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Abstract. Image deconvolution is an essential but ill-posed problem
even if the degradation kernel is known. Recently, learning based meth-
ods have demonstrated superior image restoration quality in comparison
to traditional methods which are typically based on empirical statis-
tics and parameter adjustment. Though coming up with outstanding
performance, most of the plug-and-play priors are trained in a specific
degradation model, leading to inferior performance on restoring high-
frequency components. To address this problem, a deblurring architec-
ture that adopts (1) adaptive deconvolution modules and (2) learning
based image prior solvers is proposed. The adaptive deconvolution mod-
ule adjusts the regularization weight locally to well process both smooth
and non-smooth regions. Moreover, a cascade made of image priors is
learned from the mapping between intermediates thus robust to arbitrary
noise, aliasing, and artifact. According to our analysis, the proposed ar-
chitecture can achieve a significant improvement on the convergence rate
and result in an even better restoration performance.

1 Introduction

Most of the pictures captured by hand-held devices are easily suffering from
camera motion or out-of-focus which leads to blurry observed images. In general,
the blurry observed image B is modeled as

B = I ⊗K +N (1)

where ⊗ denotes convolution, I, K, and N refers to the latent clear image, the
point spread function (PSF), and noise, respectively. Non-blind deblurring is to
retrieve the clear image I when the PSF is already estimated from lens’ param-
eters or motion sensors. Early approaches such as the Weiner filter [1] and the
Richardson-Lucy algorithm [2,3] have become a mainstream in the past century;
however, they may suffer from ringing artifacts or over-smoothness when dealing
with severely interfered cases. In recent years, various image priors are widely
adopted to serve as regularization terms in image deconvolution problems. A
good image prior not only promotes edge sharpness but also suppresses artifacts.
In some early works like total variation (TV) [4] and hyper-Laplacian [5,6], the
regularization term is formulated as a norm of derivative of intensities to encour-
age the gradient to approximate a heavy-tailed distribution. Alternative priors
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like K-SVD [7], Gaussian mixture model (GMM) [8] and Markov random field
(MRF) [9] have provided spatial support for exploring latent image statistics.
Despite coming up with practical solutions, most of the aforementioned methods
still highly rely on empirical statistics and knowledge for parameter tuning.

Recently, with the successes in the field of computer vision, neural networks
have been used for challenging image restoration tasks including image inpaint-
ing, denoising, and deblurring. Several image deblurring works based on dis-
criminative models [10–17] or generative models [18,19] have demonstrated with
superiority. Among learning based methods, [10, 11, 14–17] have focused on im-
proving optimization process through the integration of deep learning networks,
instead of conventional end-to-end training procedure. Despite of their surpris-
ing performance, models trained on specifically designated degradation i.e. a
fixed noise level are typically exploited to handle intermediate results within
optimization. Therefore, it is inevitable to result in a limited performance when
suffering from arbitrary noise or artifacts.

To address this problem, an unrolled deconvolution network (UDN) is pro-
posed. Different from most of the existing works which aim to optimize an
image prior within a narrow degradation domain, we further improve the half-
quadratic splitting (HQS) [20] optimization process and encourage those priors to
be learned from arbitrary intermediate outputs as well as aliasing which possibly
emerges. Therefore, UDN can implicitly learn image priors during optimization
and be more robust to severely degraded cases.

We also note that conventional deconvolution within HQS may have ignored
the spatial variety in an image. When set parameters globally, it can lead the
restored image to be over-smoothed in some region and under-smoothed in the
others. To address this problem, we establish the adaptive deconvolution module
(ADM) which is essentially composed of a small set of convolution layers for edge
detection and determines the parameters adaptively. With the aid of increased
capacity via the UDN, the models are expected to learn corresponding artifacts
possibly different from the conventional scheme. We have combined the results
of ADM and UDN by a simple and intuitive way that ensures both smoothness
and detail are successfully preserved.

Through our analysis, the proposed methods have outperformed other exist-
ing works in PSNR and SSIM. Especially, when suffering from significant noise,
the high-frequency components are successfully restored, which is not observed
in other works. Furthermore, since the proposed UDN optimizes the image priors
within intermediates, a great improvement on the convergence rate is achieved.
It leads to a more efficient and faster restoration process.

2 Related Works

In the field of computer vision, non-blind deconvolution has long been an issue
that featured with an ill-posed nature. The design on image prior is typically in-
ferred from a Maximum a Posteriori (MAP) perspective which have been widely
adopted for inverse problems; the prior always matter during the optimization
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on a MAP-based objective function. Among those early works, most of the priors
are designed by empirical statistics on natural images. For example, TV regular-
ization [4] and hyper-Laplacian prior [5,6] have shown success on capturing the
heavy-tailed gradient distribution that usually failed when using Gaussian pri-
ors. Alternatives like mixture of Laplacians [21] and Gaussians [22] are adopted
to approximate the gradient sparsity prior with the increased generality; and a
content-aware local gradient prior [23] has also been emphasized to handle the
spatial variety. Most of the works are solved by gradient descent, the alternating
direction method of multiplier (ADMM) [24], or HQS [20], so that an inevitable
increment on computation loads is expected due to the iterative process.

Other learning based methods like [9,25] has adopted fields of experts (FoE)
to approximate the heavy-tailed gradient distribution by learned filters that cap-
ture local image statistics and further extended by cascade of shrinkage fields
(CSF) [26], regression tree based models [27] and trainable non-linear reaction
diffusion (TNRD) [28]. GMM are also developed to fit the image natures like
expected patch log-likelihood (EPLL) [8] and its extended version which re-
sorts multi-scale patch-pyramid modeling [29] for performance gains; this kind
of works have demonstrated a powerful capacity on noise or blur removal. How-
ever, although patch-based methods achieve good results, solving these problems
are usually time-consuming as well.

More recently, discriminative models [10–17] have shown significant improve-
ment on restoration quality. An early work that using multi-layer perceptron
(MLP) [12] can successfully remove the corresponding artifacts appeared after
deconvolution by estimating clear images from an initial estimation by Gaus-
sian prior. A convolution neural network (CNN) [13] model that based on the
knowledge of kernel decomposition is trained to suppress various outliers like
saturation, boundary effect or compression artifacts. However, both methods
require fine-tune over each specific kernel, thus limited by a loss of generality.

Some of the works have decoupled image restoration problem into optimiz-
ing data fidelity term and regularization term, so that simpler subproblems are
yielded. These methods named as plug-and-play frameworks [30, 31] have ex-
ploited the concepts from variable splitting techniques like ADMM and HQS,
and demonstrated a flexibility on handling various restoration tasks. Started
from this concept, some frameworks integrated with deep learning models have
been proposed [11,14,15,17,18] since it is regraded that models trained on pairs
of degraded and latent images can learn the image priors implicitly.

A Fourier deconvolution network (FDN) [11] and a fully convolutional neural
network (FCN) [14] are proposed to reduce noise after each deconvolution stage
by learning CNN-based priors in gradient domain. A GMM-based method [32]
learns a data fidelity term from intermediate results within cascaded shrinkage
function models, and a work [17] proposes to simultaneously learn fidelity and
regularization term in a task-driven manner. These methods are dedicated for
aliasing removal in non-blind deconvolution cases. On the other hand, some
of the works have handled these problems in a more generalized perspective.
Image restoration CNN (IRCNN) [15] is composed of a set of learned CNN
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denoisers that can be plugged into the HQS optimization framework [5, 33].
A denoising prior driven network [34] is proposed for a variety of restoration
tasks. A CNN-based model is trained in an adversarial way [18] to encourage
the optimal solution lies into natural image domain.

As noted in [10], most of the plugged-in learning based models which learn
independently to the form of degradation are adopted to handle those tasks
within intermediate optimization process. Although with increased flexibility, the
learned priors cannot always react accurately to arbitrary perturbation lasted
in the intermediates. For example, the denoising prior is originally trained to
remove noise with homogenous power spectrum. However, as iterative deconvo-
lution is applied to a blurry observation, the power spectrum among the outputs
is expected to be more heterogenous, which is possibly out of the learned map-
pings. Besides, [29] has found several learning based methods are biased toward
smoothness since the dominance of smooth gradient within natural images, so
that the retrieval of coherent high frequency details remains an important chal-
lenge. In our investigation on non-blind deblurring, although IRCNN [15] gen-
erates outstanding performance for assessment, the restored images have lost a
lot of details.

Basically, our proposed work has followed a HQS optimization framework.
We first reformulate the deconvolution stage with adaptation (ADM), which only
requires neglectable increment on computation complexity. Secondly, a fully con-
volutional network was proposed to unroll the HQS optimization. The rationale
is to enlarge the learning domain with intermediate results, so that the priors
can learned to handle the arbitrary deformation within optimization.

3 Unrolled Deconvolution Network

The proposed work is based on HQS optimization for a MAP-based problem
that aims to estimate the latent clear image Î from blurry observed image B by
maximizing the posterior probability P (.)

Î = argmax
I

P (I|B,K) = argmax
I

P (B|I,K)P (I) (2)

where P (B|I,K) models the conditional probability distribution ofB given I and
K and P (I) is the prior for latent clear images. The overall function can be solved
in a negative log-likelihood scheme as both of the residual of blurry observation
to clear image and the prior term are modeled as Gaussian distributions that
can be used to measure the penalty. The objective function derived from (2) can
be

Î = argmin
I
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where the first term is the data fidelity and the second is the image prior term
denoted as Φ(I). Note that λ = σ2
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variances of data term and prior term originated from the Gaussian modeling and
can be reduced to a weight on prior term λ that controls the trade-off between
fidelity and regularization. Under the HQS optimization scheme, an auxiliary
variable Z is introduced to (3) to decouple I from concurrent minimization so
that the objective problem becomes

argmin
I,Z
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2
+
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2
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λ

2
Φ(Z) (5)

where β is a weight that controls the penalty on the fidelity between Z and I.
According to the alternating minimization algorithm [5, 33], the optimization
process can be separated into I and Z subproblems described in (6) and (7),
respectively. β is increased over iterations to encourage convergence.

Î = argmin
I
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Ẑ = argmin
Z

β
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As a quadratic regularized least-squared problem, (6) exists a FFT-based
closed-form solution. On the other hand, although the solution of (7) is depen-
dent to arbitrary image priors Φ(.), it can be reduced to the following equation,
which is equivalent to the denoising problem with σ =

√

λ/β described in the
CNN-based image restoration algorithms in [15,34]:

Ẑ = argmin
Z
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2
Φ(Z) (8)

Hence, as a plug-and-play scheme, the CNN is designed to learn the prior
implicitly and benefits the optimization process.

3.1 Adaptive Deconvolution Module

Look back into the I subproblem in (6), we have noted that the essence of β is to
balance (a) the fidelity between restored I and observed B and (b) the fidelity
of restored I and auxiliary variable Z which is derived from the prior-regulated
subproblem (7). Actually, β poses significant influence on restored image quality.
In most of the conventional methods, the value is preset empirically or complied
with some rules according to the noise level. However, inferior performance can
be observed on cases of unnatural images or those interfered with extremely high
noise level. Besides, the weight is typically applied in a global manner so that it
may have ignored the spatial variety over the entire images.

By intuition, as the value of β is set large, the solution is forced to comply
with Z which is a prior-regulated solution, such that a smoothed outcome is
expected. On the other hand, when β is set small, since the regularization is
diminished, the solution is expected to be closed to that derived from direct
inverse filter, which behaves well on restoring high-frequency components but as
a trade-off, it also becomes easier to suffer from noise and other artifacts.
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We have shown a simulation result in Fig. 1. When deconvolving with a
smaller β, the noise becomes dominant while preserves more fine structures, as
shown in Fig. 1(b,d). When β is larger, the noise is apparently suppressed with
a loss of details, as shown in Fig. 1(a,c). Therefore, β can be set smaller in edge
regions to better approximate the steep gradient in ground truth. On the other
hand, β can be set larger at flat regions since it demonstrates a good ability
for smoothness. Therefore, instead of setting β to be a global scalar, a spatially
varying weight is expected to achieve a better performance.

Fig. 1. Deconvolution results. The parameter β adopted in (a) is five-fold larger than
that in (b). (c) and (d) are patches corresponding to (a) and (b), respectively. (e) the
ground truth.

If we formulate β in (6) as a 2-d spatially varying matrix, one can suffer from
difficulties when calculating the closed-form solution. The cause is ascribed to
the element-wised multiplication out of the quadratic term lasting convolving
operation when solving by FFT. Although it is still possible to solve patch by
patch and extend the weight into a Toeplitz matrix for convolution, it seems not
practical to implement.

Instead, we propose the ADM, an approximated version with spatially vary-
ing weights. To be specific, we solve I in two different fidelity weights and ag-
gregate two solutions by an edge awareness criterion such that

ˆI(x) =

{

ˆIedge(x), when Z(x) ∈ edge.
ˆI∼edge(x), when otherwise.

(9)

where x denotes the pixel index and În is defined as

ˆI{edge,∼edge} = F−1

(

F(k)∗F(B) + β{edge,∼edge}F(Z)

F(k)F(k)∗ + β{edge,∼edge}

)

(10)

where the two weights follow a linear relationship βedge = αβ∼edge and we set
0 < α < 1, β∼edge = β; β is determined as described in Section 3.2. The
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implementation detail about edge awareness criterion and determination rule
for hyperparameters are included in supplementary material.

In practice, Z which is the optimal solution in (7) is sent to the edge detector
to provide a binary edge map. α is set in an exponentially descending sequence
over iterations since the noise component is usually dominant at early iterations,
we regard to encourage the detail preservation in a gradual manner. An edge
awareness criterion in (9) is established by a conventional multi-scaled Gaussian-
smoothed edge detector. The rationale of Gaussian smoothness is also under the
consideration of false detection of noise components as edges. Multi-scaling is
designed to increase the detection capacity on edges with various scales.

The comparison on native deconvolution and the ADM is displayed in Table.
1. At early stages, the ADM does not achieve a better result as most of the regions
are dominated by the amplified noise. When optimization closes to convergence,
we surprisingly find ADM leads to a better approximation to the ground truth,
especially for some of the spike-liked signals, so that a better solution with
lower MSE is achieved (refer to signal visualization in supplementary material).
Another evidence is provided in Fig. 2 which records the PSNR of outputs from
I and Z subproblems. In I subproblem, though ADM has larger MSE at first,
it converges to a more optimal solution than native. On the other hand, in Z
subproblem, an apparent performance gain is shown within almost all stages.

In summary, we have found the potential of adaptive deconvolution to re-
tain detailed structures. Although an inferior result can be found in a single
deconvolution stage, the performance between two methods are pulled apart as
the HQS iteration goes on. A possible rationale to this is the incorporation of
high-frequency components i.e. the detailed structures has suppressed the over-
smoothing effect usually found in the late iterations. Furthermore, the restora-
tion is achieved in an accumulative manner, so that even a slight change in HQS
loop can result in totally different performance in the end.

Table 1. The corresponding mean squared error (MSE) over iterations for two 1D
signals indicated in the red lines in Fig. 1(a-b). The bold numbers indicate lower MSE.

Native/ADM(10−3) i = 1 i = 10 i = 20 i = 30

Signal-1 17.428/18.695 3.241/2.937 2.752/2.346 2.634/2.146

Signal-2 13.587/14.589 3.825/3.933 4.128/3.789 4.295/3.794

3.2 Learning Image Priors

The proposed UDN is consisted of a number of ADM and Z submodule pairs. The
architecture of Z submodule is illustrated in Fig. 3(a) and the overall structure
of UDN is sketched in Fig. 3(b). The Z submodules are designed to remove
the corresponding noise and artifacts inferred from previous modules. The CNN
architecture is basically inspired by the idea from IRCNN [15], but additional
skip connections between dilated convolutional layers are introduced, since we
find them beneficial for training stability and performance, especially for a deeply
stacked scheme like UDN.
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Fig. 2. The convergence process between native deconvolution and ADM on PSNR
evaluation for the output of (a) I subproblem and (b) Z subproblem.

Note that the ADM is essentially a learning-free module that only requires
presetting on β at each layer. In fact, β is determined implicitly by an afore-
mentioned relationship σ =

√

λ/β. The denoising level σ is set exponentially
decreasing from 49 to 5 among iterations. We also find λ ∝ σ2

d by assuming the
variance between latent image to prior is unique among all cases so that λ is
related to the squared initial perturbed noise level. Hence, β is set increasing
with iterations to encourage the tendency to a regularized solution.

In this paper, the number of pairs inside the UDN is set 8 and 10. While
excluding the non-parametric ADMs and batch normalization layers, this model
is composed of either 8 × 7 = 56 or 10 × 7 = 70 layers which easily lead to
difficulties to train. However, with all kernels composed of size 3×3 that enlarges
the receptive field without parameter overhead and additional skip connections,
the gradient of loss can successfully back-propagate to optimize layers.

During training, rather to train the overall model in a simple end-to-end
manner, we regard the intermediates after pair of ADM and Z submodule still
provide reasonable information for image restoration. Thus, we encourage these
intermediates to approximate the ground truth by setting the loss function as

loss =
∑

n

wn‖În − I‖
2

2
, wn =

βn
∑

n βn

(11)

where În denotes the restoration after n-th ADM and Z submodule pair, and βn

denotes the preset value on n-th ADM. We have noted β which is an exponen-
tially ascending sequence that complied with an intuitive to put more emphasis
on the latter outputs rather than the former, so that it is used as a normalized
weighting term over corresponding loss. An advantage derived is a more pen-
etrated structure that the gradient of loss can easily propagate for parameter
optimization. During inference, the final output is restored from the last layer.
In this scheme, the Z submodule is expected to learn from the mapping between
intermediates În and optimal ADM input Ẑn. Although with the reduction of
flexibility described in existing plug-and-play manner, the learned image priors
in Z submodules can accurately reflect to the interior mappings and lead to an
efficient convergence and restoration quality.
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Fig. 3. (a) Training scheme and structure of Z submodule. p-DConv denotes p-dilated
convolution. (b) Training scheme and structure of UDN (with ADM integration)

4 Experiments

To generate the training data {(Ii, Bi,Ki)}
M
i=1

, we crop 400 grayscale images
selected from BSD500 dataset [35] of 64 × 64 with striding and augment with
horizontal and vertical flip to prevent over-repetitiveness, then simulate 200 lin-
ear motion kernels of 25×25 with their length uniformly sampled from 5 to 25 at
any orientation. The blurry image is synthesized by convolving full images with
kernels and introducing additive Gaussian noise term from N(0, σ2). After that,
8-bit quantization is applied and the pixel values are clipped in range [0, 255].

The blurry images are cropped into patches corresponding to that of clean
ones, and those near the boundaries are excluded to prevent restoring from
missing information. Finally, the training dataset is composed of 69600 triplets
in total. Two testing sets are generated in a similar way. The first is synthesized
by convolving Set14 dataset [36] which composed of 14 standard testing images
with 8 blur kernels from Levin et al. [37]. The second is generated from Sun
et al. dataset [38] which consists of 80 high-resolution images and 8 estimated
kernels from Pan et al. dataset [39].

To optimize the network parameters in UDN, an Adam optimizer [40] is
adopted by setting initial step at 10−3; the learning rate is halved at 5-th, 15-th
and 25-th epoch. The mini-batch size is set to 96, and trained by PyTorch1.0 [41]
and Nvidia 2080Ti GPU for 50 epochs (about 15hours).

In addition, we have merged the outputs of ADM and UDN as a final restora-
tion result. Based on the empirical observation that ADM provides enhanced de-
tails with smooth structures and UDN performs well on restoring high-frequency
components, we combine two outputs in frequency domain by linear combination
with a Gaussian mask (see detail description in the supplementary material).

For the following, we utilize a numerical image quality assessment (IQA) with
other methods, including a patch-based learning method (EPLL) [8], non-local
mean filter based method (DEB-BM3D) [42] and its modified version (IDD-
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BM3D) [43], and MLP [12], FCN [14], FDN [11] and IRCNN [15]. Among these
methods, EPLL, DED-BM3D and IDD-BM3D are categorized into traditional
state-of-the-arts that do not rely on the neural networks. The remaining methods
are neural network based, e.g. FCN, FDN and IRCNN are proposed at a similar
period, all of these methods are CNN-based and derived from different concepts.
The reason that we do not compare our works with those traditional prior-
based methods like Krishnan et al. [5] or Pan et al. [39] is due to the difficulties
of setting optimal hyperparameters, so that we cannot ensure these methods
reach their best performance. For evaluation fairness, all of the methods are
reproduced from their referenced code, as well as the pretrained models. The
code corresponds to this paper is released1.

4.1 Non-Blind Deconvolution on Synthesized Datasets

We demonstrate several visualization examples on the BSD500 dataset [35] in
exclusive of training patches that convolves with generated linear kernels with
additive noise level at 1%, 3%, and 5%, to better discriminate the restoration
performance and the robustness of algorithms. More visual and experimental
results are included in the supplementary material.

For low noise level conditions, either when σ = 1% or σ = 3%, IDD-BM3D
shows apparently better results among traditional state-of-the-arts and even
surpasses some of the deep learning based methods. In Fig. 4, some of the learn-
ing based methods like MLP, FCN and FDN suffer from obvious ringing ar-
tifacts near the edge regions. In comparison, IRCNN and proposed methods
can successfully preserve the details and structures without aliasing. The latter
restores even more high frequency components; for example, displayed in the
yellow block, so that the overall PSNR is better than the others. In Fig. 5, IDD-
BM3D demonstrates a powerful restoration quality that not only outperforms
traditional methods but also shows a competitive performance to some of the
learning based methods. We also find that due to the over-smoothness, IRCNN
has lost a lot of high-frequency components like the details originally existed in
the red or yellow blocks, such that the performance is even worse than a patch-
based method IDD-BM3D. Our model demonstrates even better performance on
retrieving fine textures lies in the red and yellow blocks that is hard to be aware
of in the blurred image. Besides, the restored structures in blue blocks are the
most precise among all methods. In Fig. 6, where the noise level is increased to
5%, the FDN owns a powerful restoration quality that surpass all other methods
excluding our proposal. We find the aliasing and over-smoothness that usually
appear in learning based models can deteriorate the performance significantly.
On the other hand, the proposed model has successfully restored the textures in
the yellow block which is inappreciable in the blurry observation.

We also numerically evaluate aforementioned 2 testing datasets and summa-
rize quantitative results in Table. 2 and Table. 3. Complying to our visualization

1 https://github.com/angry77cat/DeepPriorUDN ADM
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Fig. 4. Visual comparison on the images at σ = 1%.

Fig. 5. Visual comparison on the images at σ = 3%.

Fig. 6. Visual comparison on the images at σ = 5%.
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results, the proposed ADM + UDN model generally demonstrates the best per-
formance over the others. Such a surpassing image quality is found at a wide
range of perturbed noise level from 1% to 10%, showing the robustness of our
proposed models. It is worth to note that the increment on performance are gen-
erally proportional to the noise level which implies the significance of restoration
quality.

Table 2. Comparison on the Set14 dataset [36]. N/A denotes the absence of corre-
sponding pretrained models in referenced code and bold numbers indicate the best
performance.

σ IQA EPLL
DEB-
BM3D

IDD-
BM3D

MLP FCN FDN IRCNN Ours

1%
PSNR 28.40 30.89 31.76 30.56 29.48 30.02 31.57 31.87

SSIM 0.845 0.854 0.879 0.848 0.860 0.862 0.876 0.884

3%
PSNR 25.43 26.95 27.79 25.53 26.68 27.16 27.63 28.32

SSIM 0.725 0.744 0.765 0.637 0.758 0.759 0.760 0.787

5%
PSNR 23.96 25.29 26.00 24.33 25.30 25.88 25.97 26.83

SSIM 0.663 0.689 0.705 0.657 0.706 0.710 0.697 0.733

10%
PSNR 22.12 23.39 23.80 23.53 N/A N/A 23.99 24.48

SSIM 0.581 0.614 0.625 0.614 N/A N/A 0.624 0.649

Table 3. Comparison on the Sun et al. dataset [38]. N/A denotes the absence of
corresponding pretrained models in referenced code and bold numbers indicate the
best performance.

σ IQA EPLL
DEB-
BM3D

IDD-
BM3D

MLP FCN FDN IRCNN Ours

1%
PSNR 30.53 31.93 32.65 31.58 31.30 31.42 32.45 33.00

SSIM 0.867 0.871 0.887 0.858 0.877 0.885 0.880 0.901

3%
PSNR 27.46 27.86 28.73 26.48 28.37 28.51 28.59 29.43

SSIM 0.749 0.747 0.775 0.707 0.779 0.783 0.759 0.806

5%
PSNR 26.08 26.37 27.08 26.20 26.94 27.28 27.11 27.97

SSIM 0.689 0.690 0.714 0.691 0.729 0.735 0.704 0.753

10%
PSNR 24.43 24.77 25.22 25.20 N/A N/A 25.34 26.18

SSIM 0.622 0.629 0.642 0.641 N/A N/A 0.640 0.684

4.2 Noise Robustness

Since the ADM acting as a modified deconvolution plugin benefits convergence,
the model can be categorized into a plug-and-play framework. On the other
hand, the UDNs trained at specific noise levels retrieve more detail information
on the sacrifice of training flexibility. As most of the end-to-end training schemes
lead to inferior performance when handling different circumstances, the UDNs
have shown robustness to a wide range of noise that significantly outperform
other models that trained in an end-to-end manner as well. We evaluate such
robustness on Set14 dataset [36] by adjusting the level of additive noise. For Fig.
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7(b-d), it is worth noting that the ADMs acting as additional plugins have glob-
ally improved the restoration quality compared to IRCNN, which demonstrates
comprehensive improvements by our proposed adaptive deconvolution.

As shown in a comparison in Fig. 7(a), the UDN trained at a high noise
level shows significant improvements at low noise level at which other models
originally trained. When comparing with other plug-and-play models2, the UDNs
do not always outperform IRCNN but generally achieve better performance when
perturbed by significant noise like Fig. 7(d) shows. Such a surprising observation
has implied a flexibility for a model trained at a specific degradation domain,
which is not observed in existing deblurring methods like FDN [11] and FCN [14].

Fig. 7. Comparison on noise robustness for (a) models trained at specific noise levels
and (b-d) includes IRCNN and ADM at different noise levels. @ denotes the model
trained at which noise level.

4.3 Convergence Efficiency and Runtime Comparison

A good portion of deconvolution methods are based on iterative algorithms,
for example, the iterative shrinkage-thresholding algorithm (ISTA) [44], the fast
ISTA (FISTA) [45], and alternating direction method of multipliers (ADMM)
[46] are useful algorithms for image restoration. Similarly, an important concern
is whether the proposed models benefit the convergence efficiency compared to
others. We take a close look into an image deconvolution case sampled from
the BSD500 dataset [35] and the Levin et al. dataset [37] and the PSNR is
evaluated at each iteration shown in Fig. 8. One can observe the ADM has
benefited the restoration performance especially when the noise level is high. In
other words, by deconvolving adaptively, the restoration process can converge
to a better solution. Furthermore, the UDN not only reaches the best result but
also achieves even more faster convergence speed.

We also compare the runtime. All of the compared methods are implemented
by PyTorch1.0 [41] package along with IntelCore i9-9900KF CPU@3.60GHz,
64GB RAM, and Nvidia 2080Ti GPU. Since the originally released code of IR-
CNN [15] was implemented in Matlab, a PyTorch version is implemented. It is
worth noting that the ADM is essentially an edge detector that only accom-
panied by several convolutional operations. Therefore, it can be parallelized by
GPU acceleration. As shown in Table. 4, the runtime of the ADM is inevitably

2 FDN is trained at various noise levels ranged from 0.1 to 12.75(5%).
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Fig. 8. Comparison on the convergence efficiency and the performance of optimal so-
lution.

longer than that of the IRCNN; however, such overhead can be reduced in fold
when handling high-resolution images. On the other hand, with the advantage
of fast convergence, the runtime of the UDN8, which composed of 8 pairs of the
ADM and Z submodules, is only 1/3 of that of the IRCNN.

Table 4. Runtime (in second) comparison.

Size IRCNN ADM UDN8 UDN10

256× 256 0.115 0.361 0.049 0.066

512× 512 0.385 0.703 0.131 0.175

1024× 1024 1.543 2.194 0.489 0.645

5 Conclusions

In this paper, we propose two learning based methods that are competitive to
state-of-the-arts. The first approach is based on the success of incorporating
MAP framework with CNN. As a solution to prevent over-smoothness which is
usually found in CNN priors, a simple but useful plugin, ADM, is introduced
without apparent increment on computation complexity. We have successfully
alleviated over-smoothness and improved image quality for a wide range of noise
perturbation. The second framework, UDN, is started from a concept to elabo-
rate the great capacity of deep learning model to optimize the iterative optimiza-
tion process in a gradient descent manner. Thus, a more effective optimization
process is observed, which implies significantly less inference time. Furthermore,
despite being trained at a specific noise level, UDN has demonstrated robust-
ness for handling a wide range of cases and encouraged detail preservation. We
further combine the outputs of two methods in frequency domain, leading to
outstanding performance in evaluation benchmarks.
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