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Abstract. Face reenactment and face swap have gained a lot of atten-
tion due to their broad range of applications in computer vision. Al-
though both tasks share similar objectives (e.g. manipulating expression
and pose), existing methods do not explore the benefits of combining
these two tasks.
In this paper, we introduce a unified end-to-end pipeline for face swap-
ping and reenactment. We propose a novel approach to isolated disen-
tangled representation learning of specific visual attributes in an unsu-
pervised manner. A combination of the proposed training losses allows
us to synthesize results in a one-shot manner. The proposed method does
not require subject-specific training.
We compare our method against state-of-the-art methods for multiple
public datasets of different complexities. The proposed method outper-
forms other SOTA methods in terms of realistic-looking face images.

1 Introduction

Fig. 1. Our algorithm takes source and target images and produces reenacted and
swapped face results using a single unified pipeline.

† Equal contribution, alphabetic order.
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Generating images or videos by manipulating facial attributes (i.e. face reen-
actment and swapping) has gained a lot of attention in recent years due to their
broad range of computer vision and multimedia applications such as video dub-
bing [1], gaze correction [2], actor capturing [3, 4], and virtual avatar creation
[5].

Face reenactment [3, 6] aims to manipulate facial attributes such as expres-
sion, pose or gaze of a video or a single image, whereas face swap [7, 8] tries to
seamlessly replace a face from a source image with a target face while maintain-
ing the realism of the facial appearance. To perform such transfer, face swap
techniques manipulate face attributes such as expression, pose, and identity. Al-
though the face attribute manipulation for both face reenactment and face swap
is similar, they have never been considered in a unified pipeline. To this end, in
this paper, we propose a single unified model for both face swapping and reen-
actment tasks allowing the model to produce a more robust face representation
and exploiting the constraints from the two tasks to improve the realism of facial
appearances.

Before the introduction of deep neural networks, face reenactment and swap-
ping are typically solved by 3D modeling [3, 7, 9–11]. The 3D face image is trans-
formed into a 3D representation, where latent parameters of the 3D representa-
tion are manipulated and projected back in a 2D space. Although those methods
produce results with high realism, they are not able to generalize well on unseen
data. Hence, for each target face the model parameters have to be tuned.

Current generative models make it feasible to synthesize realistic-looking
images [12, 13]. Consequently, recent research is focused on improving the quality
of the face image generation process [12–14] using generative models. Only a few
methods explore the direction of using generative models for face reenactment
or face swapping. Although these tasks share similarities, previous methods only
focus on solving one of the two tasks independently and are supervised [15–17].
Recently methods show that face swap targeted methods can be used for face
reenactment and vice versa. Unfortunately, the visual results on the second task
are typically inferior to the first one [6, 8]. Since those methods are designed for
one of the tasks separately, they are not optimal for both. In contrast to existing
methods, we integrate both tasks into one combined model. To our knowledge,
our method is the first unsupervised method designed to perform both tasks in
a unified end-to-end manner.

In this paper, we propose a novel pipeline that unifies face swapping and
reenactment (Fig. 1). A combined approach benefits from the similarities of the
two tasks. Learning them together allows for robust face representation and
enhances the realism of facial appearance. The proposed algorithm learns an
isolated disentangled representation for face attributes without any supervision.
Hence, our model can manipulate expression/pose, face identity, and style inde-
pendently in latent space. We achieve this by directly mapping the disentangled
latent representation to the latent space of a pre-trained generator. During in-
ference time, the encoders condition the latent space by source and target face
images together with their landmarks and generate the reenacted or swapped
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face using the pre-trained decoder. Prediction is done in a one-shot manner (i.e.
only a single image of a person is required). The model’s training loss incorpo-
rates contextual and identity losses to preserve the face identity, regardless of
the source face. As a result, our model obtains visually more appealing results
in cross-gender face swapping compared to the baselines.

We evaluate our method on multiple datasets of various complexities: 300VW
with videos of talking people [18], and UvA-NEMO with spontaneous and fake
smiles in a controlled environment [19]. Experiments demonstrate that our method
(on average) performs better on face reenactment and face swapping tasks than
existing state-of-the-art methods focusing only on a single task.

To summarize, our contribution is four-fold:

– A novel method is proposed to perform face swapping and reenactment tasks
in a joint manner. To our knowledge, our method is the first method to jointly
perform the two tasks in a unified end-to-end architecture.

– The proposed method is subject agnostic: it does not require subject-specific
training.

– A novel approach is proposed to learn an isolated disentangled representation
for single visual attributes (i.e. the expression/pose, identity, and style) by
using a pre-trained generator with a disentangled latent space. This allows for
a full control over the face manipulation process in an unsupervised manner.
Hence, our approach does not require ground truth data for expression/pose,
identity, and style learning of reenactment outputs.

– A combination of training losses allows us to synthesize results in a one-
shot manner and to outperform competitive methods in cross-gender face
manipulation.

2 Related Works

2.1 Generative Models

Generative models based on Generative Adversarial Networks (GANs) are ad-
vantageous for the task of image synthesis [20, 21]. However, until recently, those
models can be considered as black boxes with latent representations which are
hard to interpret. In addition, the realism of the generated results, in particular
for face image synthesis [12, 14], is limited (with artifacts in identity preserva-
tion).

Recently, StyleGAN [13] introduces a novel way to condition the latent code
through an affine transformation, corresponding to a specific style [22], by us-
ing Adaptive Instance Normalization (AdaIN) [23]. AdaIN allows the model to
generate images with more realistic face appearance compared to previous meth-
ods [24]. Furthermore, the aforementioned architecture modifications, combined
with a revised training approach [13, 22], enable the separation of high-level
and stochastic attributes making the latent representation easier to interpret.
Hence, the face attributes of a generated image can be changed accordingly by
manipulating the latent representation (i.e. disentanglement property). Recent
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methods integrate StyleGAN into different applications as a pre-trained net-
work for face enhancement and animation [25]. The state-of-the-art StyleGAN2
[22] enhances the architecture of StyleGAN by redesigning normalization flow
and by applying the same network topology for low and high resolution. Im-
age2StyleGAN [26] proposes a method to map an existing image to the latent
representation of StyleGAN by iteratively optimizing a latent code to minimize
the loss function. Mapping an image to latent space enables a user to change
specific image attributes provided by the StyleGAN latent space. However, this
method has a drawback in terms of efficiency and generalization: each new im-
age is optimized separately until convergence to obtain a corresponding latent
space limiting the applicability of the method for real-time applications. In con-
trast, our novel isolated disentangled representation learning method solves this
problem by introducing encoders that learn to map the desired facial attributes
to the corresponding changes in the latent representation. By constraining the
mapping by encoders and by using a specific unsupervised training procedure,
our approach manipulates the latent space in such a way that it is able to mix
disentangled expression/pose, identity and style attributes in a robust manner.

2.2 Face Reenactment

Face reenactment focuses on changing attributes of the face image while keeping
the face identity the same. Prior methods focus on different facial attributes like
expression [14, 12], skin color [12], lighting [27] and pose, or a combination of
those [3]. These methods are mostly used in applications such as virtual avatar
or puppeteering, targeting high realistic-looking faces but ignoring background
preservation [5]. Other approaches focus more on video dubbing and deepfake
generation, preserving the realism for both the foreground and background of
the scene [3, 4, 14]. Attribute conditioning is modeled by using different modali-
ties like facial landmarks [28], action units [14] and 3D morphable models [4] for
pose and/or expression, and spherical harmonics for lighting [27]. Some meth-
ods simplify attribute inference by conditioning directly on the face image. In
contrast, our method uses a face image to condition identity and style together
with facial landmarks for pose and expression.

Several methods perform face reenactment by manipulating the latent space
[26, 29, 30]. [26] compute the relative difference between two images by calculat-
ing the differences in their latent spaces and applied to the source latent code
afterwards. [29] propose an approach capable of reenacting faces by using en-
coders to compute the representations of pose, expression, style and identity in
the latent space.

In combination with the use of a pre-trained generator, we aim to condition
the generator in a one-shot manner during both training and testing time. Inter-
FaceGAN [30] on the other hand, does use a pre-trained generator, but computes
latent codes based on attribute scores (e.g. smile, glasses, gender etc.) making it
a supervised method. Since our approach does not require ground-truth labels
or attribute scores, we have full control over the face manipulation process using
only a minimal amount of training data.
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Methods that focus on the quality of images and identity/background preser-
vation are typically target-specific [4]. Hence, the model is trained for a particular
scene with a single face identity. Other non-target, one-shot methods [12, 14] pro-
duce decent results, but they fail in producing consistent face identities between
images of the same person (video sequence) [6, 12]. Our method is also a one-
shot method. However, in contrast to previous methods, the aim of our method
is to produce realistic-looking faces with identity-preservation by exploiting the
disentanglement property of the pre-trained model.

2.3 Face Swapping

Face swapping aims to change the facial identity but to keep other face attributes
constant. Applications range from face identity obfuscation [31] to recreation [32]
and entertainment [7]. Recent methods obtain realistic results by using GANs
[8, 15, 17] conditioning identity attributes using either a face image or its facial
landmarks. Besides, face segmentation is usually required to position a generated
face on the original face [7, 8].

Most face reenactment and swapping approaches rely on the use of generative
adversarial networks [12, 14, 26, 29, 33, 34]. A major drawback of the aforemen-
tioned methods is their training process, the interpolation quality and lack of
disentanglement.

Despite the similarity between face reenactment and face swapping tasks,
there are no methods, to the best of our knowledge, which successfully unify these
tasks. [6] mainly focuses on the problem of face reenactment, but shows inferior
results on the task of face swapping. [8] shows the opposite. This approach
is mainly focused on face swapping, but the results on face reenactment lack
realistic-looking appearance. Moreover, those methods are complex and multi-
staged. Thus, [7] proposes four separate GANs for reenactment, segmentation,
inpainting and blending. [6] uses a separate motion network to extract dense
optical flow and requires an extra segmentation network for face swapping. In
contrast, to our knowledge, we are the first method to unify face reenactment
and face swap in one single unified pipeline.

3 Proposed Method

An overview of our method is shown in Fig. 2. Our goal is to produce a face image
x̂ while predicting identity attributes wi, style attributes ws and pose/facial
expression attributes wpe from a given face image and its landmarks. We propose
a novel isolated disentangled representation learning algorithm to separate wi,
ws and wpe. Using the proposed algorithm, attributes of the source and target
images can be manipulated in the latent space via mixing using linear addition,
since changing one attribute doesn’t influence another due to their isolation.
For the face swapping task, wi is taken from the source image, while other
attributes are taken from the target image. For the face reenactment task, wpe

and ws are taken from the source image, keeping identity wi from the target.
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Fig. 2. Our architecture combines Face Swapping and Reenactment into a single uni-
fied pipeline with the help of our novel isolated disentangled representation learning
algorithm.

3.1 Disentanglement Property and Vector Computations

Our encoders are trained to compute a latent code in the latent space w ∈ W+ of
a pre-trained generator. Since the latent space is disentangled, face attributes can
be manipulated by using vector arithmetics in W+ [26]. For example, given an
imageNA and its latent code w1 (person A with a neutral expression),NB and its
latent code w2 (person B with a neutral expression) and another image SB with
a latent code w3 (person B smiling), it’s possible to generate an image of a person
A smiling by conditioning the generator G on a latent code G

(

w1 + (w3 −w2)
)

.
Our method uses that principle by predicting isolated latent codes for style

ws, identity wi and pose/expression wpe based on the input image and its corre-
sponding landmarks, assuming those latent codes to be with a disentanglement
property. Final latent code can be constructed via linear addition of the three
isolated components w = µG + wi + ws + wpe, where µG is the mean of the
generator’s latent space W+ with disentanglement property [22, 26].

Since w is constructed from the latent codes ws, wi, and wpe, full control
is obtained for changing the style, identity, pose and expression of the result-
ing image I, by exploiting the high-quality images produced by the pre-trained
generator. Note that our method allows for subject-agnostic face manipulation
executed in a one-shot fashion during inference.

3.2 Architecture

The source face and the target face (together with its facial landmarks) are used
as inputs to the two separate encoders Ei and Epe respectively. These encoders
approximate a latent code for face style ws, identity wi and pose/expression wpe.
The network latent space is manipulated using encoder outputs to obtain either



Application of Style Transfer for Face Swapping and Reenactment 7

face swap by swapping the identity latent code or face reenactment by swapping
the pose latent code. All latent codes are combined into the final latent code
w. Then, w is fed to a decoder G to produce the final visual result. In the case
of face swapping, a face mask M is generated by using the convex hull of the
landmarks [35].

Encoders. Our architecture contains two different types of encoders: (1) the
identity encoder Ei, and (2) the pose encoder Epe. These encoders predict a
latent code w ∈ W+ corresponding to either the identity, style, or pose of the
input image.

For the design of the architecture, we base our encoders on the encoder of
Pix2Pix [36]. To map the input images and landmarks to their corresponding
latent codes, we add n separate fully connected blocks to the architecture, where
n is the first dimension of the extended latent space. This fully connected blocks
consist of 2 fully connected layers. Ei contains 2 of these fully connected block
sets, for style (ws) and identity (wi) respectively.

Identity encoder Ei(x) takes an input image x and estimates the identity
latent code wi ∈ W+ and style latent code ws ∈ W+. Latent code wi is trained
to contain only pose- and expression-invariant identity features of the person.

Pose encoder Epe(xs) uses the facial landmarks of x denoted by xs as an
input. Epe(xs) predicts a latent code wpe ∈ W+ containing both the pose and
expression of xs. The landmarks are represented as RGB images of landmark
boundaries [34].

wx
i , w

x
s = Ei(x), wx

pe = Epe(xs). (1)

Decoder. Generator G(w) is a pre-trained network with fixed weights. It
takes a latent code w ∈ W+ as an input. Here W+ is the latent space of G(w).
G(w) generates an image x̂ corresponding to latent code w. In this paper, the
StyleGANv2 architecture is used. However, other models with similar disentan-
glement properties and continuous latent spaces can be used instead.

3.3 Face Reenactment and Swapping

The reconstructed original face is defined as a function G(w) over its identity
wx

i , style w
x
s and expression/pose wx

pe parameters:

x̂ = G(µG + wx
i + wx

s + wx
pe). (2)

Face Reenactment. Faces are reenacted by changing the expression and
pose parameters wy

pe to the pose/expression shown in the target image y and
keeping other parameters identical wx

i and wx
s . Since w

x
i , w

x
s and wx

pe parameters
are separated, the resulting image ẋ is defined as a function of their sum:

ẋ = G(µG + wx
i + wx

s + wy
pe). (3)
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Face swapping is performed by keeping the wx
s and wx

l parameters un-
changed and to modify the identity latent code to wy

i :

x̃ = G(µG + w
y
i + wx

s + wx
pe). (4)

To swap faces, a facial mask M is obtained by computing a convex hull of the
landmarks and to add a Gaussian blur [35]. The final swapped face is generated
by interpolation (1−M) · x+M · x̃.

3.4 Losses

The objective function, to train our unified face swapping/reenactment architec-
ture, consists of 5 terms: reconstruction loss LMSE , perceptual loss Lper, land-
mark loss LL, identity losses for the aligned reconstructed image La

id and for
the unaligned identity-swapped/reenacted image Lu

id. Those terms are weighted
using hyperparameters λi, i ∈ {1..5}.

L = λ1LMSE + λ2Lper + λ3LL + λ4L
a
id + λ5L

u
id. (5)

Reconstruction and Perceptual Losses We compute the mean squared error
between input and predicted images as a reconstruction loss for efficient color
embedding. LMSE is calculated for the reconstructed image x̂ and the identity-
swapped image x̃. This loss function mainly helps to isolate ws ensuring a proper
color embedding. To capture finer features, the LPIPS distance is used [22,
37, 38]. Lper is taken as the reconstruction loss and is calculated only for the
reconstructed image x̂.

LMSE =‖ x̂− x ‖22 + ‖ x̃− x ‖22, Lper = LPIPS(x̂,x). (6)

Landmark Loss The landmark loss term is used to isolate pose and expression
from identity and style. A pre-trained facial landmark extraction network ψ [39]
is taken to extract the landmark heatmaps from an image x. The loss function
attempts to minimize the L2 distance between the extracted heatmaps of the
facial landmarks of the source image x and the target image y, while keeping the
latent code for identity and style identical. Landmarks do contain identity (e.g.
eye and mouth shape). This means that landmark loss adds an identity bias to
the resulting image.

We separate the heatmap sets into two different sets, the expression land-
marks ψE and the jaw landmarks ψJ . Parameters γ1, γ2 adjust the importance
of these landmark sets respectively.

LL =γ1 ‖ ψ(ẋ)E − ψ(y)E ‖22 +γ2 ‖ ψ(ẋ)J − ψ(y)J ‖22 . (7)
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Identity Loss The identity loss [29, 40] isolates identity in a separate latent code
wi. The layer activations are used of a pre-trained identity recognition network
Φ [41]. For our purpose, we use activations l ∈ L of two specific convolution
layers and the last two fully connected layers.

The identity loss is applied to the convolution layers by calculating the con-
textual loss [42] La

id over these layers. Note that this will only work for images
with the same pose (the reconstructed image), since the convolutions do not
capture rotations properly.

La
id =

∑

l∈L

‖ CX(Φ(x̂), φ(x) ‖22 . (8)

To ensure correct identity in the reenacted frames, a loss function is required
to detect the identity of a face independent of the pose. A mean squared error
is calculated for the activations of the fully connected layers of Φ. During train-
ing, faces are reenacted with random landmarks from the dataset making our
approach more robust to landmark biases.

Lu
id =

∑

l∈L

(

‖ Φ(ẋ, l)− Φ(x, l) ‖22 + ‖ Φ(x̃, l)− Φ(y, l) ‖22
)

(9)

3.5 Training Details

We trained both our method and the pre-trained generator on the subset of 183K
images from the CelebA face dataset [43]. Faces are detected using the Dlib [44].
Face bounding boxes are computed based on an expanded by 10% bounding
boxes over facial landmarks [39] and resized to 128 × 128. Parameters of the
network were optimized using the Adam optimizer with a learning rate of 10−5

for 100 epochs, batch size = 4. In our experimental setup, we used λ1, λ2 = 5,
λ3 = 1, λ4, λ5 = 0.05, γ1 = 1 and γ2 = 50, since it yielded the best results.

We use StyleGANv2 in our experiments. For StyleGANv2 latent code ma-
nipulation, we use the extended latent space w ∈ W+, which predicts a different
latent code for every level of a pre-trained generator. Using W+ allows for a
better embedding of an image, but is also possible to cope with images that do
not have a latent embedding.

4 Experiments

In this section, we evaluate the qualitative and quantitative performance of our
proposed method and compare it to the state-of-the-art. We perform an ablation
study to analyze the influence of the loss components in section 4.1. Results on
latent space interpolation are discussed in section 4.2. Comparison to state-of-
the-art in face swap and reenactment are provided in section 4.3. For all exper-
iments, a cross-dataset evaluation is conducted for our method and baselines.
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Fig. 3. Ablation Study. Face swap and reenactment results of our method trained with
different loss configurations. Our full model results are shown in the last row.

Table 1. Quantitative ablation study evaluation on 300VW dataset. Reported metrics
are (a) Inception Score, (b) FID source vs generated, (c) KID source vs generated, (d)
FID target vs generated and (e) KID target vs generated.

Face reenactment Face swap
Metric C1 C2 C3 C4 C1 C2 C3 C4

(a) 2.4 ±0.08 2.02 ±0.08 1.96 ±0.1 2.69 ±0.16 2.68 ±0.13 2.59 ±0.12 2.63 ±0.12 2.56 ±0.14
(b) 1.57 1.57 1.48 1.46 1.54 1.50 1.51 1.48

(c) 7.12 ±0.22 7.47 ±0.21 6.84 ±0.2 5.31 ±0.23 5.44 ±0.21 5.01 ±0.21 5.27 ±0.2 4.4 ±0.21

(d) N/A N/A N/A N/A 0.42 0.49 0.52 0.51
(e) N/A N/A N/A N/A 1.84 ±0.18 1.78 ±0.16 2.08 ±0.16 1.45 ±0.15

4.1 Ablation Study

An ablation study is conducted for the loss components to assess their influence
on the face swapping and reenactment tasks on the 300VW dataset [18]. This
dataset contains 114 high-quality videos of talking people. The dataset is prepro-
cessed by cropping faces based on the given (ground truth) landmark bounding
boxes with 10% extension to each direction.

The qualitative results of our method trained with 4 different loss configura-
tions are shown in Fig. 3: C1 - L without contextual loss La

id and identity loss
Lu
id; C2 - L without Lu

id; C3 - L without La
id; C4 - our final model with L. Con-

figurations with other losses being disabled produce significantly degenerated
visual results. Consequently, they are crucial for our method.

Contextual loss La
id supports identity preservation of the source image both

in reenactment and face swapping tasks (C2 vs C1). However, it has difficulty
with the pose and expression preservation of the target image. Thus, expression
and pose are influenced by the content of the source face.

Identity loss Lu
id is beneficial for expression/pose isolation and visual sharp-

ness. However, it has difficulties in identity preservation (C3 vs C1). Besides, for
the face reenactment task, the reenacted shape of the source person is morphed
by target images. It can be seen that the source rounded face becomes oval (C3:
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Fig. 4. Interpolation of the latent space. Row 1: expression and pose interpolation.
Row 2: Style interpolation. Row 3: identity interpolation. The last column represents a
target expression/pose, style, or identity respectively. The results show that our novel
disentangled representation learning algorithm can robustly isolates face attributes so
that we can manipulate each attribute independently.

Face Reenactment, columns 1, 2). A trade-off result is obtained by combining
La
id and Lu

id together (C4 vs C1).
For quantitative evaluation, different metrics are computed which are com-

monly used in image synthesis evaluation and shown in Table 1. Inception Score
[45] uses pre-trained on ImageNet Inception Network to compute the KL di-
vergence between conditional and marginal label distributions over generated
data (higher - better). Frechet-Inception distance [46] computes Wasserstein-2
distance between distributions of real and generated samples in the Inception
Net feature space (lower - better). Kernel-Inception distance [47] measures dis-
similarity between distributions of real and generated samples (lower - better).

Since the generated results of our method are unaligned in term of face at-
tributes, FID and KID metrics are used only as an indicator of how our face
identity is similar to the real data distribution. In case of face reenactment, the
identity should be as close as possible to source face image. In case of face swap,
we want a generated face to capture both properties of source and target im-
age. Consequently, for face swap generated images, the FID and KID metrics
are reported both in comparison with the source and target image data dis-
tributions. Source and target subjects are randomly selected from the 300VW
dataset. Evaluation is performed on a sample of 10K generated images.

In the task of face reenactment, the evaluation metrics support our qualitative
experimental results: our method with combined contextual and identity losses
generates visual results with identity closer to the source face image distribution
(C1 vs C2, 1.57 vs 1.46 FID). In the case of face swap, it can be observed that the
distribution of generated images is closer to the distribution of target face images
(C4 1.48 vs 0.51 FID). With the introduction of the additional regularization
into our model, visual results start to capture more and more properties from
the source image (C1 vs C4, 1.54 vs 1.48 FID).

4.2 Latent Space Interpolation

In this section, our method is analyzed to interpolate over different face attribute
dimensions. Given a source image, its face attributes are gradually changed where
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expression/pose, style or identity are modified to become closer to the target
face image. Qualitative results on the 300VW dataset are shown in Fig. 4. The
300VW dataset is preprocessed in the same way as described in the section 4.1.
The first column shows the source image. Our algorithm changes gradually an
attribute dimension to become closer to the target image of the last column.

Given a source w1 and target attribute w2, our model generates meaningful
face images conditioned on the interpolated latent code αw1 + (1− α)w2. Note
that in the case of style, a costume of John Oliver gradually starts to appear,
while in the case of identity, we can observe the disappearance of beard, an emer-
gence of his glasses and eyebrows. Despite the challenges given by cross-dataset
evaluation, our model preserves attributes dimensions on challenging cases with
face accessory and occlusion. Image2StyleGAN [26] show the capability to map
face attributes into the latent space of StyleGAN. However, the latent space of
expression/pose, identity and style are not fully disentangled. For example, it’s
not possible to manipulate expression/pose property separately without influ-
encing identity or style. In contrast, our mapping to the latent space provides
more flexibility.

4.3 Face Swap and Reenactment State-of-the-Art Comparison

Qualitative Evaluation We evaluate qualitatively our method on the face
swapping and face reenactment tasks. We perform cross-dataset evaluation of
our method with results produced by FSGAN [8] and First Order Motion Model
[6] on the 300VW [18] and UvA-NEMO [19] datasets. These methods are selected
because they are state-of-the-art which can do both face swap and reenactment.
For our purpose, the available pre-trained model is used provided by authors
of FSGAN and First Order Motion. For fairness of comparison, we use models
trained on a different dataset from UvA-NEMO and 300VW. The datasets are
preprocessed by cropping faces based on landmark bounding boxes with 10%
extension to each direction. For 300VW, the provided ground truth landmarks
are used. For UvA-NEMO, the landmarks are extracted by using FAN [39].

In the first experiment, we qualitatively compare our method with the state-
of-the-art for the face reenactment task. The visual comparison is shown in the
Fig. 5. For the First Order Motion model, its pre-trained model is used with ab-

solute motion for both face reenactment and face swap experiments, since only
the absolute motion mode is capable of computing face swaps. Our method shows
comparable quality of reenactment results to First Order Motion and outper-
forms FSGAN in terms of identity preservation. Besides, since our latent space
is constrained by the pre-trained generator, it’s less prone to produce artifacts
not inherent to a human face (First Order Motion, second row, middle image,
eyes). However, this constraint has also a drawback in terms of facial accessories
it’s capable of modeling (the disappearance of a microphone in the second row).
Note that, since First Order Motion is focused on the face reenactment task, it
produces better results than the FSGAN model.

In the second experiment, we qualitatively compare our method with state-
of-the-art in the context of face swapping. The visual comparison is shown in



Application of Style Transfer for Face Swapping and Reenactment 13

Fig. 5. Qualitative comparison of face reenactment results on 300VW and UvA-NEMO
datasets. Pose and expression from target images (second column) are applied on the
source image (first column). Faces are produced by the baseline methods, FSGAN and
First Order Motion Model, and predictions provided by our novel unified pipeline.

Fig. 6.Qualitative comparison of face swapping results on the 300VW and UvA-NEMO
datasets. First column: source image from which identity properties are taken. Second
column: target images, on which those properties are applied. Faces produced by the
baseline methods, FSGAN [8] and First Order Motion Model [6], and predictions pro-
vided by our novel unified pipeline.

the Fig. 6. For the face swapping task, GAN based methods may fail in cross-
gender face swapping due to the difference between gender appearance and
shape. We show that our method produces realistic-looking results both for
male-to-female (rows 1,3,6) and female-to-male swapping (row 2) compared to
competitive methods: First Order Motion keeps the lipstick color of a target face
(row 3), FSGAN loses the identity of the source image (rows 1,3,6). Note that,
since FSGAN is focused on the face swapping task, it produces better results
than the First Order Motion model.
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Quantitative Evaluation We provide additional quantitative evaluations on
300VW to verify preservation of identity/expression/pose w.r.t. SOTA and to
motivate the benefit of joint learning (Table 2). We compare identity preser-
vation using cosine similarity between latent space of VGGFace2 features [48].
Headpose correctness is compared using absolute distance in degrees of yaw-
pitch-roll predicted from a pretrained Hopenet [49]. Expression correctness is
compared using mean absolute distance of facial landmarks (in pixels, image
resized to 256) using a pretrained FAN detector [39]. Our method outperforms
SOTA in the swapping task on 3 benchmarks. On the reenactment task Firt
Order Motion performs better on identity and headpose preservation however,
on average, our method outperforms SOTA.

Table 2. Quantitative evaluation on 300VW.

Identity ↑ Headpose ↓ Expression ↓
First Order FSGAN Ours First Order FSGAN Ours First Order FSGAN Ours

Reenactment 0.578 0.461 0.517 2.811 4.268 3.364 4.883 51.56 3.983

Swap 0.308 0.317 0.412 2.628 2.823 2.113 3.902 2.554 3.072

Avg 0.443 0.389 0.464 2.719 3.546 2.739 4.393 27.057 3.528

5 Limitations

Despite promising results presented in this paper, our method has several limi-
tations. First, the expressiveness of the generated facial expressions is dependent
on its presence in the training dataset and the quality of face landmarks pro-
vided by the landmark detector. Second, our model does not explicitly model
occlusion and consequently relies on a pre-trained generator to have a capacity
of modeling occlusions, such as accessories or makeup. Finally, both landmark
plots and source images contain a bias in terms of identity, pose and expression.

6 Conclusion

In this work, we proposed a novel approach to isolated disentangled representa-
tion learning combined with an end-to-end method capable of performing both
face reenactment and swapping. To our knowledge, our method is the first ap-
proach which is designed to solve both objectives in a unified pipeline.

We showed that our method is trained in an unsupervised way to achieve
equally good visual results on both tasks. In addition, it’s capable of producing
results in a one-shot manner during inference time. The qualitative results on
multiple public datasets show that the proposed method is outperforming SOTA
methods which can perform both face reenactment and swap.
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19. Dibeklioğlu, H., Salah, A.A., Gevers, T.: Are you really smiling at me? spontaneous
versus posed enjoyment smiles. In: European Conference on Computer Vision,
Springer (2012) 525–538

20. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with
deep convolutional generative adversarial networks. CoRR abs/1511.06434
(2015)

21. Nguyen, A., Yosinski, J., Bengio, Y., Dosovitskiy, A., Clune, J.: Plug & play
generative networks: Conditional iterative generation of images in latent space.
CoRR abs/1612.00005 (2016)

22. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing
and improving the image quality of StyleGAN. CoRR abs/1912.04958 (2019)

23. Huang, X., Belongie, S.J.: Arbitrary style transfer in real-time with adaptive
instance normalization. CoRR abs/1703.06868 (2017)

24. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for im-
proved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)

25. Gabbay, A., Hoshen, Y.: Style generator inversion for image enhancement and
animation. CoRR abs/1906.11880 (2019)

26. Abdal, R., Qin, Y., Wonka, P.: Image2stylegan: How to embed images into the
stylegan latent space? In: Proceedings of the IEEE International Conference on
Computer Vision. (2019) 4432–4441

27. Zhou, H., Hadap, S., Sunkavalli, K., Jacobs, D.W.: Deep single-image portrait
relighting. In: The IEEE International Conference on Computer Vision (ICCV).
(2019)

28. Sanchez, E., Valstar, M.F.: Triple consistency loss for pairing distributions in
gan-based face synthesis. CoRR abs/1811.03492 (2018)

29. Fu, C., Hu, Y., Wu, X., Wang, G., Zhang, Q., He, R.: High fidelity face manipu-
lation with extreme pose and expression. arXiv preprint arXiv:1903.12003 (2019)

30. Shen, Y., Gu, J., Tang, X., Zhou, B.: Interpreting the latent space of gans for
semantic face editing. In: CVPR. (2020)

31. Bitouk, D., Kumar, N., Dhillon, S., Belhumeur, P., Nayar, S.K.: Face swapping:
Automatically replacing faces in photographs. ACM Trans. Graph. 27 (2008) 1–8

32. Kemelmacher-Shlizerman, I.: Transfiguring portraits. ACM Trans. Graph. 35
(2016)

33. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: Proceedings of the IEEE interna-
tional conference on computer vision. (2017) 2223–2232

34. Zakharov, E., Shysheya, A., Burkov, E., Lempitsky, V.: Few-shot adversarial learn-
ing of realistic neural talking head models. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision. (2019) 9459–9468

35. Yang, C., Lim, S.N.: Unconstrained facial expression transfer using style-based
generator. arXiv preprint arXiv:1912.06253 (2019)

36. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with con-
ditional adversarial networks. CVPR (2017)

37. Banerjee, S., Scheirer, W.J., Bowyer, K.W., Flynn, P.J.: On hallucinating con-
text and background pixels from a face mask using multi-scale gans. CoRR
abs/1811.07104 (2018)



Application of Style Transfer for Face Swapping and Reenactment 17

38. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: CVPR. (2018)

39. Bulat, A., Tzimiropoulos, G.: How far are we from solving the 2d & 3d face align-
ment problem? (and a dataset of 230,000 3d facial landmarks). In: International
Conference on Computer Vision. (2017)

40. Hu, Y., Wu, X., Yu, B., He, R., Sun, Z.: Pose-guided photorealistic face rotation. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
(2018) 8398–8406

41. Wu, X., He, R., Sun, Z., Tan, T.: A light cnn for deep face representation with
noisy labels. IEEE Transactions on Information Forensics and Security 13 (2018)
2884–2896

42. Mechrez, R., Talmi, I., Zelnik-Manor, L.: The contextual loss for image transfor-
mation with non-aligned data. In: Proceedings of the European Conference on
Computer Vision (ECCV). (2018) 768–783

43. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In:
Proceedings of International Conference on Computer Vision (ICCV). (2015)

44. King, D.E.: Dlib-ml: A machine learning toolkit. Journal of Machine Learning
Research 10 (2009) 1755–1758

45. Salimans, T., Goodfellow, I.J., Zaremba, W., Cheung, V., Radford, A., Chen, X.:
Improved techniques for training gans. CoRR abs/1606.03498 (2016)

46. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Klambauer, G., Hochreiter,
S.: Gans trained by a two time-scale update rule converge to a nash equilibrium.
CoRR abs/1706.08500 (2017)
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