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Abstract. Generative adversarial networks (GANs) have been widely
studied for unpaired image-to-image translation in recent years. On the
other hand, state-of-the-art translation GANs are often constrained by
large model sizes and inflexibility in translating across various domains.
Inspired by the observation that the mappings between two domains are
often approximately invertible, we design an innovative reconfigurable
GAN (RF-GAN) that has a small size but is versatile in high-fidelity
image translation either across two domains or among multiple domains.
One unique feature of RF-GAN lies with its single generator which is re-
configurable and can perform bidirectional image translations by swap-
ping its parameters. In addition, a multi-domain discriminator is de-
signed which allows joint discrimination of original and translated sam-
ples in multiple domains. Experiments over eight unpaired image trans-
lation datasets (on various tasks such as object transfiguration, season
transfer, and painters’ style transfer, etc.) show that RF-GAN reduces
the model size by up to 75% as compared with state-of-the-art trans-
lation GANs but produces superior image translation performance with
lower Fréchet Inception Distance consistently.

1 Introduction

Image-to-image translation aims to translate images from a source domain to
a target domain so that the translated images have similar appearance, styles,
etc. as the images in the target domain. With the fast development of genera-
tive adversarial networks (GANs), quite a number of GANs have been reported
in recent years which are capable of generating very realistic image-to-image
translations in terms of object appearance [1–6], painting styles [7–12], seasonal
styles [13, 14], etc.

Image-to-image translation GANs can be broadly classified into two cate-
gories according to their scalability. The first category performs image transla-
tion across two domains only which typically involve two translators (each con-
sists of a generator and a discriminator) such as CycleGAN [14], DiscoGAN [3],
and UNIT [13]. The second category performs image translation across multi-
ple domains which typically employs a single generator, a single discriminator as
well as additional classifiers (for handling multi-domain translation) such as Star-
GAN [15] and DosGAN [16]. These translation GANs have a common constraint
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Fig. 1. The proposed RF-GAN learns a single generator for image translations in op-
posite directions. For translation on object transfiguration, season transfer, and painter
style transfer from left to right, RF-GAN can translate images with a reconfigurable
G as shown in the top row. By simply reconfiguring G to a new generator Gr via
parameter swapping, RF-GAN can translate images back in the opposite direction as
shown in the bottom row. RF-GAN reduces the model size by up to 75% as compared
with state-of-the-art GANs such as CycleGAN and StarGAN but obtains overall lower
Fréchet inception distance (FID) over eight unpaired image translation datasets.

that they usually involve a large number of network parameters either due to the
double-generator-double-discriminator architecture in cross-domain translation
GANs or the additional classifiers in multi-domain translation GANs. As a result,
they often face various limitations in many resource-constrained scenarios such
as edge computing. Additionally, they also require a large amount of images for
training high-fidelity translation models due to the large amount of parameters
involved. Another common constraint is about the limited flexibility. Specifically,
cross-domain translation GANs cannot scale to handle multi-domain translation
tasks without an increase in model size. Multi-domain translation GANs can
handle cross-domain translation but their performance often drops a lot as their
classifiers encourage generator for multi-domain translation and are susceptible
to the noise added by generators.

This paper presents an innovative reconfigurable GAN (RF-GAN) that is
small with just a single translator but capable of performing high-fidelity image
translation across two domains or among multiple domains. RF-GAN is designed
based on the observation that bidirectional mappings between domains are often
approximately invertible. It learns a single translator for bidirectional image
translations, where the forwards and backwards translations are achieved by
swapping the parameters of the same generator as illustrated in Figs. 1 and 2.
In addition, a multi-domain discriminator is designed which can discriminate
images in opposite translation directions without either multiple domain-specific
discriminators or additional classifier as required by most existing translation
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GANs. Further, RF-GAN can be trained with less training images, or better
trained with the same amount of training images as state-of-the-art translation
GANs. This is partially due to the much fewer network parameters in RF-GAN
(up to 75% less than state-of-the-art GANs as the reconfigurable generators
G and Gr share the same set of parameters) that require less images to train.
Additionally, RF-GAN employs a single discriminator only which achieve similar
effect of doubling training data as compared with state-of-the-art GANs that
employ two discriminators or extra classifiers.
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Fig. 2. The architecture of the proposed RF-GAN: RF-GAN consists of a reconfig-
urable generator G and a multi-domain discriminator D. In each training iteration, G
first learns to translate images xS in domain S to images x̂T in domain T . G is then
reconfigured to an assistive generator Gr by swapping its parameters which learns to
translate x̂T to x̃S as well as xT to x̂S . After that, Gr is reconfigured back to G which
further learns to translate from xS to x̂T as well as x̂S to x̃T (x̃S and x̃T for computing
reconstruction loss). The multi-domain discriminator D is trained continuously after
each translation with xS , x̂T , xT , and x̂S to compute least-square adversarial loss.

The contributions of this work can be summarized in three aspects. First,
it designs an innovative RF-GAN that is capable of performing high-fidelity
image translation across two domains or among multiple domains. Second, it
designs a reconfigurable generator G and a multi-domain discriminator D where
G can achieve bidirectional image translation by swapping its parameters and D

can perform multi-domain translation without requiring multiple domain-specific
discriminators or additional classifiers. As a result, RF-GAN reduces the model
size by up to 75% as compared with state-of-the-art GANs, and it can be better
trained with the same amount of training images. Third, extensive experiments
show that RF-GAN outperforms state-of-the-art GANs such as cross-domain
CycleGAN and multi-domain StarGAN consistently across eight public datasets.
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2 Related Work

2.1 Generative Adversarial Networks (GANs)

The idea of the original Generative Adversarial Networks (GANs) [17] is to
train a generator and a discriminator in an adversarial manner. Specifically, the
generator is trained to generate images as realistic as possible for fooling the
discriminator, the discriminator is instead trained to distinguish the generated
images from real ones as accurate as possible. GANs trained by such adversarial
learning can often generate very impressive and realistic images.

With the great success of the adversarial learning, GANs have been studied
extensively in recent years [18–21] with applications in various tasks such as
image inpainting [22], image synthesis [23–25, 20, 26, 27], video generation [28],
and 3D modelling [29]. They have also been widely studied for image-to-image
translation, more details to be described in the next subsection.

2.2 Image-to-image Translation

Image-to-image translation aims to transform images from one domain to an-
other where images often have different characteristics such as colors, styles, etc.
Quite a number of GANs have been designed for the task of image-to-image
translation in recent years [2, 9, 15, 30–38], starting from earlier methods that
require paired training images from different domains to the recent that can be
trained with unpaired images.

For GANs requiring paired training images, [2] presents Pix2pix, a general-
purpose translation network that adopts conditional GAN (cGAN) [25] to learn
mappings between two sets of paired images. Similarly, [39] employs cGAN to
learn the mapping from sketches to photos and AL-GAN [40] uses cGAN to gen-
erate scene images conditioning on scene attributes and layout. In addition, [41]
presents a △-GAN that uses semi-supervised learning for cross-domain joint
distribution matching. To address the lack of diversity of the aforementioned
methods, BicycleGAN [42] is designed to generate continuous and multimodal
distribution. Paired images provide useful supervision information but collecting
paired images from different domains is often time-consuming.

For GANs that can work with unpaired training images, DTN [6] introduces
a network with one generator and one discriminator for general purpose trans-
lation. Co-GAN [4] proposes a two-generator-two-discriminator network that
learns joint distribution of multi-domain images by sharing a latent space. Sim-
ilarly, UNIT [13] uses a shared latent space but involves a complex framework
with two encoders, two generators, and two discriminators. CycleGAN [14] em-
ploys two generators to learn bidirectional mappings between two domains and
it also employs two discriminators for each of the two domains. Similar to Cy-
cleGAN, DiscoGAN [3] uses two generators and two discriminators and employs
cycle consistency and reconstruction losses to measure how well source domain
images are translated back after translating to the target domain. Similar to Bi-
cycleGAN, MUNIT [43], and DRIT [44] aims to generate multiple outputs from
one input by decomposing images as content and style.



RF-GAN 5

To address the lack of generalization, many existing cross-domain translation
GANs can be adapted to multi-domain translation tasks. In the straightforward
adaptation, one model can be used for each binary combination of domains and
trained separately. For example, ComboGAN [30] extends cross-domain trans-
lation to multi-domain by training less model than straightforward adaptation.
In addition, some efforts aim for multi-domain image translation with a small
model. For example, StarGAN [15] proposes a model that contains a single con-
ditioned generator, a single discriminator and an auxiliary classifier on top of the
discriminator. DosGAN [16] similarly employs a single generator, a single dis-
criminator, and a single pre-trained classifier. SingleGAN [37] instead employs
a single generator but multiple discriminators.

Cross-domain translation GANs such as DiscoGAN and CycleGAN have two
generators and two discriminators that introduce a large number of network pa-
rameters which require a large amount of training images to train. Multi-domain
translation GANs such as StarGAN and DosGAN employ a single generator and
a single discriminator, but its discriminator is a large network. Our proposed RF-
GAN has a single generator and a single discriminator without additional classi-
fier which reduces up to 75% network parameters by comparing the translation
GANs. This expands the RF-GAN’s applicability in resource-constrained devices
and also helps reduce the required training images greatly. On the other hand, it
achieves superior translation fidelity consistently as compared with most state-
of-the-art translation GANs, largely due to the reconfigurable generator and the
multi-domain discriminator to be described in the following Section.

3 The Proposed Method

The proposed RF-GAN learns a single generator for image mapping in opposite
directions between domains. It also learns a multi-domain discriminator for bidi-
rectional image discrimination without requiring domain-specific discriminators
or extra classifier. A novel training strategy is designed to train the proposed
RF-GAN effectively, more details to be presented in the following subsections.

3.1 Reconfigurable Generator

Learning a mapping function to map images in opposite directions takes an
iterative learning process in the proposed RF-GAN. Fig. 2 shows one learning
iteration, where the generator G and Gr (derived by swapping G′s parameters)
both have an encoder and a decoder. Given images xS from a source domain S, G
first learns to map them to x̂T in a target domain T conditioned to the category of
the target domain. Once G is learned, it is reconfigured to an assistive generator
Gr automatically by swapping G’s parameters. Gr then learns the mapping from
xT to x̂S as well as from x̂T to x̃S . After that, Gr is reconfigured back to G by
swapping its parameters which will further learn the mapping from xS to xT and
from x̂S to x̃T . The iterative learning will finally lead to a single reconfigurable
generator G. Given new images from domains S and T , G can map images from
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S to T , and it can simply be reconfigured to Gr (by swapping its parameters) for
inverse mapping from T to S. Details of the parameter swapping and generator
training will be described in the following three subsections.

Parameter Swapping The target of the proposed parameter swapping is to
learn one generator for image translations in opposite directions. Given images
in domains S and T , a mapping function G will be confused and fail to learn
well if we directly train it for mappings in the directions S → T and T → S
concurrently. The reason is that for the mapping S → T , G’s encoder parameters
will mainly deal with images in domain S and G’s decoder parameters will
mainly deal with images in domain T . If we concurrently train G for the mapping
T → S, G’s encoder parameters will have to deal with images in domain T and
its decoder parameters will have to deal with images in domain S. This will
confuse G and lead to an undesired mapping function.

We introduce an assistive generator Gr to learn the mapping T → S. To
ensure that we will finally learn a single generator, we design G and Gr in a
way that Gr can be simply derived from G by swapping G’s parameters. In
this way, the proposed RF-GAN first learns G for the mapping S → T and
then derives Gr (automatically by swapping G’s parameters) for learning the
mapping T → S. The iterative learning leads to a reconfigurable G that can
handle image translations in opposite directions. For a 2n−layer network, the
mappings for G and Gr can be formulated as follows:

ExS∼XS
G(xS , yT ) =x̂T ,where

G(xS , yT ) =xS ⊙W1 ⊙W2 ⊙ . . .⊙Wn ⊙Wn+1 ⊙ . . .⊙W2n

(1)

ExT∼XT
Gr(xT , yS) =x̂S ,where

Gr(xT , yS) =xT ⊙W2n ⊙W2n−1 ⊙ . . .⊙Wn+1 ⊙Wn ⊙ . . .⊙W1

(2)

where ⊙ denotes convolution operations, yS and yT are the category of domains
source S and target T , respectively, and W1, ...,W2n denote the convolutional
layers as shown in Fig. 2.

Generator Architecture Leveraging on the CycleGAN generator [14], we de-
sign a reconfigurable generator for mapping images in opposite directions. Our
generator replaces all convolution layers with fractional-strided convolution lay-
ers in the second half of the architecture of CycleGAN generator. For a detailed
comparison. As fractional-strided convolution is widely used for deconvolution,
the use of convolution layers in the first half and fractional-strided convolution
layers in the second makes the reconfigurable generator invertible and more suit-
able for learning bidirectional mapping. Due to the symmetric structure of the
reconfigurable generator, convolution layers and fractional-strided convolution
layers have the same number of parameters. In another word, W1+i and W2n−i,
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Fig. 3. The proposed reconfigurable generator G has perfect symmetric structures and
so symmetric input dimensions which ensure that the parameter swapping in G can be
carried out without discrepancy.

i ∈ [0, n) have exactly the same size. This symmetric structure also ensures that
the input of each layer (activation size in each layer) has the same symmetric
relation as shown in Fig.3. Note the parameters of CycleGAN generator can
also be swapped with certain adaptations such as parameter transposition, but
the performance of the new generator is much lower than ours that has a more
invertible structure.

As shown in Fig. 3, the architecture consists of three major components in-
cluding an encoder that progressively down-samples by two convolution with
stride 2, a decoder that progressively up-samples by two fractional-strided con-
volution with stride 0.5, and a straight component with t ResNet blocks [45]
(default at 9) in the middle. Similar to the CycleGAN generator, the first half of
the straight component in our generator is convolution layers with stride 1. How-
ever, the second half changes to fractional-strided convolution layers with stride
1 for parameter swapping. In addition, our generator uses a fractional-strided
convolution layer with the same stride as the last convolution layer. Further, both
CycleGAN generator and our generator use reflection padding in the first half of
the straight component and down-sampling layers, but our generator uses inverse
padding (which crops activations from the edges of activations symmetrically)
in the second half of the straight and up-sampling layers. Note normalization
layers are omitted for the sake of the visual simplicity in Fig. 3.

Generator Training The generators G and Gr learn alternatively while train-
ing the RF-GAN iteratively. In each training iteration, G first translates image
xS in source domain S to images x̂T in target domain T . After that, G is re-
configured to Gr by automatic swapping G’s parameters and Gr then learns
to translate x̂T to x̃S . Intuitively, xS and x̃S should be the same, but they are
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never perfectly the same as Gr is not a perfect inverse of G. A reconstruction
loss [3], [14] between xS and x̃S should therefore be computed to train G and
Gr to learn the mappings in the two opposite directions and force them to be
approximately inverse of each other:

LREC(G,XS , XT ) =E(xS ,yS)∼(XS ,YS) ‖Gr(G(xS , yT ), yS)− xS‖2
+E(xT ,yT )∼(XT ,YT ) ‖G(Gr(xT , yS), yT )− xT ‖2

(3)

In addition, a least-square adversarial loss [46] should be computed with
translated images as follows:

LGAN
G (G,D,XS , XT ) = E(xS ,yS)∼(XS ,YS)(D(G(xS , yT ))− yT )

2

+ E(xT ,yT )∼(XT ,YT )(D(Gr(xT , yS))− yS)
2,

(4)

where yS is the label of images in S (xS) and yT is the label of images in T (xT ).
The training of G should minimize both reconstruction loss and adversarial

loss as formulated as follows:

LG(G,D,XS , XT ) = LGAN
G (G,D,XS , XT ) + λLREC(G,XS , XT ) , (5)

where λ controls the relative effect between adversarial and reconstruction losses.

xS	 G(xS	,yT	)	=	xT	^ Gr(G(xS	,yT	),yS	)	=	xS	
~ xS	 G(xS	,yT	)	=	xT

^ Gr(G(xS	,yT	),	yS	)	=	xS	
~

Fig. 4. For images xS in domain S, our reconfigurable generator G can translate them
to x̂T in domain T which can be translated back to x̃S in domain S by generator Gr

that can be simply reconfigured from G.

Fig. 4 illustrates the image mapping with our proposed reconfigurable gener-
ator G. As Fig. 4 shows, the reconfigurable generator G is capable of translating
images xS in domain S to images x̂T in domain T as shown in columns 1 & 4
and columns 2 & 5. At the same time, the reconfigured Gr (from G) is capa-
ble of translating (x̂T ) back to (x̃S) in domain S as shown in columns 3 & 6.
This clearly shows the effectiveness of our proposed RF-GAN that can learn one
mapping function for image mapping in two opposite directions.

3.2 Multi-domain Discriminator

Discriminator in GANs is basically a domain-specific binary classifier which
aims to distinguish real and translated images in one specific domain. There-
fore, translation GANs such as DiscoGAN [3] and CycleGAN [14] employ two
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domain-specific discriminators for discriminating images translated in two op-
posite directions. In the more recent multi-domain translation GANs such as
StarGAN [15], a single discriminator is used for multi-domain discrimination
but an auxiliary classifier is employed on top of the discriminator for classifying
samples according to their domains. This also applies to DosGAN [16] which
also uses a pre-trained classifier together with a discriminator for differentiating
samples from more than one domain.

We design a multi-domain discriminator D that can perform image discrim-
ination in opposite directions without requiring either more than one domain-
specific discriminators or additional classification. Specifically, our multi-domain
discriminator learns to discriminate real images in domain T and the translated
images from domain S to domain T (by G), as well as the real images in domain
S and the translated images from domain T to domain S (by Gr). The training
aims to minimize the following adversarial loss:

LD(G,D,XS , XT ) = LGAN
D (G,D,XS , XT ) + LGAN

D (Gr, D,XT , XS) (6)

where the two least-square adversarial loss components [46] can be computed in
a similar way. One of them can be computed by:

LGAN
D (G,D,XS , XT ) =E(xT ,yT )∼(XT ,YT )(D(xT )− yT )

2

+E(xS)∼(XS)(D(G(xS , yT ))− y∗T )
2

(7)

where yS , yT , y
∗

S , and y∗T refer to the label of images in domains S (xS) and T
(xT ), as well as the translated images in domains S (x̂S) and T (x̂T ), respectively.

Our multi-domain discriminator is a PatchGAN [47] adapted from [14]. It
consists of five 4x4 convolution layers three of which are with stride 2 and the
other two are with stride 1. Leaky ReLU is used as the activation function.

Algorithm 1 RF-GAN Training

Input: Generator G, discriminator D, batch of training sets (xS , yS) ∈ (XS , YS) and
(xT , yT ) ∈ (XT , YT )
Output: Updated generator G and discriminator D

1: x̂T ← G(xS , yT )
2: update D by LGAN

D based on xT and x̂T with Equation 7
3: Gr ← reconfigure G

4: x̃S ← Gr(x̂T , yS) and x̂S ← Gr(xT , yS)
5: update D by LGAN

D based on xS and x̂S with Equation 7
6: G← reconfigure Gr

7: x̃T ← G(x̂S , yT )
8: update G by LGAN

G with Equation 4 and LREC with Equation 3
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3.3 RF-GAN Training

The RF-GAN employs an assistive generator Gr during its iterative training as
illustrated in Fig. 2. Each training iteration consists of two cycles: 1) images xS

in domain S are first translated to x̂T in domain T by G and then translated back
to x̃S by Gr (reconfigured from G); 2) images xT in domain T are translated to
x̂S in domain S by Gr and then translated back to x̃T by G (reconfigured from
Gr). During this iterative training process, it is critical to keep the association
between image domains and the generator G/Gr consistently. Specifically, while
G is translating images from domain S to domain T , Gr must translate images
from domain T to domain S. Without this association, the cycle consistency
will be broken and the generators will be confused easily. We design a sequential
training strategy to guarantee this association.

As shown in Algorithm 1 which illustrates single training iteration, generators
G and Gr swap their parameters twice to keep their association with image
domains. In addition, the update of G is postponed to the end of the training
as the loss computation requires the reconstructed images x̃S and x̃T . Different
from G, the multi-domain discriminator D is updated twice instead. The first
update happens after D learns to discriminate images in domain T xT and the
translated images to domain T x̂T , and the second happens after D learns to
discriminate images in domain S xS and the translated images to domain S x̂S .

During the iterative training of RF-GAN, λ in Eq. 5 weights the reconstruc-
tion loss and adversarial loss which is experimentally set at 10. In all evaluations,
networks are trained from scratch by applying Adam problem solver [48] with
learning rate of 0.0002 and betas 0.5 and 0.999.

4 Experiments

4.1 Datasets and Evaluation Metrics

Datasets: We evaluated RF-GAN over eight public datasets on unpaired image
translation. Each dataset consists of a training set and a test set and the eight
datasets can be grouped into three categories on object transfiguration, season
transfer, and painters’ style transfer. The object transfiguration category has
two datasets including apple↔orange and horse↔zebra. The season transfer

also contains two datasets including summer↔winter photos of Yosemite and
different (four) seasons of the Alps. The painters’ style transfer has four datasets
where each consists of natural photographs in one domain and paintings of one
of four artists (Cezanne, Monet, Ukiyo-e, and Van Gogh) in another domain.

Evaluation Metrics: Quantitative evaluation of GAN-synthesized images
is still a challenging task [49], [50]. We performed quantitative evaluations by
using Fréchet Inception Distance (FID) [51] which is one of the most widely
used metrics in evaluating GAN-synthesized images. FID measures the similarity
between two sets of samples with the range of [0,∞). It uses inception model [52]
and measures the distance between multivariate Gaussian distribution of features
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Methods DiscoGAN [3] CycleGAN [14] StarGAN [15] RF-GAN

# generator/s 2 2 1 1
# discriminator/s 2 2 1 1
# parameters (M) 16.560 28.286 53.208 14.143

Table 1. Comparison of RF-GAN with DiscoGAN [3], CycleGAN [14], and Star-
GAN [15] in the number of generators and discriminators as well as parameter numbers.

extracted from an intermediate layer of inception net. While compared with
natural images, a lower FID means high fidelity of the synthesized images.

We compare RF-GAN with three state-of-the-art translation GANs includ-
ing DiscoGAN, CycleGAN, and StarGAN. Table 1 provides their comparison
in terms of the number of generator/s, discriminator/s, and size of network
parameters with having default number of ResNet block in generators. As Ta-
ble 1 shows, RF-GAN is 50% smaller than CycleGAN. It is also smaller than
DiscoGAN which uses an encoder and decoder with no straight components.
Although StarGAN uses a single generator and discriminator, it has many more
parameters than RF-GAN because of its auxiliary classifier.

4.2 Experimental Results

In the evaluations, CycleGAN uses a pre-trained model whereas DiscoGAN and
StarGAN are trained from scratch. In all evaluations, RF-GAN is trained in the
same manner as CycleGAN for 200 epochs from scratch for fair comparisons.
Once trained, each sample image in the test set is translated from the source
domain to the target domain. FID is then computed between the full test set of
the target domain and the generated samples to measure their similarity. Table 2
shows the experimental results where the last column shows the FID between
the training and the test sets. Since the training and test sets of photo→Van
Gogh contain the same sample images, its FID is zero.

RF-GAN(G) and RF-GAN(Gr) in Table 2 refer to the RF-GANs whose
generators are initially trained in the same and opposite directions as listed in
Translations column. We can observe that RF-GAN initially trained in either
direction achieves similar translation performance, demonstrating the effective-
ness of our proposed reconfigurable generator. Note the first four tasks in the
RF-GAN column are replicated two times (including RF-GAN training and eval-
uation) and then compute FID average and variation, just to show the stability
of RF-GAN in image translation. The last row shows overall FID scores each of
which is computed by the average of normalized FIDs across the ten translation
tasks (normalization is computed by Real’s FID/GAN’s FID). Since the FID
of translated images is almost always higher than the FID of real images, the
normalized FID usually lies [0, 1] (the bigger the better).

As Table 2 shows, RF-GAN outperforms DiscoGAN consistently by large
margins across the ten studied translation tasks. DiscoGAN’s much higher FIDs
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Methods Real

Translations
DiscoGAN CycleGAN StarGAN RF-GAN RF-GAN training

[3] [14] [15] (G) (Gr) vs test

apple→orange 377.58 181.34 222.71 173.13±1.34 178.58 55.31
orange→apple 345.54 164.46 167.68 136.64±0.07 143.95 48.36
horse→zebra 414.28 81.25 150.39 38.23±0.29 37.66 29.62
zebra→horse 333.23 143.03 206.15 143.77±1.84 144.05 89.99

summer→winter 296.75 82.30 131.11 99.86 101.79 64.64
winter→summer 296.99 80.11 120.65 98.70 91.97 44.87

photo→Cezanne 360.41 216.76 280.43 212.70 216.14 180.51
photo→Monet 279.41 133.08 172.02 128.20 128.82 108.09
photo→Ukiyo-e 316.84 180.33 212.31 166.38 150.27 126.09
photo→Van Gogh 322.99 109.77 211.44 108.69 109.61 0*

Overall Score 0.25 0.59 0.43 0.63 0.63 1

Table 2. Comparison of RF-GAN with state-of-the-art GANs (in FID): RF-
GAN(G)/RF-GAN(Gr) denotes our RF-GAN whose generator is initially trained in
the same/opposite direction as listed in the column Translations. For object transfig-
uration and season transfer in the first three tasks, the translations are bidirectional.
For the four painters’ style transfer tasks, the translations are from photographs to
paintings as translating natural photographs to paintings is more meaningful. FID in
the last column is computed between real paintings in the training and test sets (*
denotes that training and test samples of photo→Van Gogh are the same so FID zero).
The last row ‘Overall Score’ is the average of normalized FID across the nine transla-
tion tasks (photo→Van Gogh not included), where the normalized FID for each task is
computed by Real’s FID/GAN’s FID. Note the first four tasks in the RF-GAN column
are replicated two times (for RF-GAN training and evaluation) and then compute FID
average and variation, just to show the stability of RF-GAN in image translation.

Methods Real

Translations StarGAN [15] RF-GAN (G) training vs test

(summer+autumn+winter)→spring 106.86 104.45 94.95
(spring+autumn+winter)→summer 105.88 90.92 73.56
(spring+summer+winter)→autumn 108.66 96.08 76.48
(spring+summer+autumn)→winter 101.831 87.68 78.16

Overall Score 0.76 0.85 1

Table 3. Comparison of RF-GAN with StarGAN (in FID) over different seasons of the
Alps dataset (multiple domains). Translated images are generated from test samples
of the other seasons. ’Overall Score’ is calculated similarly as in Table 2.

could be due to its very simple network structures, though it is still bigger
than RF-GAN due to its two-generator-two-discriminator design. In addition,
RF-GAN outperforms CycleGAN for object transfiguration and painters’ style
transfer tasks consistently, though its size is just 50% of the CycleGAN. Further,
Tables 2 and 3 show that RF-GAN translates better than StarGAN for either
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Fig. 5. Illustration of input and translated images by RF-GAN for apple↔orange,
horse↔zebra, summer↔winter, photo→Cezanne, photo→Monet, photo→Ukiyo-e, and
photo→Van Gogh.

cross-domain or multi-domain translations. Although both have a single gener-
ator and discriminator, the parameter number of StarGAN is up to 3.5 times
more than RF-GAN. As a result, StarGAN requires more training samples for
training a good translator. Besides, translated images by StarGAN tend to be
similar to the input images due to the conflict between its generator and auxil-
iary classifier as discussed in [37]. All these quantitative results demonstrate the
superior performance of our proposed RF-GAN.

4.3 Qualitative Experimental Results

Figs. 5 and 6 show qualitative evaluation of RF-GAN where two sample images
are translated for each of the seven studied datasets. For the multi-domain trans-
lation dataset, one sample is selected for each season and translated to the other
seasons. We can see that RF-GAN produces good-quality translations for both
cross-domain and multi-domain translation consistently across all translation
tasks.

4.4 Ablation Study

An ablation study is performed over two object transfiguration datasets apple
↔ orange and horse↔zebra to show the effectiveness of the reconfigurable gen-
erator and multi-domain discriminator in RF-GAN. Two new ablation models
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spring summer autumn winter spring summer autumn winter

Fig. 6. Input images and translated images by RF-GAN for different seasons of the
Alps. Input images highlighted by red boxes are translated to other seasons.

CycleGAN Abl. 1 Abl. 2 RF-GAN

# gen. / dis. / params. (M) 2 / 2 / 28.286 2 / 1 / 25.521 1 / 2 / 16.908 1 / 1 /14.143

apple→orange 181.34 177.03 175.79 173.13
orange→apple 164.46 140.05 139.96 136.64
horse→zebra 81.25 66.97 65.68 38.23
zebra→horse 143.03 151.07 149.24 143.77

Table 4. Ablation studies: Abl. 1 replaces two CycleGAN discriminators with our
multi-domain discriminator. Abl. 2 replaces two CycleGAN generators with our re-
configurable generator. The results show that our reconfigurable generator and multi-
domain discriminator outperform the CycleGAN generators and discriminators clearly.

Abl. 1 and Abl. 2 are trained as shown in Table 4 where Abl. 1 replaces Cy-
cleGAN’s two discriminators with our multi-domain discriminator and Abl. 2
replaces CycleGAN’s two generators with our reconfigurable generator. As Ta-
ble 4 shows, our reconfigurable generator and multi-domain discriminator both
outperform CycleGAN’s generators and discriminators clearly. While combined,
the complete RF-GAN produces the best FID.

5 Conclusion

This paper presents a reconfigurable GAN (RF-GAN) that is small yet capa-
ble of translating images realistically. Different from state-of-the-art translation
GANs that usually have large model size and network parameters, RF-GAN
learns a single reconfigurable generator that can perform bidirectional trans-
lations by swapping its parameters. In addition, RF-GAN has a multi-domain
discriminator that allows bidirectional discrimination without requiring domain-
specific discriminators or additional classifiers. RF-GAN reduces the model size
by up to 75% as compared with state-of-the-art translation GANs, and extensive
experiments over eight datasets demonstrate its superior performance in FID.
We expect that reconfigurable generative networks will inspire new insights and
attract more interest in translating high-fidelity images in the near future.
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