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Abstract. In this paper, we study the task of searching for a query
object of unknown position and pose in a scene, both given in the form
of 3D point cloud data. A straightforward approach that exhaustively
scans the scene is often prohibitive due to computational inefficiencies.
High-quality feature representation also needs to be learned to achieve
accurate recognition and localization. Aiming to address these two funda-
mental problems in a unified framework, we propose Adaptive Spotting,
a deep reinforcement learning approach that jointly learns both the fea-
tures and the efficient search path. Our network is designed to directly
take raw point cloud data of the query object and the search bounding
box and to sequentially determine the next pose to be searched. This
network is successfully trained in an end-to-end manner by integrating a
contrastive loss and a reinforcement localization reward. Evaluations on
ModelNet40 and Stanford 2D-3D-S datasets demonstrate the superiority
of the proposed approach over several state-of-the-art baselines.

1 Introduction

Objects in the real world are three-dimensional (3D). Understanding their ap-
pearances and semantics naturally requires 3D information processing. The ex-
ternal surfaces of 3D objects can be captured as point clouds, which have be-
come easily acquirable with the proliferation of modern range sensors such as
LiDAR and RGBD cameras, and with the improvement of SLAM and SfM accu-
racy. While such data have been used mainly for environment modeling towards
robot control or autonomous driving purposes, the recent development of deep
neural networks such as PointNet [1], which can directly handle 3D point cloud
data, has opened new research avenues including point cloud-based classifica-
tion/segmentation [1-3], detection [4-8], and retrieval [9, 10].

In this paper, we consider the problem of point cloud-based object search.
The task is to find a query object from a scene (reference map), both given in the
form of 3D point cloud data; for example, we may want to find a chair specified
by a user from an office room. It is different from the popular point cloud-based
object recognition tasks mentioned earlier. In object classification, detection, and
segmentation, the object classes to be classified/detected are known in advance,
while in our task the object to search is specified online as a query. The task
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Fig. 1. Overview of our proposed network. Our model has two major modules: a feature
extraction module and a localization module. Taking a query object and a current
search bounding box in the reference map, the network sequentially determines the
pose of the next bounding box. © and @ indicate concatenation and element-wise
addition, respectively.
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most relevant to ours is object retrieval, where the common idea is to follow the
successful approaches in 2D image retrieval. For example, the previous works [1,
9-11] use deep neural networks to represent each point cloud as a global feature,
with which a query object is compared with multiple database objects. While
the goal of object retrieval is to search a database, our task aims at finding a
point cloud (query) that exists in a much larger point cloud (reference map) with
unknown position and pose. One straightforward solution is to adapt existing
object retrieval methods to our problem in a “sliding-window” manner, i.e.,
scanning the whole reference map using a small 3D bounding box with varying
scale and orientation. However, this solution has to deal with a huge search space
for accurate localization of the target object, making the overall search process
fairly inefficient.

In this paper, we propose Adaptive Spotting, a point cloud search approach
that significantly reduces the search space with greater matching accuracy. The
idea is to learn efficient search path from data, i.e., using machine learning to
pick and compare only highly prospective regions in the 3D reference map with
a given query. Specifically, a recurrent neural network is employed to predict
a sequence of 3D poses, each spotting a candidate 3D bounding box in the
reference map and being expected to match with the query. The network is
trained through reinforcement learning in an exploratory manner. No explicit
supervision such as the 3D location of the target object or its class label is
needed. In addition to the search path, our approach jointly learns point cloud
feature representation in a unified framework, which provides a sharp insight into
the similarity between the predicted target object and the query. To this end, we
propose a novel loss configuration that integrates the feature contrastive loss with
the reinforcement localization rewards. This configuration enables our model
to learn more discriminative feature representation than traditional retrieval
methods. We evaluate our approach on ModelNet40 and Stanford 2D-3D-S and
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show that it produces remarkable accuracy improvement with a greatly reduced
number of matching processes and a much shorter run time.

2 Related Work

We briefly review two relevant areas to this paper: deep feature representation
techniques for point cloud data and point cloud-based object retrieval and search.

Deep Feature Representation for Point Cloud Data. While the feature
representation of point clouds has long relied on handcrafted features, the recent
success of CNNs in 2D image representation has led to researches on deep point
cloud representation.

Unlike 2D images, regular convolution kernels cannot be applied to unstruc-
tured 3D point cloud data. Hence, early attempts rasterized the point cloud
into dense and regular voxel grids to make use of 3D volumetric convolutions.
Two pioneers are VoxNet [12] and 3D ShapeNet [13], which integrate volumet-
ric occupancy grid representations with supervised 3D CNNs for point cloud
representation learning. Following these two studies, many methods have been
proposed to handle the sparsity problem of raw point clouds [14-17]. Another
direction of deep point cloud representation is to project the set of 3D points
onto 2D planes so that standard 2D CNNs can be applied directly [18-20]. For
example, MultiView CNN [18,19] tried to learn features using CNN in an end-
to-end trainable fashion through multiple 2D projections of a 3D point cloud.
This line of studies has achieved dominating performance on shape classification
and retrieval tasks as reported in the competitions of the large scale 3D SHape
REtrieval Contest (SHREC) [21]. However, it is nontrivial to extend them to
our object search task or other 3D tasks such as point classification and shape
completion.

More recently, a special type of neural network has been proposed that can be
directly applied to raw point cloud data [1,2,22]. PointNet [1] is the pioneering
network that directly processes point sets and uses a symmetric function to make
the feature representation invariant to the order permutation of the input points.
PointNet++ [2] is the extended version of PointNet and introduces a hierarchical
architecture to exploit the local structures of the point set at multiple scales.
Several other extensions have also been made to more effectively capture local to
global shape characteristics of the input point cloud data [23-25]. In addition to
these, several studies have been proposed that leverage the graph convolutional
networks (GCNs) [26-28] for the point cloud convolution, given that the point
cloud data can be readily modeled as a graph. Some studies such as [29] also
introduced customized layers to capture the distribution of 3D points in a latent
space.

In this study, we integrate PointNet++ [2] into our deep recurrent framework
as a feature extraction module. The network is effectively trained in a fully end-
to-end manner through our exploratory reinforcement learning and contrastive
feature learning process.
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Point Cloud-based Object Retrieval and Search. The common approach
to point cloud-based object retrieval is the same as in the case of 2D images: it
represents each point cloud by a feature vector and searches by feature matching.
Traditional studies rely on handcrafted features to describe the shape of the
point cloud data (often in the normal direction). A typical example is to use
local 3D descriptors such as [30-32] to identify objects that match the query.
Such methods often require dense and accurate point cloud data, and the signal-
to-noise ratio of the target object needs to be small.

In response to the recent growth of deep point cloud representation, several
studies have worked on point cloud object retrieval based on deep features. An
early attempt [9] used a PointNet pre-trained for object recognition [1] to extract
deep features for 3D shape retrieval. PointNetVLAD [10] adapted the NetVLAD
architecture [33], which was originally designed for 2D image retrieval, by replac-
ing the conventional 2D CNN with PointNet. Its performance was evaluated in
a point cloud-based place recognition task that aims to identify the urban block
corresponding to a given query from a database of pre-segmented urban blocks.
PCAN [11] is an extension of PointNetVLAD that involves 3D attention map
to exploit higher-level contextual information, and is also proposed for the same
place recognition task.

Unfortunately, these techniques cannot be directly applied to the problem
we are considering in this work. Our object search task is to accurately localize
an object in a reference map with unknown position and pose, whereas the tech-
niques described above do not take into account this localization requirement.
Of course, it is possible to leverage these techniques for feature extraction and
search for the object based on a sliding window (i.e., a 3D bounding box in the
reference map). However, such an exhaustive strategy is often prohibitively time-
consuming. By association, it is not easy to find an optimal quantization level for
the position and size (scale) of the bounding box, such that sufficient accuracy
and small search space can be guaranteed simultaneously. Another potentially
related field is robotics, where object search has long been explored [34, 35]. How-
ever, most of the approaches are based on handcrafted features and heuristics.

Unlike the previous studies described above, our approach can predict the
position and pose of the target object directly from the raw point cloud of the
query and reference map. The conceptual idea of this study is somewhat similar
to [36] and [37], where, however, only 2D images are taken into consideration.
To the best of our knowledge, this is the first work that proposes an end-to-end
reinforcement learning approach to object search on raw 3D point cloud data.

3 Adaptive Spotting

Given a pair of a query (target) object Q and a reference map R both represented
as point clouds, our task is to find the correct pose of the target object in R
that matches Q.

Following previous studies for 3D object detection [4,38], we represent the
pose of the target object by a set of seven parameters, which are three for the
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translation, three for the scaling, and one for the rotation (yaw) relative to Q.
This parameter set (or pose) is denoted by A,. Given A,, a 4 x 4 affine transfor-
mation matrix can be constructed, which represents the 3D mapping from Q to
the target object in R. We can bridge the geometric variation between the query
and the target by applying the inverse of the above affine transformation to R.
Consequently, the points in the 3D bounding box, whose center is the origin and
whose size is equal to the query, becomes the rectified target object and should
match Q without viewpoint variation.

Given an arbitrary pose A, we use R(A) to denote the point cloud rectified
from R according to A. For example, R(A,) indicates the rectified target object.
Our task is thus to find an affine matrix A such that R(A) matches Q.

3.1 Overview

Different from the naive solution that exhaustively scans R, we approach to this
problem by sequential search. Specifically, we aim at determining a sequence
of poses {A;}]_, such that the search process can correctly reach A, within T
steps. Here, t is the time step and 7T is the length of the sequence.

We propose a deep reinforcement learning approach with a neural network
that embraces PointNet++ [2] and LSTM in a unified framework. The schematic
overview of our network is illustrated in Fig. 1. Our network consists of two
major modules called feature extraction module and localization module, respec-
tively. In the test stage, the behaviors of our network at each time step ¢ can be
summarized as follows.

1. The feature extraction module extracts point features from Q and R(A:),
which are denoted by f(Q) and f(R(A)), respectively. Here, R(A;) indicates
the predicted target object that has been rectified according to A;.

2. The localization module receives the two sets of point features f(Q) and
f(R(Ay)) as well as the current pose A; to determine the next pose Azy.

These two sub-processes are repeated sequentially until the maximum number
of time steps T is reached. The detail of the two modules is given in Section 3.2.

Consider a realistic training scenario, where a trainer asks an autonomous
agent to find an object in an unknown place, i.e., the ground truth pose A, is
unavailable. In this case, the only thing the trainer can do for training is to tell
the agent whether the object localized by the agent is the target or not. Since
the localization is achieved in a sequential manner, the decision made at the
current time step relies on all the past decisions, and the quality of the cur-
rent decision cannot be evaluated independently from the past ones. Therefore,
typical supervised learning methods that assume i.i.d. samples cannot be ap-
plied to our scenario. Fortunately, the problem can be modeled as a Partially
Observable Markov Decision Process (POMDP), which can be handled by rein-
forcement learning. We thus propose using a reinforcement learning algorithm
that requires neither the explicit supervision nor the i.i.d. assumption. We give
the detail of our training algorithm in Section 3.3.
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Our idea is inspired by the Recurrent Attention Models (RAMs) primarily de-
signed for image recognition [39-41]. In this study, we introduce this mechanism
into point cloud-based object search by incorporating it with feature embed-
ding of unstructured 3D data, leading to the simultaneous end-to-end learning
of point features and efficient search paths.

3.2 Details of Modules

This section gives the details of the feature extraction module and the localiza-
tion module one by one. Hereafter, we simply use the term “BBox” to indicate
the 3D bounding box that covers the predicted target object in the space of R
but has not been rectified according to A;.

Feature Extraction Module. This module extracts point features f(Q) and
F(R(Ap)) from Q and R(A;). Given a BBox that touches the true target object
but does not fully overlap, the network is expected to move the BBox closer
to the target at succeeding time steps. To make it possible, the network must
know, e.g., in which direction/angle the BBox is offset from the target, and such
information must be acquirable from f(Q) and f(R(A¢)). Therefore, the point
feature needs to be affine-variant: f(R(A:)) must change as the pose of R(A;)
changes.

In this study, we adopt PointNet++ [2] for this purpose but any deep, affine-
variant feature extractor can be used here. Our feature extraction module con-
sists of two identical PointNet++ networks with shared parameters; one for the
query Q and the other for R(A;). PointNet++ has a hierarchical architecture
and alternately clusters and aggregates local points to extract a global feature
vector that captures both global and local structures of the point cloud. This
approach draws an analogy to convolution and pooling layers in standard CNNs.
Specifically, we employ a three-level hierarchical architecture with 1024, 256, and
128 clusters, respectively. The final embedding is obtained by applying two fully
connected (FC) layers with output dimensions of 512 and 64, respectively. The
extracted features f(Q) and f(R(A¢)) are both fed to the subsequent localization
module to determine the pose of the next BBox.

Localization Module. The main component of the localization module is an
LSTM that sequentially predicts the pose A:+1 of the next BBox from three
external inputs, namely f(Q), f(R(A4;)), and the current pose A;.

We first concatenate f(Q) and f(R(A:)) and employ two FC layers to gen-
erate a single 128D point feature vector. This feature reflects the appearance of
Q and R(A;) as well as the relative spatial relationship between the two point
clouds. Meanwhile, A; is encoded, by two FC layers of output dimensions 64 and
128, into a 128D pose feature vector. This feature represents the absolute spatial
pose of the current BBox. The point and pose features are summed and then fed
to the LSTM, as shown in Fig. 1.

The LSTM outputs the next 128D hidden state hyy1 to which a linear projec-
tion is applied to obtain the expected value /Alt_H of the seven pose parameters.
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That is, we assume that A, is a stochastic variable and follows a Gaussian dis-
tribution whose mean is given by Af+1 Once At+1 is predicted, A;1; is obtained
as a sample drawn from the distribution N (At+1, AI), where I is the identity
matrix and A is a hyperparmeter controlling the standard deviation.

For initialization, the first pose Ag is determined randomly. If at any time
R(A:) contains no points, we take the center point, i.e., (0,0,0), as R(A4;) and
feed it to PointNet++ to inform the network about the lack of objectness.

3.3 Model Training

Let © = {0y, 6;} be the parameters of the whole network, where #; and 6; cor-
respond to feature extraction and localization modules, respectively. Reinforce—
ment learning is used to tune 6. For simplicity, we use s; 1 = {{P-}.2}, Q, R}
to denote the set containing all the past predicted poses as well as the query and
the reference. The policy of the reinforcement learning can then be represented
as a conditional distribution 7(A¢|s;—1;©). Our goal is to maximize the total
reward R = Zthl ry w.r.t. @, where 7; is the reward value, typically one or zero,
at time ¢ (The definition of 7, is given in Section 4.2). The expected value of the
total reward is then

J(©) = EP(ST;@)[RL (1)

where p(sr;©) is the probabilistic distribution of sp, which depends on the
policy. Although the gradient w.r.t. © is non-trivial, it can be approximately
computed by sampling the sequence {A;, s, 1}~ from the policy in a similar
way to Monte-Carlo approximation, which gives

T
Vol(O) =~ — ZZ Vologn(Allsi_;O)R". (2)

Here, M is the number of sampled sequences. With this equation, @ can be
iteratively updated through gradient ascent.

Training our model only with reinforcement learning often makes the learn-
ing process unstable. Hence, we involve another loss function suitable for the
object search task to improve the stability. Specifically, we require the two point
cloud features extracted by the feature extraction module to correctly reflect
the similarity between Q and R(A;), i.e., the distance between the two features
should be small for matching pairs and large for non-matching pairs. To this
end, we impose a loss function, which resembles contrastive loss, on the feature
extraction module.

T
0¢) = Zrtd2 + (1 = 7¢) max{0,m — d}?, (3)

where d = ||f(Q) — f(R(A:))|| and m is the margin of the hinge loss. Unlike
the standard contrastive loss, Eq. 3 exploits the reward r; to determine the loss
value. It is piecewise differentiable, and so can be easily optimized with gradient
descent.
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Fig. 2. Examples of our datasets. Pairs of query (top) and reference (bottom) are
visualized. The examples of Stanford-2D-3D-S are textured for visualization purpose
only. In our experiments, we use texture-less 3D points.

4 Experiments

4.1 Datasets

We used two benchmark datasets, ModelNet40! [13] and Stanford 2D-3D-S? [42],
to evaluate the performance of our approach. Examples of the query/reference
pairs are shown in Fig. 2.

Transformed ModelNet40. ModelNet40 consists of 40 object classes with
varying numbers (from 64 to 889) of clean CAD instances per class, each having
the size 2 x 2 x 2 and 1,024 points. The total number of objects is 12,311.
We used this dataset to analyze the performance of our approach under the
controlled setup. The dataset was originally created for object recognition and
shape completion [13] and cannot be directly used for object search evaluation.
Hence, we conducted the following processing to generate query /reference pairs
from the original dataset.

Given an object of size 2 x 2 x 2, we randomly sample a set A, of seven pose
parameters from the ranges of [—1, 1] for 3D translation, [0.8,1.0] for 3D scaling,
and [0,360) for 1D rotation, and transform the object to a new reference space
(reference map). The reference map is no larger than 4 x 4 x 4. 10 patches, each
having 128 points, are randomly extracted from objects of other categories and
added to the reference map as distractors. The reference map thus has 2,304
points. The object described above is then regarded as the query and combined
with the reference to form a query/reference pair.

This processing was applied to all the objects in the dataset, leading to 12, 311
query/reference pairs. We followed the practice of [43] for obtaining the training
and testing sets, each consisting of 9,843 and 2,468 pairs, respectively.

! https://modelnet.cs.princeton.edu/
2 http://buildingparser.stanford.edu/dataset.html
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Stanford 2D-3D-S. To evaluate our approach in more realistic scenes, we made
use of the Stanford 2D-3D-S dataset to create query/reference pairs. The Stan-
ford 2D-3D-S dataset consists of 247 different halls originating from 6 large-scale
indoor areas that cover 6,000 m? in total. Instance-level annotations are pro-
vided for 13 object classes including structural elements (ceiling, floor, wall,
beam, column, window, and door) and movable elements (table, chair, sofa,
bookcase, board and clutter).

To generate query/reference pairs, we split each giant hall into 73 = 343
regular partitions. Each partition is regarded as a reference map if it contains
at least one object for which 70% of its points are inside the partition. All the
movable elements, whose volumes are no less than 1/10 of the reference map,
are taken as queries.

We selected one out of the six indoor areas and used all the query/reference
pairs derived from it for testing. All the other pairs were used for training. The
resulting training set comnsists of 2,919 queries and 1,504 references, while the
test set consists of 312 queries and 285 references. For this dataset, a search is
determined to be successful if the approach finds an object that has the same
class as the query.

4.2 Experimental Setup

Performance Metrics. We evaluated our approach in terms of success rate and
search time. Given a query/reference pair, our approach predicts a sequence of T’
poses over the reference map, which are used to evaluate the success rate. With
each pose, we can easily identify the corners of the predicted BBox. A point
cloud search is considered as being successful if the 3D IoU [38] between the
ground truth BBox and the predicted BBox is greater than a certain threshold.
The success rate is defined as the ratio of the number of the query/reference
pairs, where the search is successful, over the total number of tested pairs. The
search time (in seconds) is the time required for predicting the T poses for each
query /reference pair.

Baselines. To the best of our knowledge, there is no existing techniques that
predict a sequence of 3D poses over a reference map to search for a 3D point
cloud object. In this study, we compared our approach with state-of-the-art
models developed for 3D object retrieval and classification, namely PointNet [1],
PointNet++ [2], and PointNetVlad [10], which were adapted to out task in
a “sliding window” manner. For each baseline, we slide a 3D BBox of three
different scales over all three dimensions of the reference map with a certain
sampling rate. For example, we have 23 x 3 = 24 BBoxes if the sampling rate is
two and 73 x 3 = 1,029 BBoxes if the rate is seven. We then use baseline models
to extract point features from the sampled BBoxes, and compare them with the
query to find the best match. All the baselines were trained using ModelNet40
and Stanford 2D-3D-S datasets, separately. Their network configurations are the
same as those reported in the original papers.
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Table 1. Results on Transformed ModelNet40. Values in the table are success rates
along with the parenthesized average time (in seconds) required to process one query-
reference pair. Results were obtained with the IoU threshold being 0.5 when a 64D
PointNet++ feature vector was used.

No.of BBoxes| 24 [ 8 [ 192 | 375 | 648 [ 1029

PointNet++ [0.12 (0.54)[0.16 (1.88)]0.16 (4.50)] 0.26 (8.82) [0.28 (15.25)] - (36.70)

(
PointNet  |0.13 (0.19)]0.24 (0.62)[0.31 (1.44)] 0.29 (2.83) | 0.30 (4.84) | 0.32 (7.57)

(
PointNetVLAD]|0.13 (1.05)[0.33 (3.55)]0.47 (8.35)]0.50 (16.69)[0.50 (28.94)[0.53 (45.67)

No.of BBoxes| 4 | 6 [ 8 | 10 [ 12 [ 24

Ours [0.44 (0.13)[0.52 (0.18)]0.57 (0.24)[ 0.65 (0.39) [ 0.68 (0.45) [ 0.74 (0.49)

Learning Configurations. We trained the proposed network from scratch. We
used Adam with a batch size of five for Transformed Modelnet40 and one for
Stanford 2D-3D-S. The learning rate was kept in the range [10~%,1073] with
exponential decay. The hyperparameter A in Section 3.2 (Localization Module),
which is used for sampling out the next pose with the predicted expected value,
is fixed to 0.22. We evaluate our approach by varying the maximum number of
time steps T', which is sometimes referred to as “No. of BBoxes”. The reward 7
in our implementation is determined based on the success (one) or failure (zero)
of the search at time t. The search is considered as being successful if the 3D
ToU [38] between the ground truth BBox and the predicted BBoxes at time ¢
is greater than a threshold. Note that this simulator is the same as the scheme
used to calculate the success rate during evaluation.

In the following sections, we first report the quantitative performance of
our approach evaluated in terms of success rate and search time (in seconds).
We performed extensive evaluation of our network by varying different param-
eters to understand their impact over search performance. These parameters
include number of BBoxes, IoU threshold, and output dimensionality of the fea-
ture extraction module (PointNet++). Finally, we show qualitative results to
demonstrate the effectiveness of our network in learning the search path.

4.3 Accuracy vs Number of BBoxes

Results on Transformed ModelNet40. Table 1 shows the performance of our
network obtained by varying the number of BBoxes from 4 to 24 on the Trans-
formed ModelNet40 dataset. Because the baselines could not achieve satisfactory
success rates with such a small number of BBoxes, we show their performance
obtained when varying the parameter in the range of 24 to 1,029. The procedure
of BBox sampling for baseline methods has been described in Section 4.2.
Table 1 shows that the success rate increases as the number of search BBoxes
increases for both our approach and the baselines. Our approach clearly outper-
formed all the baselines with a huge margin by processing only a very small num-
ber of BBoxes. For instance, with 24 BBoxes the success rate of our approach
reached 0.74, while those of the baselines were less than 0.15. The baseline meth-



Adaptive Spotting: Deep Reinforcement Object Search in 3D Point Clouds 11

Table 2. Results on Stanford 2D-3D-S. Values in the table are success rates along with
the parenthesized average time (in seconds) required to process one query-reference
pair. Results were obtained with the IoU threshold being 0.4 when a 64D PointNet++
feature vector was used.

No.of BBoxes| 81 | 192 [ 375 | 648 [ 1029

PointNet++ [0.20 (1.38)[0.16 (3.30)[ 0.22 (6.55) [0.26 (11.40)[0.32 (18.15)
PointNet  |0.14 (0.52)0.14 (1.20)] 0.12 (2.39) | 0.12 (4.07) | 0.18 (6.44)
PointNet VLAD|0.12 (3.16)[0.16 (7.53)]0.26 (14.67)|0.26 (25.47)|0.34 (40.95)

No.of BBoxes| 55 | 65 [ 75 | 8 [ 9
Ours [0.29 (1.17)[0.33 (1.37)[ 0.35 (1.59) [ 0.35 (1.80) [ 0.42 (2.01)

ods could not achieve the same level of accuracy as ours, even with over 1,000
search BBoxes. Moreover, our approach required much shorter search time than
PointNet++ and PointNetVLAD. PointNet was the fastest among all the com-
pared approaches because of its much simpler network architecture. Using the
same network architecture, our approach achieved a huge gain in success rate
(approximately six times) compared to PointNet++ without increasing the run
time.

Results on Stanford 2D-3D-S. Results on Stanford 2D-3D-S dataset are
shown in Table 2. This dataset is more challenging than ModelNet40, because
it contains meaningful and much larger scale of distractors (i.e., realistic objects
whose classes are different from the query), as shown in Fig. 2. Our approach is
more likely to be “trapped” by the distractors.

The performances for varying the number of BBoxes are shown in Table 2.
Due to the larger size of the reference map and realistic distractive noises, we
use the larger number of BBoxes in the range of 55 to 95 for this dataset than
Transformed ModelNet40. Our approach achieved a much better balance be-
tween success rate and search time than the baseline methods. For example, our
approach achieved a success rate of 0.42 with 2.01 seconds in average, while the
success rates of the baselines were no higher than 0.16 at comparable search
times. Results on Stanford 2D-3D-S dataset confirms that our network is easily
scalable for object search in 3D real-world indoor scenes by efficiently exploring
only prospective regions in a sequential manner.

4.4 Accuracy vs Feature Dimensionality

We studied the relationship between the discriminative power of our network
and the dimensionality of the point feature extracted from the feature extraction
module (PointNet++). As shown in Table 3, our approach attained the highest
success rates when the feature dimension was set at 64 or 128. The success
rate decreased as we further increased the number of feature dimensions. The
reason may be overfitting due to an excessive number of feature dimensions. In
particular, as shown in Fig. 1, our network uses the pose feature obtained from
the 7D pose parameters by projecting them to the same number of dimensions
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Table 3. Success rate and search time (in seconds) obtained with varying feature
dimensions of PointNet++ on both datasets. Results were obtained with 24 and 85
BBoxes, and the IoU threshold was set at 0.50 and 0.40 for Transformed ModelNet40
and Stanford 2D-3D-S datasets, respectively.

Feature Length| 32 | 64 [128]256]512
Transformed ModelNet40
Ours  [0.62[0.74]0.68]0.63]0.48
Stanford 2D-3D-S
Ours  [0.34]0.38]0.38]0.35]0.33

Table 4. Success rates obtained with different IoU thresholds on Transformed Model-
Net40. The IoU threshold is used to judge whether a search is successful or not. Based
on this judgment, the reinforcement localization reward is determined during training,
while the same threshold is used for calculating the success rate during testing.

IoU \0.35\0.40\0.45\0.50\0.55
No. of BBoxes = 648

PointNet++ |0.64(0.52]0.40]0.28|0.20
PointNet  |0.69|0.56|0.42|0.30(0.20
PointNetVLAD|0.84/0.76]0.66/0.50(0.36

No. of BBoxes = 24
Ours | 1.0 ]0.97]0.86]0.74]0.44

as the point feature. Using too large dimension of the pose feature, say 512D,
may readily raise the risk of overfitting. Also, it might become less informative
for pose estimation after combined with the point feature.

4.5 Accuracy vs IoU Threshold

As mentioned in Section 4.2, while training our network we provided the reward
r, based on the search outcome, i.e., the success (one) or failure (zero) of the
search at each time step t. We consider a search is successful if the 3D IoU be-
tween the predicted and ground truth BBoxes is greater than a certain threshold.
Here, we aim to analyze the sensitivity of the performance to this threshold. To
this end, we first trained our network with different IoU thresholds, ranging from
0.35 to 0.55 on Transformed ModelNet40 and 0.25 to 0.50 on Stanford 2D-3D-S.
Then we evaluated the trained network and calculated the success rate with the
same IoU threshold as used during training.

The results on Transformed ModelNet40 are shown in Table 4. The success
rate is as high as 1.0 for IoU threshold 0.35 even if only 24 BBoxes are compared
with the query. The performance then decreases as we raises the threshold. All
the baseline methods also followed the same trend, but in all cases, they could
not achieve the same level of accuracy as ours, even if a much larger number
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Table 5. Success rates obtained with different IoU thresholds on Stanford 2D-3D-S.
The IoU threshold is used to judge whether a search is successful or not. Based on this
judgment, the reinforcement localization reward is determined during training, while
the same threshold is used for calculating the success rate during testing.

ToU 0.25]0.30[0.35]0.40]0.45]0.50
No. of BBoxes = 1029

PointNet++ (0.62(0.52|0.44|0.32|0.12]0.04
PointNet  |0.56|0.42|0.30/0.18|0.14|0.06
PointNetVLAD|0.62|0.58]0.48|0.34/0.20{0.10

No. of BBoxes = 85
Ours  [0.61]0.56[0.52[0.35[0.26]0.17

of BBoxes were processed. Results on Stanford 2D-3D-S are given in Table 5,
which shows the same trend as the case of Transformed ModelNet40.

4.6 Qualitative Analysis

Fig. 3 shows some examples of the search behavior of our approach on Stanford
2D-3D-S for given queries. In all the examples, our network is able to approach
the target object within a small number of search steps. Some interesting behav-
iors can be observed. First, in all the examples, starting from a random initial
position, our approach moves the BBox significantly at first, and then takes a
finer step size for precise localization as soon as it touches the target object. This
shows that our approach is able to learn a natural and efficient search strategy.
Second, our approach prioritizes the areas where the query object is likely to be
present. For example, in the case of (a), our approach moves the BBox quickly
from a high initial position to the floor and then stays on the floor to look for
the chair. In the example in (b), starting from a low initial position, our ap-
proach continues to search near the floor surface and successfully captures the
target without searching unnecessarily high areas. These examples show that
our approach can leverage the advantage of the inherent contextual information
between the target object and the search space for lean object search.

5 Conclusions

In this study, we proposed Adaptive Spotting, a deep reinforcement learning
approach to point cloud-based object search. This model takes the point clouds
of a query and a reference map as input and leverages the internal state of the
network to predict the next prospective position and pose to focus on. Using
this model, the target object that corresponds to the query but is hidden in the
reference can be efficiently localized in an exploratory way without being con-
fused with clutter present in the reference. Our model significantly outperformed
state-of-the-art deep point cloud networks and greatly reduced the number of
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Fig. 3. Qualitative results on Stanford 2D-3D-S. For each query (top) and reference
(bottom) pair, the target object and the final localization result by our approach are
indicated by the red and green 3D BBoxes, respectively. Search paths are indicated by
a sequence of orange arrows. The examples are textured for visualization purpose only.
In our experiments, we use texture-less 3D points.

Path »

(a)

matching processes and execution times, thereby making a noticeable improve-
ment in the trade-off between accuracy and efficiency.

As one of the few examples of research dealing with point cloud-based object
search based on end-to-end deep reinforcement learning, we believe this work
revitalizes problems at the intersection of computer vision and other related fields
including robotics, sensing, and machine learning. Exploring how to terminate
the search process at any time step is an interesting direction for further research.
We shall also investigate the impact of different exploration/reward strategies on
the learning performance of our model to further optimize the accuracy-efficiency
trade-off.
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