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Abstract. Markerless motion capture allows the extraction of multiple
3D human poses from natural scenes, without the need for a controlled
but artificial studio environment or expensive hardware. In this work we
present a novel tracking algorithm which utilizes recent advancements
in 2D human pose estimation as well as 3D human motion anticipation.
During the prediction step we utilize an RNN to forecast a set of plausible
future poses while we utilize a 2D multiple human pose estimation model
during the update step to incorporate observations. Casting the problem
of estimating multiple persons from multiple cameras as a tracking prob-
lem rather than an association problem results in a linear relationship
between runtime and the number of tracked persons. Furthermore, track-
ing enables our method to overcome temporary occlusions by relying on
the prediction model. Our approach achieves state-of-the-art results on
popular benchmarks for 3D human pose estimation and tracking.

1 Introduction

Markerless motion capture [1–9] has many applications in sports [10, 11] and
surveillance [12]. Utilizing multiple calibrated cameras extends the field of view,
allows to resolve ambiguities such as foreshortening and occlusions, and provides
accurate 3D estimates. However, challenges still remain: large crowds and close
interactions result in heavy occlusions which severely degrade the 3D tracking
performance. Furthermore, most recent works [3–5, 9] cast multiple 3D human
pose estimation from multiple camera views as an association problem where
extracted 2D pose features have to be matched across views and across time.
This way, the time complexity grows quadratic [9] or even exponential [4, 5] with
the number of tracked individuals, making tracking of large numbers of persons
impractical.

In this work we cast the problem of estimating multiple persons from multi-
ple calibrated cameras as a tracking problem where each person is individually
tracked using the well-known recursive Bayesian filtering method [13]. Individu-
ally tracking each person results in a linear relationship between time complexity
and the number of persons in the scene. Furthermore, utilizing a tracking frame-
work enables us to retain plausible poses even under temporary heavy occlusion.
Last but not least, the Bayesian framework allows us to quantify uncertainty.
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Fig. 1: Probabilistic representation for 3D pose tracking. The black points rep-
resent 3D pose predictions from the prediction step while the colored skeletons
represent the pose samples after the update step. Notice that both representa-
tions model uncertainty. The final pose is the black skeleton at the center of each
person.

Recursive Bayesian filtering naturally lends itself for human pose tracking
from multiple cameras. It models an underlying process z1:T , which we are in-
terested in but which we cannot directly observe. Instead, at each time step t

we receive observations ot which are related to zt. Bayesian filtering provides
us with tools to form our best guess about zt given the observations o1:t. For
3D human pose tracking, the unobserved hidden state zt represents the 3D pose
at time t while the observation ot represents the camera input at time t for all
cameras. Bayesian filtering utilizes a prediction step, which forecasts the current
estimate in time, and an update step, which incorporates current observations
into the prediction. To model uncertainty we utilize a sample-based approach for
zt. For the prediction step we build on recent advancements in 3D human motion
anticipation [14] and utilize a sequence-to-sequence model. During the update
step we process all samples in zt and make use of importance sampling, similar
to the particle filter [13]. In order to reduce the number of required particles,
we combine it with an optimization step to find good 3D poses. Our method
achieves state-of-the-art results on common multiple person multi-camera pose
estimation and tracking benchmarks.
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2 Related Work

Methods for 2D human pose estimation can be split into top-down and bottom-
up approaches. Top-down 2D human pose estimation [15, 16] first estimates 2D
bounding boxes for each person and then estimates the 2D pose per detected
human on a fixed resolution. Bottom-up methods [17] on the other hand estimate
features that assist in assembling 2D poses. For example, part affinity fields [17]
estimate vector fields that indicate the association of joints.

Multi-person 2D pose tracking has been an active research area and recent
works achieved tremendous advancements [16, 18–21]. Early works focused on
solving spatio-temporal graphs [18, 19] while more recent approaches [16, 20, 21]
showed that utilizing a greedy graph matching still yields state-of-the-art results
while being much faster.

Extensive progress has been made in estimating 3D poses from monocular
views [22–26]. For example, the problem of inferring 3D human poses from sin-
gle images is split into estimating a 2D human pose and then regressing a 3D
pose [22]. However, these methods do not generalize well to unconstrained data.

Multiple 3D human pose estimation from multiple views can be cast as a
matching problem where poses or joints have to be matched across views for ac-
curate triangulation. Early works [6–8, 3] utilized a 3D pictorial structure model
to extract 3D poses. However, optimizing these models is time consuming, es-
pecially when applied to multiple persons, due to the large state space. When
many camera views are available, a voting mechanism [27] can be employed - as-
suming persons are visible in most camera views. Recently, a simple baseline [9]
was proposed which independently extracts 2D poses for each view and greedily
matches them using geometric cues. Furthermore, they utilize Gaussian smooth-
ing across time to introduce temporal information. While this method is simple
and fast, it suffers from an early commitment to 2D pose matches. This may
lead to different predictions based on the processing order of the cameras. Dong
et al. [5] solve the correspondence problem of 2D poses per camera utilizing a
top-down 2D pose estimator [28] for each view. They match 2D poses across
views using geometric and appearance cues solved with convex optimization
with cycle-consistency constrains. While this works well when persons are easy
to differentiate, e.g. when full-body poses are visible, it can result in incorrect
matches in more complex scenes. Zhang et al. [4] formulate cross-view matching
and temporal tracking as a 4D association graph, similar to early works in 2D
pose tracking [19].

To facilitate tracking, Bayesian filtering [13] is often utilized. While linear
methods such as linear quadratic estimation are well-understood they restrict
the model too much for tracking complex 3D human poses. Representing the
distribution of poses as a set of 3D pose samples, also known as particle filter,
offers more flexibility. However, due to the high dimensionality of 3D poses ad-
ditional optimization steps are typically required [29–31]. In this work we show
that a simple heuristic can be utilized.

In recent years deep neural networks have been used to anticipate 3D hu-
man poses from motion capture data. Holden et al. [32] show that autoencoders
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Fig. 2: Tracking procedure for tracking a single person z with a set of three
cameras c1, c2 and c3. The prediction step forecast zt−1 from time t − 1 to
t. In the update step each pose sample gets assigned an importance weight
independently for each camera pair. The importance weights are calculated using
the observations ot at time t. We then resample for each camera pair relative to
the total number of samples and refine the poses using pose refinement. Finally,
we concatenate the sub-samples for each camera pair and obtain our prediction
for zt.

can be utilized to learn a human motion manifold. Bütepage et al. [33] extend
this idea by embedding the skeletal hierarchy structure of the data into the
model. Similarly, structural RNNs [34] encode the hierarchy utilizing RNNs.
The Encoder-Recurrent-Decoder (ERD) [35] auto-regressively forecasts human
motion by utilizing an encoder-decoder structure for modeling human poses and
an LSTM for temporal modelling while Martinez et al. [14] introduce a sequence-
to-sequence architecture for human motion forecasting.

Monte-Carlo Dropout sampling [36] places a Bernoulli distribution over the
weights of a neural network. This way one can generate multiple samples using
different dropout masks to represent the model uncertainty.

3 Method

In this work we formulate the problem of estimating and tracking multiple 3D
human poses from multiple calibrated cameras as a recursive Bayesian filter
where the hidden states zt represent the 3D human poses and where the camera
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images are the observations ot at time step t. More precisely, each person in the
scene has a 3D pose state z which is tracked independently through time, as
described in Figure 2. This means that we have a Bayesian filter for each person.
This has the advantage that we can easily deal with appearing and disappearing
persons.

A Bayesian filter recursively cycles through prediction and update steps. The
prediction step utilizes a prediction model p(zt|zt−1) which evolves the hidden
state in time while the update step utilizes an observation model p(ot|zt) which
integrates measurements into the prediction. We build on recent advancements
in 3D human motion anticipation [14] and model p(zt|zt−1) as a recurrent neu-
ral network (RNN) where uncertainty is represented by Dropout as Bayesian
approximation [36]. The observation model p(ot|zt) measures how well a 3D
pose sample matches the extracted 2D joint confidence maps and part affinity
fields [17, 37] for each camera view. For each tracked person, a set of 3D sample
poses is used to represent the posterior p(zt|o1...t). A sample-based represen-
tation of the distribution [31, 30, 38] allows for a highly non-linear state space,
which is required for complex human poses, while being simple to implement.
In Section 3.1 we detail the prediction model while in Section 3.2 we discuss
the observation model. The initialization procedure for p(z1|o1) of each person
is explained in Section 3.3. Finally, Section 3.4 explains how point samples can
be obtained for each frame t from the estimated posterior p(zt|o1 . . . ot).

3.1 Prediction Step

The prediction model p(zt|zt−1) evolves the pose state of a single tracked person
in time - without taking any observation into account. The pose state zt of a
person encompasses possible 3D poses which we make tractable by representing
them as a fixed set of 3D pose samples. A sample is made up of 14 3D joints.

We represent p(zt|zt−1) as GRU [14] and we inject uncertainty by utilizing
Dropout during training and inference at the final linear layer that extracts zt.
Dropout is crucial to generate a diverse set of forecast poses which we will discuss
in our ablation studies. As zt−1 is represented as a list of 3D pose samples, we
apply the forecast for each sample independently with an independent hidden
layer for the GRU for each sample. This way, zt and zt−1 will be represented by
the same number of samples while samples will be sufficiently varied due to the
independent forecasting. For brevity, we define this as:

zt, ht = GRU(zt−1, ht−1) (1)

where zt, ht, zt−1 and ht−1 are 3D pose samples and GRU hidden states, re-
spectively.

The 3D poses in z are in a global coordinate frame which is defined by the
calibrated cameras. We transform the 3D poses into a standardized coordinate
frame before forecasting. Here, the center hip joint of the poses in zt−1 are set as
the origin and the poses are rotated along the z axis1 such that the left and right

1 assuming z axis points upwards
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hip joints align to the y axis and such that the 3D pose faces forward along the
x axis. More formally, we apply the following transformation to each 3D pose

x̂j = R(t−1) (xj − x
(t−1)
hiproot) ∀j ∈ J (2)

where J represents all joints that make up a 3D pose and where xj represents
the j-th joint as 3D point in global coordinate space and where x̂j represents
the same joint in normalized coordinates. The hip root joint of the pose at time

t − 1 is defined as x
(t−1)
hiproot and the rotation to forward-face the pose at t − 1 is

defined as

R(t−1) =





cos θ sin θ 0
− sin θ cos θ 0

0 0 1



 (3)

θ = atan2
(

y
(t−1)
righthip − y

(t−1)
lefthip, x

(t−1)
righthip − x

(t−1)
lefthip

)

(4)

where x
(t−1)
righthip, x

(t−1)
lefthip, y

(t−1)
righthip and y

(t−1)
lefthip represent the x and y coordinate

of the right hip and left hip, respectively. After forecasting a pose, the original
position and orientation in global coordinates can be recovered by applying the
transformation

xj = R(t−1)T x̂j + x
(t−1)
hiproot ∀j ∈ J. (5)

The prediction model is trained with motion capture data from the Hu-
man3.6M [39] and the CMU mocap database [40] where we select 14 joints that
the two datasets have in common. We utilize Adam with learning rate 0.001 and
optimize over the Huber loss. The number of hidden units for the GRU is set
to 2048. The dropout rate is set to 50% and a weight decay of 10−8 is added.
We set the framerate to 25Hz and 30Hz, respectively, which is similar to the
framerate used in the evaluation datasets.

3.2 Update Step

To obtain the posterior p(zt|o1,...,t) for a single tracked person we need to incor-
porate the observations ot into the predictions zt obtained from the prediction
model. For each camera we utilize Openpose [17] to extract part confidence maps
and part affinity fields, similar to other multi-person multi-camera 3D pose es-
timation methods [9, 4]. We then calculate importance weights for each sample
pose in zt and then re-sample zt based on the weights. To prevent poses that
are visible in many camera views to be over-represented over poses that are vis-
ible in less cameras and to tackle false-positive detections caused by occlusion,
we sample the importance weight for each camera pair independently - for all
samples. The weight is calculated as follows:

wv,s =
Φ(v, s)

∑zt
ŝ Φ(v, ŝ)

(6)

where v represents a camera pair and where s represents a single 3D pose sample
from zt. We normalize by the scores of all samples ŝ in zt. The unnormalized



Recursive Bayesian Filtering for Multiple Human Pose Tracking 7

weight Φ(·, ·) is calculated as follows:

Φ(v, s) =
∏

l∈L

√

∑

c∈v

φ(c, l, s)2 + ǫ (7)

where L represents all limbs of a pose, as described in Openpose [17]. Each
camera pair v consists of two different camera views c. The score φ(·, ·, ·) is
calculated using part affinity fields pafc and confidence maps confc, which are
obtained from Openpose [17], for a given camera c:

φ(c, l, s) =

(
∫ u=1

u=0

max
(

0, pafc(s, l, u)
)

du

)

∏

j∈l

confc(s, j) (8)

where pafc(s, l, u) calculates the dot product between the part affinity field for
limb l and the projected limb from s, linearly interpolated by u. confc(s, j)
calculates the confidence score for the joint j of sample s for camera c. Finally,
we resample zt for each camera pair a subset of particles to obtain the same
number of initial samples as shown in Figure 2. As sampling procedure we use
stochastic universal sampling.

In practice, the state space of a 3D pose is prohibitively large for a sample-
based representation. However, we utilize a simple yet effective heuristic opti-
mization called joint refinement to keep the number of samples low while ob-
taining accurate results. For each joint of a sample, we sample additional joint
positions from a normal distribution centered at the joint. We then take the
joint position with the highest confidence map score. In our ablation study we
show that this significantly improves the results while it allows the numbers of
samples for each person to be low.

3.3 Initialization Step

(a) Heatmap (b) Projected Samples (c) Output

Fig. 3: Input and output of the confidence subtraction network. The input is
composed of a confidence map (a) extracted by [17] for a specific joint and
projected points (b) of that joint for the tracked person. The network removes
the part of the heatmap that corresponds to the tracked person.
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Fig. 4: Fully convolutional architecture for the confidence map subtraction net-
work.

To facilitate multi-person 3D pose tracking, a set of currently tracked persons
is kept which are all independently tracked using the prediction (Section 3.1)
and update (Section 3.2) step. However, at each time step we have to check
whether one or more untracked persons have entered the 3D recording volume
and generate new tracks accordingly. To do so, we first remove currently tracked
persons from the confidence maps for each camera using a confidence subtraction
network. To remove a tracked person from a confidence map, we project the joints
of all samples of that person for the given frame to that camera view (see Figure
3 (b)). We then pass the projected points as well as the confidence map to the
confidence subtraction network which will return an updated confidence map
without the peak of the tracked person. Figure 3 shows an example while Figure
4 details the network structure. We repeat this procedure for all tracked persons
and for all camera views.

Once all tracked persons are removed from the confidence maps, we find the
remaining local maxima and triangulate them pairwise if both points are close
to their respective epipolar line as in [9]. To reduce the number of redundant
points, we apply agglomerative hierarchical clustering with threshold ǫj and
use the mean point of the clusters. We then build a set of 3D pose candidates
by greedily matching joints based on the part affinity fields [17]. We also drop
limbs that have unreasonable length. Each pose candidate is then scored using
Equation (7), where v contains all camera views, and the 3D pose with the
highest score is selected for the new track.

As a person track is represented as a list of 3D pose samples, we utilize
a stochastic generation function z ← g(·) which takes as input the previously
selected best 3D pose candidates and generates a set of 3D pose samples z that
represent the distribution of the newly generated track. Once the pose samples
are generated the person can be tracked using the the prediction and update
steps. The new pose is removed from the confidence maps and the initialization
procedure is repeated until no further person tracks are found.
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Fig. 5: Qualitative results from the Campus [6, 41] (top row) and Shelf [6] (bot-
tom row) dataset.

Fig. 6: Qualitative results showing the first three hd-cameras of the CMU Panop-
tic studio [42].

We model g as a three-layer feed-forward Bayesian neural network [36] which
takes as input a pose vector and outputs a pose vector. As a person might only
be partially visible g also fills in missing joints. This is facilitated by adding a
binary vector to the input pose vector which indicates if a joint is missing. As
dropout is utilized during inference, g generates a diverse set of 3D pose samples.
The network is trained with motion capture data from Human3.6M [39] and from
the CMU mocap database [40], similar to Section 3.1. During training, random
joints are removed from the pose to encourage the model to fill in missing joints.
The model has three layers with 2048 hidden units each and is optimized over
the Huber loss using SGD with a learning rate of 0.001, weight decay of 10−6

and dropout of 75%.

3.4 Inference

Using multiple samples to represent a 3D pose allows for robust tracking. How-
ever, when extracting 3D poses a final single pose is required. To obtain a final
pose from zt for a tracked person at frame t, we calculate the weighted average
for all samples using Equation (6) where v contains all cameras.
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Campus Shelf

A1(48) A2(188) A3(136) aAvg gAvg A1(279) A2(37) A3(161) aAvg gAvg

Belagiannis et al. [6] 82.01 72.43 73.72 76.05 74.14 66.05 64.97 83.16 71.39 71.75
+Belagiannis et al. [7] 83.00 73.00 78.00 78.00 76.12 75.00 67.00 86.00 76.00 78.09
Belagiannis et al. [43] 93.45 75.65 84.37 84.49 81.14 75.26 69.68 87.59 77.51 79.00
Ershadi-Nasab et al. [3] 94.18 92.89 84.62 90.56 90.03 93.29 75.85 94.83 87.99 92.46
Dong et al. [5] 97.40 90.10 89.40 92.30 90.79 97.20 79.50 96.50 91.07 95.59
*Dong et al. [5] 97.60 93.30 98.00 96.30 95.57 98.80 94.10 97.80 96.90 98.10
+Tanke et al. [9] 98.00 91.00 98.00 95.67 94.46 99.21 93.51 97.14 96.62 98.07
+Zhang et al. [4] - - - - - 99.00 96.20 97.60 97.60 98.31

+Ours
97.35
± 0.40

93.44

± 0.04
97.43
± 0.18

96.07
± 0.13

95.40
± 0.07

99.49

± 0.06
95.81
± 0.37

97.83

± 0.00
97.71

± 0.13
98.64

± 0.05

Table 1: Quantitative comparison with state-of-the-art methods using percentage
of correctly estimated parts (PCP) on the Campus and Shelf datasets. A1 to A3

represent the three actors while the number in parentheses represents the number
of ground-truth frames. We report both actor-wise (aAvg) as well as global
average (gAvg) PCP. Models utilizing temporal information are marked with +

while appearance information is marked with *. As our method is probabilistic,
we report results as mean ± standard deviation, which is calculated over 10 runs
using different random seeds.

4 Experiments

4.1 Quantitative Comparison

We provide a quantitative comparison to recent state-of-the-art methods using
the Campus [6, 41] as well as the Shelf [6] dataset. Qualitative results on this
datasets can be seen in Figure 5. As metric we use percentage of correct parts
(PCP) in 3D [10] and we adopt the head position alignment utilized in [5] as
well as the temporal Gaussian smoothing described in [9]. Furthermore, we re-
port PCP averaged over the actors (aAvg) and PCP averaged over the actors
weighted by the number of visible frames (gAvg), which was first discussed in
[43]. Weighting by the number of visible frames (gAvg) provides a more accu-
rate measure as it does not overemphasize actors which appear only in very few
frames. Table 1 presents our results. For the the Shelf dataset we achieve state-
of-the-art results while we achieve highly competitive results on the Campus
dataset. We argue that the top-down pose estimation model and the appearance
model of [5] are beneficial when the full bodies are visible and the scenes are
relatively uncluttered, as it is the case with the Campus dataset (Figure 5 top
row). However, in more complex scenes where bodies are only partially visible
and with large background clutter and occlusions, such as Shelf, the appearance
model does not help as much. Here, temporal information is crucial to recover
from occlusions.
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Method MOTA Precision Recall MOTA Precision Recall

Average Nose

Tanke et al. [9] 0.82 91.0 91.1 0.84 91.7 91.8

Ours 0.87 93.3 94.1 0.94 96.6 97.5

Left Wrist Right Wrist

Tanke et al. [9] 0.82 91.2 91.3 0.86 93.0 93.1

Ours 0.83 91.1 91.9 0.86 92.6 93.4

Left Foot Right Foot

Tanke et al. [9] 0.81 90.5 90.6 0.77 88.6 88.7

Ours 0.90 94.6 95.5 0.84 91.5 92.3

Table 2: Tracking scores MOTA [44], precision and recall for sequence
160422 ultimatum1 of the CMU Panoptic Studio [42].

4.2 Tracking

For evaluating the tracking performance of our method, we utilize the MOTA [44]
score as well as precision and recall. We cannot evaluate tracking on the Shelf
or Campus dataset as some of the ground-truth annotations are missing, which
results in a large number of false positives. Instead we evaluate on the CMU
Panoptic studio [42], which utilizes the same human pose keypoints [45] as our
method and which provides unique identifiers for each person in the scene. We
use the sequence 160422 ultimatum1 from frames 300 to 1300 as in [9] since it
contains different interacting persons that enter and leave the scene. A sample
scene can be seen in Figure 6. To ensure occlusions, we utilize only the first three
hd-cameras and we consider a track as correct if its prediction is within 10cm
of the ground-truth. For measuring the tracking accuracy, we utilize the nose,
left/right wrist and left/right foot. Our results are presented in Table 2. We
observe that our model significantly outperforms [9] for feet and nose since these
keypoints are for some frames only visible in one camera as shown in Figure 6.
Our method can recover these cases.

4.3 Ablation

Our ablation results are presented in Table 3. Removing tracking and only using
the pose initialization algorithm described in Section 3.3 at each frame results in
very strong results for the Shelf dataset while the performance drops significantly
for the Campus dataset. The reason for this is that the pose initialization works
better when multiple views are present (5 for Shelf, 3 for Campus) while tracking
helps when a person is temporally visible in only one or two views. Removing
pose resampling during the update step and instead using a fixed set of samples
for each camera pair results in a significant performance drop. One of the biggest
factors for the strong performance of our method is the joint refinement as the
sample-based representation of 3D poses does not permit enough samples to
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Campus Shelf

A1(48) A2(188) A3(136) aAvg pAvg A1(279) A2(37) A3(161) aAvg pAvg

only Pose Initialization
91.85
± 1.33

92.94
± 0.22

69.96
± 0.95

84.92
± 0.68

84.40
± 0.46

99.51
± 0.14

94.03
± 0.83

97.69
± 0.05

97.07
± 0.31

98.47
± 0.13

w/o Pose Resampling
87.29
± 7.86

90.57
± 0.33

88.27
± 5.43

88.71
± 3.74

89.31
± 2.62

97.47
± 1.10

88.95
± 1.40

97.83
± 0.09

94.75
± 0.70

96.93
± 0.70

w/o Joint Refinement
47.33

± 24.53
74.78

± 14.91
57.52
± 5.16

59.88
± 11.89

64.93
± 9.81

90.96
± 1.95

73.11
± 5.39

91.89
± 1.92

85.32
± 2.24

89.89
± 1.27

w/o Pose Prediction
70.56

± 12.91
82.93
± 6.40

73.19
± 5.22

75.56
± 4.23

77.77
± 4.01

99.16
± 0.04

65.22
± 11.09

97.73
± 0.03

87.37
± 3.70

96.04
± 0.86

Pose Prediction :
N (0, 0.012)

75.83
± 27.52

80.84
± 6.47

70.49
± 10.29

75.72
± 11.99

76.41
± 8.38

99.12
± 0.04

69.24
± 12.09

97.71
± 0.04

88.69
± 4.03

96.33
± 0.94

Pose Prediction :
w/o dropout

90.42
± 0.73

92.12
± 0.12

97.28
± 0.15

93.27
± 0.27

93.79
± 0.15

99.29
± 0.04

94.78
± 1.09

97.76
± 0.00

97.28
± 0.37

98.43
± 0.09

Joint Refinement :
Gradient Ascent

96.15
± 0.10

92.34
± 0.11

97.13
± 0.22

95.21
± 0.07

94.58
± 0.12

99.40
± 0.05

93.92
± 0.68

97.80
± 0.03

97.04
± 0.23

98.43
± 0.07

Proposed
97.35
± 0.40

93.44
± 0.04

97.43
± 0.18

96.07
± 0.13

95.40
± 0.07

99.49
± 0.06

95.81
± 0.37

97.83
± 0.00

97.71
± 0.13

98.64
± 0.05

Table 3: Ablation study using percentage of correctly estimated parts (PCP) on
the Campus and Shelf datasets. A1 to A3 represent the three actors while the
number in parentheses represents the number of ground-truth frames. We report
both actor-wise (aAvg) as well as global average (gAvg) PCP.

accurately represent such high dimensional data. Removing the pose prediction
model and just utilizing a zero velocity model also results in a significant per-
formance loss. Replacing the zero-velocity model with a normal distribution for
pose prediction does not significantly improve the results. Replacing the heuris-
tic joint refinement algorithm described in Section 3.2 with a gradient ascent
based algorithm results in a slight performance drop. We argue that the local
optimization gets stuck in local optima while the heuristic can jump over them
and find even better pose configurations.

4.4 Parameters

The effects of the hyperparameters are shown in Figure 7. The Dropout rates of
both the prediction model and the initialization model g are determined to obtain
a reasonable approximation of uncertainty. If it is too small, the uncertainty is
underestimated. For large values, the generated samples are too diverse, making
the approach inefficient. The number of pose samples is important to ensure a
sufficient representation of the pose distribution. However, a too high number
of pose samples impedes sometimes the discovery of newly appearing persons
and thus degrades the overall quality of the results. The distance threshold ǫj
of the hierarchical clustering for merging joints influences the quality of the
triangulated 3D joint positions to initialize poses. While a high value ǫj merges
3D joints of different persons, more redundant 3D joints would remain with a
lower threshold. Using many samples for joint refinement encourages that each
joint is located in regions with high part confidences. When the number is too
large, it reduces the variety of the samples which weakens the tracking quality.
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Fig. 7: Evaluation of hyperparameters. PCP is evaluated while varying the hy-
perparameters. With each setting, the experiments are performed 10 times. The
solid line indicates the mean value of the PCP and the colored area is the cover-
age determined by the standard deviation. (a) The dropout rate of the prediction
model. (b) The dropout rate of the model g(·). (c) The number of pose sam-
ples. (d) Distance parameter to merge joints using the hierarchical clustering.
(e) The number of samples for joint refinement. (f) Standard deviation for joint
refinement.

Similarly, a high standard deviation for the joint refinement allows to search a
large 3D space for each joint. If it is too large, the joints might move to the
wrong position.

4.5 Runtime Analysis

In Table 4 we compare the runtime of the approach [9] with our approach on the
same machine, using an Intel Core i7-7700 3.60GHz and a Nvidia GeForce 1080ti.
We evaluate the runtime on the Shelf dataset, which uses five cameras and which
has 2, 3 or 4 persons in the scene. Both [9] and our method are implemented in
Python, utilizing the output of the official OpenPose [17] implementation which
processes an image in 35ms. While our approach needs more time than [9] for
two actors, the runtime scales better as the number of actors increases. While
the runtime of [9] increases quadratically as the number of actors increases,
our approach requires 26ms for each additional actor, i.e. the runtime increases
linearly as the number of actors increases.
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2 Actors 3 Actors 4 Actors

Tanke et al. [9] 0.023s 0.045s 0.104s

Ours 0.062s 0.088s 0.114s

Table 4: Time analysis for the Shelf dataset with respect to the number of actors.
The time for the prediction and update steps of our method are measured with
300 sampled 3D poses per person and 50 sampled points for joint refinement.

5 Conclusion

In this paper we have presented a novel tracking algorithm based on the well-
known recursive Bayesian filtering framework and on recent advancements in
2D human pose estimation and 3D human motion anticipation. Our approach
tracks multiple persons, initializes newly appearing persons, and recovers oc-
cluded joints. Our approach achieves state-of-the-art results for 3D human pose
estimation as well as for 3D human pose tracking. In the future our approach
could be extended using an appearance model similar to [5]. Furthermore, we
could include a smoothing step which would improve 3D pose predictions back-
wards through time, utilizing the model uncertainty.
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