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Abstract. Novel-View Human Action Synthesis aims to synthesize the
movement of a body from a virtual viewpoint, given a video from a real
viewpoint. We present a novel 3D reasoning to synthesize the target
viewpoint. We first estimate the 3D mesh of the target body and transfer
the rough textures from the 2D images to the mesh. As this transfer may
generate sparse textures on the mesh due to frame resolution or occlusions.
We produce a semi-dense textured mesh by propagating the transferred
textures both locally, within local geodesic neighborhoods, and globally,
across symmetric semantic parts. Next, we introduce a context-based
generator to learn how to correct and complete the residual appearance
information. This allows the network to independently focus on learning
the foreground and background synthesis tasks. We validate the proposed
solution on the public NTU RGB+D dataset. The code and resources
are available at https://bit.1ly/36u3h4K.

1 Introduction

Novel-view human action synthesis is the problem of reproducing a person
performing an action from a virtual viewpoint [1]. The ability to synthesize of
one or more novel viewpoints of an action is attractive for extended reality [2],
action recognition [3] and free-viewpoint video [1].

Recent works [5,6,7,3] have shown the ability to synthesize high-quality
images, but with limiting assumptions on the input data. SiCloPe [5] takes
a frontal input image and uses canonical views to reconstruct the 3D mesh
through supervision. However, using a ground-truth mesh from real images is
not a realistic assumption. Similarly, PIFu [6] predicts a dense 3D occupancy
field using multiple input views. This method expects high-resolution ground-
truth mesh and a neutral background which hinder generalization to real-world
scenarios when backgrounds are cluttered. The method proposed in [9] creates
an animated version of an image containing a person in the center. An initial
mesh is first estimated and then corrected. However, the mesh construction part
is computationally costly and incompatible with the extension of the model to
videos. Furthermore, the texture filling is based on heuristics or requires human
intervention. If multiple real views of the same scene are available, the rendering
of an arbitrary virtual view can be successfully addressed [10,11]. For example,
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the method proposed in Bansal et al. [11] combines the information available
from multiple camera views to reconstruct the geometry of a static scene. Then, a
neural network based model is used to compose the dynamics on top of the static
scene. However, with only a single video (view) as input the problem becomes
much more challenging and largely unexplored. To the best of our knowledge,
VDNet [1] is the only previous work addressing it.

Thanks to the rapid development on human mesh recovery [12,13,14,15,16],
we can obtain 3D representations from images or videos. Our approach consists of
a two-stage pipeline. In the first stage we exploit a novel 3D reasoning to produce
a sparse initialization for the virtual view. In the second stage we introduce
Geometric texture Transfer Network (GTNet), a context-based generator that
aims to correct and complete such initial guess by learning the residual appearance
information. For each frame captured from the real view we estimate the 3D mesh
of the human actor using [14] where the parameters of the Skinned Multi-Person
Linear (SMPL) model [17] are learned to morph a canonical 3D model of the
human body to fit the 2D projection of the human actor pose and shape. Given
such 3D model, we transfer the appearance information from the 2D video to the
3D mesh. This results in a sparse texture on the 3D mesh because of occlusions.
We propose to compute the missing information by exploiting the knowledge of
the 3D model both at a local and global scale. Locally, missing values within a
geodesic neighborhood are computed by interpolating the input sparse texture.
More globally, if a part of the 3D model (e.g. an arm or a leg) lacks texture
information but its symmetric counterpart contains it, we propagate it. The
texture on the mesh (in 3D) obtained in this way is then projected (rendered) on
the novel view (in 2D). The estimated 3D model thus acts as a proxy to transfer
appearance information from the input (real) view to the target (virtual) view.
The design of our approach is inspired by pixel warping methods [18,19] that
create realistic human images from existing frames (or views). Differently from
VDNet [1], we exploit the geometric properties of the input prior to facilitate the
transfer to the target view. Unlike motion-transfer methods (e.g. [20]), we learn
the geometry and the appearance of a novel (virtual) view.

2 Related work

Methods for novel-view synthesis that focus on humans can be based on computer
graphics, learning, or combining 3D mesh representations and learning. These
methods are discussed in this section jointly with a discussion on the importance
of the modality used to synthesize the novel-view.

Novel-View Image Synthesis. Graphics based methods [21,6,22] rely on
the abundance of ground-truth data to achieve high quality synthesis. For example
[23,22,24] use image or sequence of frames to learn the displacement of clothing
on top of the SMPL [17] model. Differently, the methods in [6,5] use high
quality human mesh representations from the Renderpeople dataset®. These

3 https://renderpeople.com/, accessed September 2020
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representations enable the model to achieve high quality results, but fail to
generalize in uncontrolled setups and need a few viewpoints, which may be hard
to obtain, to perform the synthesis.

Learning (or data-driven) approaches [1,3,25,26] use spatial cues about the
human subject to synthesize the target view. A drawback of such approaches is
the poor generalization to unseen views and the difficulty to handle occlusions.

A new direction of work considers the use of a 3D model estimated directly
from raw images [27,28,29]. Liu et al. [28] enforce feature warping of the input
view in the network structure to synthesize the novel view.

Video Synthesis. We categorise the methods solving this problem into
two classes: unconstrained or constrained synthesis. The first category tries
to learn the distribution of the data during training. The video is therefore
a sample from the learned distribution [30,31,32]. Since the datasets available
are most often a sparse representation of the distribution of the true data, the
generated videos generally are limited to few applications. The constrained video

synthesis [20,33,34] relies on context (e.g. image sequence [20]) or spatial cues
(e.g. keypoints [33,34]). Applications include action imitation [20] and video
prediction [35].

Novel-View Video Synthesis. Recently, Lakhal et al. [1] introduced the
task of novel-view video synthesis which shares the challenges of both the novel
view synthesis (i.e dealing with occlusion) and video synthesis (i.e maintaining
temporal consistency across frames). The assumptions are the availability of only
one input view and the modalities about the target view which can be either given
or computed. Furthermore, the problem is different from the pose-guided human
image synthesis [25] where the background synthesis is not taken into account,
the pose is not constrained to the view (i.e. cannot model the 3D structure of the
scene), and these methods fail to maintain temporal consistency. In this paper, we
show that by estimating the texture we can approximate the target feature with a
simple mapping. Using the proposed context-based architecture, the network can
focus on the background synthesis. We exploit the 3D mesh information and use
the input-target view association as guidance in the novel-view synthesis process.
Also, we explicitly handle the temporal consistency of the synthesized frames.
Furthermore, we handle self occlusions using visible information and transfer it
to neighboring occluded parts.

Prior modalities. Deep learning based methods made progress on estimating
accurate modalities (e.g. depth and 2D /3D keypoints) from object priors (e.g.
human). This includes human pose estimation [36], human part segmentation [37],
or human mesh recovery [14,12]. The performance of a neural network-based
generator for novel-view synthesis relies heavily on the modalities derived from
the prior used about the target view (we only consider human priors). Early
works rely on 2D keypoints of the human body joints [38,25,39,40,41,42,43,441].

The skeleton indicates the spatial location of the person on the target view.
The network then has to learn how to extract and transfer appearance information
from the input view to generate the target image. A segmentation map could
be considered as another modality [15,416]. DensePose [17] maps the pixels of
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Fig. 1: Given a video of a person performing an action recorded from an input
view C*, we synthesize how it would appear from a target (or virtual) view C7.
Each view can be captured with a set of modalities (e.g. RGB, depth, skeleton).

an RGB image of human to a 3D surface and is used in [16,48]. Li et al. [29]
proposed to represent the pose as a rendered 3D body mesh.

3 Method

3.1 Problem definition

Let C = {C'}), be V static cameras (views) placed at different positions in a
scene. Each view i € {1,...,V} is represented as a sequence of RGB images
ri € RY*h*3 of width w and height h pixels and indexed by the timestep
t =1,...,T. The sequence z* = {xi}_ | is an instance of the scene captured
from the input view camera C’. Each view contains M different modalities
p' ={p},...,py} e.g. depth and skeleton (see Fig. 1). Each modality has to at
least spatially localise the person in the scene (i.e., foreground). The modalities
of the virtual view are computed by transforming p* with the information in both
C’ and C.

The aim of novel-view video synthesis is to reconstruct the RGB sequence
27 of a scene from an input view to a target view. Given a parametric function
G;_; called generator we have: 2/ = G;_,;(z",p’).

3.2 3D human body prior

We model the foreground using a 3D mesh assuming that the video stream
contains only humans. We use the estimated 3D mesh as a proxy to transfer the
appearance information from the input view to the novel view. In this section, we
show that we can compute other modalities of the target view by fully exploiting
the one-to-one correspondence between vertices of the 3D mesh (Fig. 2).

Foreground prior. We model the foreground (i.e. the target subject) using a
geometric approach that exploits one-to-one correspondences between the vertices
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Fig. 2: Target view modalities obtained with the 3D human body prior extracted
from NTU-RGB+D dataset [19]: (a) input view; (b) target view with the rendered
mesh; (c¢) segmentation map; (d) foreground motion; (e) texture transfer.

of the 3D meshes from the real and virtual views. As in [14], we model the human
body using the SMPL model [17]. A set of three connected vertices defines a face
on the 3D mesh. The SMPL model is composed of N; = 13776 faces that are
uniquely identified by a face map F. Given the camera C’ € C and a projection
function (e.g. a renderer [50]) the mesh in rendered on the camera C* producing
a data structure F* € R¥*" (j.e. projecting the faces onto the image plane of
the camera C%) and the rendering of the 3D body mesh M® (Fig 2(b)).
Human part segmentation. Let us decompose the human body representation
into B parts (e.g. head and arms). Since for the SMPL the map F has a fix set
of faces, we cluster it into parts® such that: F = {F,}£_,. Therefore, each face
f € F' can belong to any of the B classes or to the background.

Foreground motion. We exploit the data-structure {F/}X ; to extract the
foreground motion information. Specifically, because mesh vertices are uniquely
identified over time, we can compute their displacement 3D vector. This 3D
vector can be projected on the image to obtain the foreground motion flow. As
in [35] we use a backward motion flow to warp the frame for each time step to
help the foreground synthesis. Given a face f € F}; (resp. F}) at pixel location
(Uz, uy) (vesp. (uy, u/y)), let O} ,_,, be the motion vector at (us,u,), which is
computed as (ug — u,, Uy — u;)

Texture transfer. The structure F} € R**" is the projection of the 3D human
mesh of the person in z! at time step ¢ onto the image plane of camera C'. A
key observation to make is that we can exploit the association between F} and
x! in order to estimate a rough foreground on the image plane of the camera

4 In practice, we manually annotate each of the N ¢ face into a unique body-part label.
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Fig. 3: Ilustration of the proposed texture transfer. Step I: for every visible face
index from the input view mesh, we accumulate its RGB pixel value over time.
Then, we copy the pixel values to the target view mesh. Step II: we transfer
the closest visible face with respect to a distance measure. Step III: we transfer
texture across intrinsic symmetries, i.e. from the blue regions to the red regions.
Intrinsic symmetries are independent on the pose of the subject.

CJ. The proposed Symmetric Texture Transfer extends this idea to improve the
target foreground appearance through three steps (Fig. 3). The first step consists
of tracking each visible face in F} over time. If a face f € F} is at position
(ugz, uy) we copy the pixel value of xi. The face-pixel association is then stored in
a hashmap where the keys are the face number and the values are the pixels. If at
time t + k the face f is detected we add it and at time step T we keep the median
of the detected pixels. The second step transfers pixels from the hashmap to an
image indexed by F7. Specifically, given a face f € F, we rank the neighboring
faces as a function of the distance dist : 7 x F — R defined on the surface
manifold of a template mesh. Because the Euclidean distance is not a suitable
metric to measure distances of vertices on a deformable surface, we use the
geodesic distance [51] that is invariant to intrinsic deformation of the mesh. The
computation of the geodesic distances produces the matrix F € RM*M where
the element in the u'" row and and v column is F, = {dist(f, f')|f, f’ € F}.
Using F we transfer the texture of the n-nearest neighbor face to the image. The
final step uses symmetry between body part in order to transfer occluded pixels
(see Supplementary Material).

We use a template gender neutral 3D mesh with a canonical pose to compute
the pairwise distance map F € RY7*Ns (see Fig. 3(a)). The reason is that for
Euclidean distance it is computationally not possible to compute it for each
frame of the dataset. Furthermore, computing a geodesic distance is much more
computationally expensive than an Euclidean distance. The texture transfer
7.2,; approximates the foreground of the novel-view and is not used as a final
prediction.

3.3 Geometric texture Transfer Network (GTNet)

The burden over the network to synthesize the novel view can be mitigated if

we exploit the 3D mesh. The texture-transfer 7;%,; provides a good estimate

S

of the foreground of target view x7. Therefore we consider that 7, °,; Is an
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Fig. 4: Architecture of the proposed GTNet model. We encode each modality
using a separate encoder to approximate the feature point of the target view with
¥;_,;. We decode the background and the foreground separately. Note that we
also enforce explicit temporal modeling using the estimated foreground motion.

informative input to the network and we only need to learn the residual to correct
elements like mis-transferred textures or lighting. Since the texture 7;°, ;s agood
approximation of the foreground, we chose a context-based network structure.
Architecture. GTNet jointly learns to synthesize the foreground and background
(see Fig 4). The network takes the input view video z* (resp. depth modality d)
and encodes it with feature mapping &, (resp. &p,). These features constitute
the background information. Similarly, we encode the texture transfer 7.7, ; (resp.
segmentation map S*®) to represent the foreground information in the latent
space. Now to approximate the target feature ¢/ using the operator U;_,; we
rely on a 3D Convolutional Neural Network layer, this will enforce the temporal
consistency on the bottleneck layer. We therefore have the following:

& Ui (Orerlo, (k); T = {a', &, 87, T2}, (1)

where @ is the concatenation operation. As motivated earlier, we separate the
synthesis of the foreground and the background using dedicated decoders &,
and &, , respectively. The synthesized foreground (resp. background) is obtained
as: @ = Dy, (&) (resp. &} = Dy, (¢’)). The synthesized video @7 is therefore:

& =% om + i 6 (1 -m), (2)

where ® is the Hadamard product and m/ is the foreground mask obtained by
the binarization of F7.

In order to enforce temporal constraints, we propose to use the foreground
motion from the mesh displacement vectors in the synthesized frame to add
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Fig. 5: Comparison of the traditional texture transfer methods (e.g. [28]) and the
proposed transfer method with n € {10,50} nearest neighbor transfer.

motion information. The frame synthesis of view j at time step ¢ is defined as:

Tyt = o i o T (3)
xft"’CW(l’ft 1 t+1—>t) if t € [2.77,

where W is a residual warping function, ﬁic , (resp. Oz +1-5¢) is the foreground

prediction (resp. foreground motion) of the view j. z’ T4 18 the initial synthesized
frame of the generator and ( is a controlling factor defined empirically (Tab. 3).
We force the model to focus on the residue with respect to the previous time step
t — 1. Note that when training a generator, W(:fc]f’t_l, Oi+1at) is computed by a
forward pass (and freezing the weights). Thus when applying the reconstruction
pixel-wise loss, the network would only learn the residual over & +
Training losses. Instead of the traditional Ly used in the hterature we employ
a Huber loss [52] to penalize the video synthesis produced by the generator.
Differently from the Lo, the Huber loss is more robust to outliers and, differently
from the L; loss, the Huber loss considers the directions of the error magnitude.
The reconstruction loss L, between the generated videos (both foreground and
background branch) 27 and the ground-truth =7 at ¢ is
L {0 (3, —ad)?, if 2], —ad| <1 @
|#7, —xl| — 0.5, otherwise
To enforce the perceptual quality over the generated videos we use the temporal

perceptual loss [1]. This loss extends the so-called perceptual loss [53] by penalising
the generated videos on a spatio-temporal feature space using a 3D CNN network
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Fig. 6: Sample frames from the NTU RGB+D dataset. The 3 views are captured
with cameras placed with horizontal angle of: —45° 0°, +45°.

¢ (called perceptual network). The temporal perceptual loss is defined as:

L
1 p ,
b= ot 1966 — @) ®

where T, wg, hi, ¢ are the temporal dimension (i.e. timesteps), width, height
and the number of channel of at the k-th layer of the perceptual network ¢,
respectively. Furthermore, we use adversarial loss [54] in order to add high
frequency details in the synthesized frames. Given our generator G;_,; and a
discriminator D, the conditional adversarial loss is given as:

Lo =By [log(D(xi,xj))} +E, {log(l - D(xi,:ﬁj))] (6)
The total training loss is given by L = L, + A\pL, + A\g L4, with A\, = A, = 0.01.

4 Experiments

This section evaluates the proposed GTNet. Sec. 4.1 describes the training
protocol. Sec. 4.2 provides the ablation of each component of the proposed
pipeline. Sec. 4.2 compares our method with the state-of-the art VDNet [1].

4.1 Experimental Setup

Dataset. We use NTU RGB+D [49], the only large-scale synchronized multi-view
action recognition dataset (see Fig. 6), which consists of of videos captured using
three synchronized cameras with two front views and one side view. The dataset
contains 80 views with 40 distinct subjects and 60 actions. Following [1], we use
the cross-subject split.

Evaluation metrics. We assess the performance using two criteria: (i) the
generated video visual quality; (ii) the accuracy of the pose of the individual.
For the visual quality, we use Structural Similarity (SSIM), Peak Signal-to-Noise-
Ratio (PSNR) [55] (we also report their masked version [25]) and Fréchet Video
Distance (FVD) [56]. We use Percentage of Correct Keypoints (PCK) [57] for
the pose evalutation.

Implementation Details. To obtain a temporally consistent 3D mesh we
combine OpenPose [36] with [14]. We used an NVIDIA Tesla V100 16GB RAM
GPU to train our model. We use Adam optimizer [58] with (aq, as) = (0.5,0.999)
and a learning rate of 2:107°.
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Fig. 8: Texture transfer vs. Symmetric texture
Fig. 7: Model ablation. transfer (occluded region: orange pixel).

Baseline Context-based

Table 1: Quality of the foreground Table 2: Baseline ablation. Key. M: mask;

estimation. Key. M: mask; S.:§ . SSIM; P. PSNR; Mod. modality; BL:
SSIM; P. PSNR; Euc: Euclidean; baseline; Hb: Huber.

[: nearest neighbour value n. Model Mod. S. M-S. P. M-P. FVD
Step. Notation. M-S. M-P. BL (7]™.) [ M}, .534 .957 17.62 26.13 10.81

IT (Euc.) 7i-;[500] .952 26.85 M, 628 .964 18.39 27.73 7.51
11 Ti—;[500] .952 26.86 BL (7 Ti,; -.680 .969 19.83 29.13 6.79
11, 111 Ti,;[50] 953 26.92 7:,, 688 970 19.85 29.12 6.57
LIL T 7%,,[50] 954 27.16  "GTNet (Li)| 7., .693 .977 20.26 31.81 6.81
GTNet (Hb)| Ti; 709 .976 20.63 31.70 6.44

Table 4: Synthesis performance using differ-

Table 3: Sensitivity analysis of ent model weight using T = 8.

the warping factor with 7' = 24.

VDNet [1] GTNet
¢ 0 1 .0l .001 #layers 6 (3D) 6 18 6 6 (3D)
SSIM 624 .635 .623 .612 #params 112.74M 34.70M 77.20M|12.35M 99.20M
PSNR. 18.35 18.41 18.17 18.19 SSIM 821  .698 .711 | .709  .823
M-SSIM 972 N/A N/A | .976 .981

4.2 Ablation Studies

We provide a detailed evaluation of each component of the proposed pipeline.
Unless otherwise stated, we use a 2D-ResNetg [59] for the ablation.

Texture Transfer. We show the result of the contribution of each step in the
texture transfer:

— Step II (Euclidean): F computed with Euclidean pairwise distance.
— Step II: F computed with geodesic pairwise distance.

— Step IT 4 III: Symmetric texture transfer.

— Step I 4+ IT + III: Symmetric texture transfer with temporal context.

Results from Tab. 1 show that the symmetric texture transfer helps to better
estimate the foreground with only a kernel size of n = 50 instead of 500 without the
symmetry. Adding the temporal context for the hashmap construction improves
further. Fig. 7 shows a challenging case of texture transfer between views with
and without the body symmetry transfer.

Baseline Models. GTNet has a separate decoder for the foreground and the
background. Therefore, we chose a generator with a single decoder as the baseline
(see Fig. 6). GTNet is key to refine the texture transfer. To verify this we consider

three variants of the input to the network: MgD, Tiwj, and T2, .
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Fig.9: Training curves analysis of GTNet.

We propose two variants of ¥;_,; to assess the feature approximation:

— Linear: Wvlin-(ei,ﬂ'j) = Wijfi +Wjj.7rj +bj s.t Wij,Wjj S Rmxm,bj e R™.

el S ) .
— Convolution: V£ (€', 17) = convzxz(e' @ 77).

The operator ¥;_,; estimates the feature vector of the target view. The linear
version assumes a linearity between the input-view feature and the target-view
modalities, whereas, the convolution applies a concatenation operation followed
by a convolution operation which refers to a complex mapping (i.e. non-linear)
between the inputs. Results from Tab. 2 suggest that better feature approximation
leads to better view synthesis. A linear mapping cannot approximate well the
target feature /. The convolution is the default feature approximation for GTNet.

M is the straightforward modality to use for the synthesis using 3D mesh.
Tab. 2 shows that Baseline(M},) underperforms compared to Baseline(7;_, ).
This suggests that the texture transfer helps the network to refine the foreground.
Having a better estimate (i.e. 7;%,;) improves further. With the Baseline the
network has to focus on both synthesizing the foreground and background. Using
the context based approach in GTNet helps the model to focus on the background
synthesis and to refine only the foreground. The other conclusion is the texture
7., ; approximates better the foreground.
Hyperparameters. We analyse the model performance while validating the
effect of the loss, warping factor and model weights.

Using a Huber reconstruction loss in GTNet(Huber) improves the quality of
the synthesized videos (see Tab. 2). We investigate this further by plotting the

Table 5: Models performance using a pose estimator [30].
PCK [77]

Model Lz 55 005 0.01

VDNet [1] 4.37 99.3 92.4 51.2

Baseline 4.06 99.4 93.6 55.3

GTNet  3.95 99.5 93.0 57.6
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Fig. 10: Sample frames on novel-view synthesis. (left): input view video sequence
x%; (right): synthesized target view &7 using the proposed GTNet.

training loss and the histogram of the gradient at the last convolutional kernel of
the decoder of GTNet (see Fig. 9). For the gradient we noticed a significantly
smaller variance, which we deem to be due to the non-smoothness of the L loss
around the origin. By analysing the output of the generator trained with these
two losses, we observe that the generator trained with L; loss outputs black
artifacts during the first epochs which may cause mode collapse [60].

From Tab. 3 we note the improvement using the warping introduced in Eq. 3.
This in fact helps the generator to only learn the residual from previous frame
#]_,. We therefore keep ¢ = .1 as the default value for the warping function.

We report a good foreground synthesis even with a 2D-ResNet compared to
VDNet. However, the network could not synthesize well the background. This is
because without the temporal context the network will synthesize the background
T

i—j

t

&7 ©m’ —a'|

Fig. 11: Visualisation of the learned residual of 7;%,; using GTNet.
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Table 6: Comparison between the proposed GTNet and VDNet [I] on NTU
RGB+D. Key. ¢ controlling factor (see Sec. 3.3).

Model Modality T SSIM T M-SSIM t PSNR T M-PSNR | FVD
57 749 .964 20.78 28.27 7.35
VDNet [1] d’ 794 .970 22.47 29.46 6.60
4 s7 .821 972 23.18 29.70 5.78
GTNet(¢ = 0) M .703 .976 20.16 30.95 6.34
GTNet(¢ = 0) Tissj 767 .979 22.03 31.98 5.62
GTNet(¢ = 0) Tissj + 87 714 978 20.44 31.90 6.42
GTNet(¢ = 0) Timj +d? 778 .980 22.96 32.04 4.32
GTNet(¢ = .1)| Tim; +S7 +d7 787 .980 22.98 32.25 5.06
GTNet(¢=.1)| 5., + 87 +d7 .823 .981 23.81 32.50 4.96

independently for each time step. With the 3D-ResNet we obtain better video
synthesis compared to VDNet with many fewer trainable weights.

Comparison. Results from Tab. 6 are reported with 3D-ResNetg. Overall,
GTNet significantly improves over all the metrics compared to VDNet [1]. GTNet
benefits from the depth ¢’ along with 7;_, ;. The model GTNet( s +ST+di ¢ =
.1) produces superior quality results compared to VDNet.

Ti—; is derived from the skeleton s7. It is worth noting that GTNet(T;—; ) is
superior to VDNet(s?) (see Tab. 6). The proposed GTNet produces temporally
consistent videos (FVD scores). Tab. 5 reports the PCK scores of GTNet with
the baseline and VDNet. The pose estimator estimates keypoints that are close
to the ground-truth with GTNet.

Fig. 11 shows the ability of GTNet in refining the textures. Fig. 10 shows four
examples of typical synthesis results using GTNet. The synthesized novel-view
videos are sharper and we can clearly distinguish the movement of the subject.
Fig. 12 compares three examples of GTNet and VDNet. We can note that indeed
the motion is clearly distinct with our model. Note also that thanks to 77, ; the
body texture is preserved across the views. In the example of the third row, we
can see that GTNet is able to keep the movement of the hand with the object
interaction (hat). Fig. 13 shows a qualitative example of the pose estimation. The
pose estimator is able to extract keypoints similar to the ones extracted from
the ground-truth. This is because GTNet has better foreground synthesis (.981
M-SSIM, 32.50 M-PSNR) compared to VDNet (.972 M-SSIM, 29.70 M-PSNR).

5 Conclusions

We presented a novel approach to synthesize actions as if they were recorded
from a novel view by exploiting geometric and appearance information extracted
from the real view. Our geometric approach transfers the textures of the visible
parts of the human (foreground) from images to a 3D mesh and re-projects them
onto the novel, 2D view. Then, we designed a new encoder-decoder network
architecture that learns how to synthesize the occluded parts of the foreground
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Fig.12: Sample frames comparing VDNet and GTNet.

GTNet Baseline
T -

Fig. 13: Comparison of the estimated skeleton.

and that tackles the foreground and background tasks separately to achieve
high synthesis fidelity. We obtain state-of-the-art synthesis results on the NTU
RGB+D dataset.
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