use the average precision (AP) metric using bird’s-eye-view (BEV) IoU
threshold of 0.5 and 0.7 used in KITTI [2] and center distance threshold of
0.5, 1.0, and 2.0 meters used in NuScenes [4]. We also evaluate the localization
performance using root-mean-square error (RMSE).

6.1 Quantitative Evaluation

Table 4 and 5 analyze AP performances using loU and distance metrics. Results
show that the image method has a better performance than the radar baseline
method in most metrics and thresholds. We hypothesize that it is difficult for the
radar alone to classify vehicles from metal obstacles due to the lack of contex-
tual information, leading to many false positives, and resulting in poor precision.
Moreover, radar alone is hard to separate between two adjacent objects due to
the low angular resolution, and it leads to true negatives and lower recall. How-
ever, adding the image to the radar can boost the performance on all evaluation
metrics. This verifies that fusing two modalities can complement each other and
yield higher performance over the single modality.

Table 4. Average Precision (AP) using IoU matching.

AP, o
Method Modality BEV,IoU
ToU=0.5 ToU=0.7
M3D-RPN Image 39.46 11.71
Radar baseline Radar 26.88 12.91
Proposed Radar+Img 46.16 16.30

Table 5. Average Precision (AP) using distance matching.

Method Modality APBEV,dist
0.5 m 1.0 m 20m
M3D-RPN Image 16.31 39.37 64.71
Radar baseline Radar 15.36 32.98 44.34
Proposed Radar+Img 26.92 51.06 66.26

The RMSE in a longitudinal and lateral direction is shown in Table 6. Note that
only results detected in all three methods using 2.0 m distance threshold are used
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to calculate the RMSE for the fair comparison. The radar baseline method has
a low longitudinal error, and the image method has a low lateral error, which
is reasonable given the characteristics of each sensor. As can be seen, fusing
camera and radar sensors together contributes to reduce the localization errors
in longitudinal and lateral directions, thus improve overall performance.

Table 6. Root-mean-square error (RMSE) on prediction results using 2 m distance
threshold.

Method Modality RMSE [mm]
Longitudinal Lateral
M3D-RPN Image 0.2486 0.1529
Radar baseline Radar 0.2219 0.2080
Proposed Radar+Img 0.2210 0.1828

6.2 Qualitative Results

We visualize qualitative results of radar, image, and fusion method in Fig. 7.
Note that all figures are best viewed in color with zoom in. We observe that the
radar baseline method often suffers from false positives and separating adjacent
vehicles, and the image method typically fails to detect distant vehicles. The
proposed method is able to detect and classify vehicles accurately.

Fig. 7. Qualitative comparison on test set using radar-only (top), image-only (middle),
and proposed fusion method (bottom). The 3D bounding box is projected into the
image space and BEV space for the visualization. White and red box denotes the
ground truth and green and blue box denotes the prediction results.
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Fig. 8 shows the advantage of fusion method compared to the radar baseline.
As highlighted, radar alone suffers from detecting clutter signals as object (blue
circle, false positive) and fails to separate adjacent vehicles (red circle, true
negative). The proposed fusion method overcomes weaknesses of radar alone
method by utilizing visual cues.

Fig. 8. Qualitative results in challenging scenarios. Predictions results using proposed
fusion method (top), radar-only (bottom), and radar range-azimuth heatmap input
(right).

6.3 Ablation Study

As we hypothesized in Section 5.2, the IoU matching is not suitable for the vehicle
and radar application due to the shape of the vehicle and the characteristic of
radar. To verify the benefit of the distance matching, we compare the proposed
network with the network trained using the IoU metric. For the RPN stage,
anchors with IoU less than 0.25 are considered as negative, while IoU greater
than 0.3 are considered as positive. For the detection head stage, proposals with
IoU less and greater than 0.35 and 0.4 are considered as negative and positive.
For better understanding, we note that 0.4 IoU and 1.0 m distance thresholds are
similar. Both networks are trained in the same manner as explained in Section
5.4.

As shown in Table 7 and Fig. 9, the number of positive samples on the RPN stage
using distance matching is larger than the IoU matching even two networks use
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a similar matching threshold. More positive samples during training can help
to converge faster and lead to better performance. As a result, the distance
matching shows better performance on both IoU and the distance evaluation
metric by 4.44% and 4.53%.

Table 7. Comparison between IoU and distance matching method.

Traini.ng # of positive Evalua‘Fion AP [%)]
metric anchors on RPN metric

IoU (0.5) 41.72

loU 4.3 Dist. (1.0 m) 46.53

y IoU (0.5) 46.16

Distance 20.4 Dist. (1.0 m) 51.06

, — Distance
matching
(Proposed)

W
N AU - VMW —loU

matching

o am

Total Loss Number of positive samples

Fig. 9. Visualization of total loss and the number of samples by iteration.

7 Conclusion

In this paper, we introduced the sensor fusion-based 3D object detection method
using radar range-azimuth heatmap and monocular image. We demonstrated the
proposed low-level sensor fusion network on the collected dataset and showed the
benefit of the proposed fusion method over radar alone method. In addition, we
showed that the proposed distance matching method helps the network train
stable and yields better performance compared to the IoU method in radar
application. The proposed method has shown the potential to achieve high per-
formance even with inexpensive radar and camera sensors.
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