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Abstract. Non-linear least squares solvers are used across a broad range
of offline and real-time model fitting problems. Most improvements of the
basic Gauss-Newton algorithm tackle convergence guarantees or lever-
age the sparsity of the underlying problem structure for computational
speedup. With the success of deep learning methods leveraging large
datasets, stochastic optimization methods received recently a lot of at-
tention. Our work borrows ideas from both stochastic machine learning
and statistics, and we present an approach for non-linear least-squares
that guarantees convergence while at the same time significantly reduces
the required amount of computation. Empirical results show that our
proposed method achieves competitive convergence rates compared to
traditional second-order approaches on common computer vision prob-
lems, such as image alignment and essential matrix estimation, with very
large numbers of residuals.

1 Introduction

Non-linear least squares (NLLS) solvers [1] are the optimizers of choice for many
computer vision model estimation and fitting tasks [2], including photometric
image alignment [3], essential matrix estimation [2] and bundle adjustment [4].
Fast convergence due to the second-order gradient model, and a simple, efficient
implementation due to Gauss’ approximation of the Hessian, make it a highly
effective tool for these tasks. Nevertheless, the (non-asymptotic) computational
efficiency of these methods can significantly impact the overall performance of a
vision system, and the need to run such tasks in real-time, at video frame-rate,
for applications such as Augmented Reality, leads to ongoing research to improve
NNLS solvers.

Standard NLLS solvers such as the Gauss-Newton (GN) [5] or Levenberg-
Marquardt (LM) method [6,7] evaluate all residuals and their Jacobians (first
derivatives of the residual function) at every iteration. Analogous to large-scale
machine learning, utilizing all the data available to a problem can therefore sub-
stantially and unnecessarily slow down the optimization process. No improve-
ments in solver efficiency have seen widespread adoption for model fitting, to
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address this problem. In practice, systems are engineered to pre-select a sparse
set of data to avoid it, requiring some tuning on the part of the implementer to
ensure that enough data is included for robustness and accuracy, while not too
much is included, to keep computation time within budget. These design deci-
sions, made at “compile time”, do not then adapt to the unknown and variable
circumstances encountered at run time.

Inspired by the stochastic methods used to accelerate large-scale optimiza-
tion problems in machine learning, we introduce a stochastic NLLS optimizer
that significantly reduces both computation time and the previously linear re-
lationship between number of residuals and computation time, at no cost to
accuracy. Our method has the following novel features:

– A stochastic, variable batch size approach for non-linear least squares that
can be easily integrated into existing NLLS solvers for model fitting appli-
cations.

– A statistical test to determine the acceptance of an update step computed
from a batch, without evaluating all residuals, that also progressively in-
creases the batch size.

– Guaranteed convergence to a local minimum of the original problem, since
all residuals are automatically included in the final iterations.

By adjusting the batch size at run time, according to a reasoned, statistical test,
our algorithm is able to invest more computational resources when required, and
less when not. This avoids the need to tightly tune the number of residuals at
compile time, and can therefore lead to more accurate performance as a result.

We evaluate our method on a number of two-view geometry problems involv-
ing geometric and photometric residuals, such as essential matrix estimation and
homography fitting, with promising results3. In particular, we empirically show
that our new approach has much faster convergence rates compared to conven-
tional approaches.

2 Related Work

2.1 Non-linear least squares

Fully second-order optimizers, such as NLLS methods, benefit from both the
automatic choice of the step size and from modelling the dependency between
variables, which results in faster convergence (rates) than first order and even
quasi-Newton methods. Gauss replaced the Hessian of Newton’s method with
an approximation for least squares costs in 1809, creating the original NLLS
solver, the Gauss-Newton method [5]. Since the Gauss-Newton method does
not guarantee convergence, the Levenberg-Marquardt algorithm [6,7] extends
Gauss-Newton with back-tracking (i.e. conditional acceptance of new iterates)
and diagonal damping of the (approximate) Hessian. More recently, a further
modification of the Gauss-Newton method, variable projection (VarPro [8,9,10]),

3 Our source code is available at https://github.com/intellhave/ProBLM

https://github.com/intellhave/ProBLM
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has been proposed for a particular class of separable problems, resulting in wider
convergence basins to reach a global solution.

Since many model fitting tasks are solved using NLLS, several acceleration
techniques have been developed to address problems of scale and real-time oper-
ation. However, these techniques are not generic, but instead exploit task specific
properties. For example, certain image alignment tasks have been accelerated by
the inverse compositional algorithm [3], which computes Jacobians once only, in
the reference frame, or by learning a hyperplane approximation to the pseudo-
inverse [11]. Truncated and inexact Newton methods [5] typically use iterative
solvers such as conjugate gradients (CG) to approximately solve the linear sys-
tem. These can converge in less time on larger scale problems, such as bun-
dle adjustment (BA), especially when efficient, BA specific preconditioners are
used [12]. In a framework such as RANSAC [13], convergence for each subprob-
lem is not required so significant speedups are available by allowing a reduced
probability of convergence [14].

Huge gains in efficiency are available if the problem exhibits a conditional
independence structure. Bundle adjustment and related bipartite problem in-
stances use techniques such as the Schur complement [4] (or more generally
column reordering [15]) to reduce the size of the linear system to be solved in
each iteration. Other linear systems have linear time solvers: Kalman smooth-
ing [16] is a special case of using belief propagation [17] to solve linear least
squares and such techniques can be applied to non-linear, robust least squares
over tree structures [18].

2.2 Stochastic methods

Stochastic first order methods [19,20], which are now common for large-scale
optimization in machine learning, compute approximate (first order) gradients
using subsets of the total cost, called batches, thereby significantly accelerating
optimization. The randomness of the method (and the intermediate solutions)
requires certain provisions in order to obtain guarantees on convergence. Due
to their stochastic nature these methods empirically return solutions located in
“wide” valleys [21,22].

In addition to first-order methods stochastic second-order one have also been
investigated (e.g. [23,24,25,26]). One main motivation to research stochastic
second-order methods is to overcome some shortcomings of stochastic first-order
methods such as step size selection by introducing curvature (2nd-order) infor-
mation of the objective. Due to the scale of problems tackled, many of these
proposed algorithms are based on the L-BFGS method [27,28], which combines
line search with low-rank approximations for the Hessian. The main technical
difference between stochastic first-order and second-order methods is that the
update direction in stochastic gradient methods is an unbiased estimate of the
true descent direction, which is generally not the case for stochastic second-order
updates. Convergence of stochastic methods relies on controlling the variance of
the iterates, and consequently requires e.g. diminishing step sizes in stochastic
first order methods [19,29] or e.g. shrinking trust region radii [26] for a second
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order method. Without diminishing variances of the iterates, it is only possible
to return approximate solutions [30]. Hence, using a proper stochastic method
to minimize an NNLS instance over a finite number of residuals will never fully
benefit from the fast convergence rates of 2nd order methods.

A number of recent proposals for stochastic methods use batches with an
adaptive (or dynamically adjusted) batch size. This is in particular of interest
in the second-order setting, since increasing the batch is one option to control
the variance of the iterates (another option being reducing the step size). [31]
and [32] propose schemes to adjust the batch size dynamically, which mostly
address the first-order setup. Bollapragada et al. [24] propose a randomized
qausi-Newton method, that is designed to have similar benefits as the stochastic
gradient method. The method uses progressively larger sets of residuals, and the
determination of the sample size is strongly linked with the underlying L-BFGS
algorithm. A trust region method with adaptive batch size is described in [33],
where the decision to accept a new iterate is based on the full objective (over
all residuals), rather than the batch subset, limiting the benefits of this method.
Similarly, [34] and [35] propose stochastic second-order methods that build on
stochastic approximations of the Hessian but require computation of the full
gradient (which was later relaxed in [36]).

The stochastic approaches above target optimizations with a large number
of model parameters, which each depend on a large number of residuals. The
scale of such problems does usually not permit the direct application of standard
NLLS solvers. In many model fitting problems in computer vision, the number
of variables appearing in the (Schur-complement reduced) linear system is small,
making NLLS a feasible option. L-BFGS [37] (and any quasi-Newton method)
has a disadvantage compared to Gauss-Newton derivatives for NNLS problem
instances, since the NNLS objective is near quadratic when close to a local
minimum. Thus, L-BFGS is not favoured in these applications, due to its slower
convergence rate than NLLS (which is also empirically verified in Section 5). We
note that the progressive batching of residuals introduced in this work can in
principle also be applied to any local optimization method that utilizes back-
tracking to conditionally accept new iterates.

3 Background

3.1 Problem Formulation

Our work tackles the following NLLS problem:

min
θ

∑N

i=1
fi(θ), where fi(θ) = ‖ri(θ)‖

2
2 (1)

where θ ∈ R
d is the vector containing the desired parameters, N specifies the

number of available measurements (residuals), and ri : R
d 7→ R

p is the function
that computes the residual vector (of length p) of the i-th measurement.
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It is worth noting that, while we start by introducing the standard NLLS
formulation as per (1), our proposed method is directly applicable to robust pa-
rameter estimation problems through the use of methods such as Iteratively
Reweighted Least Squares (IRLS) [38], since each step of IRLS can be re-
formulated as a special instance of (1). More specifically, with the use of a
robust kernel ψ to penalize outlying residuals, the robust parameter estimation
is defined as,

min
θ

∑N

i=1
gi(θ), where gi(θ) = ψ(‖ri(θ)‖). (2)

3.2 Levenberg-Marquardt Method

While our progressive batching approach is applicable to any second-order al-
gorithm, here we employ Levenberg-Marquardt (LM) as the reference solver, as
it is the most widely used method in a number of computer vision problems. In
this section we briefly review LM and introduce some notations which are also
later used throughout the paper.

At the t-th iteration, denote the current solution as θ
(t) and {ri(θ

(t))}Ni=1

as the set of residual vectors for all measurements. The LM algorithm involves

computing the set of Jacobians matrices {J
(t)
i ∈ R

p×d}, where, using r
(t)
i as

shorthand for ri(θ
(t)),

J
(t)
i =

[

∂r
(t)
i

∂θ
(t)
1

∂r
(t)
i

∂θ
(t)
2

. . .
∂r

(t)
i

∂θ
(t)
d

]

. (3)

Based on the computed Jacobian matrices and the residual vectors, the gradient
vector g(t) and approximate Hessian matrix H(t) are defined as follows:

g(t) :=
∑N

i=1
(J

(t)
i )T r

(t)
i , H(t) :=

∑N

i=1
(J

(t)
i )TJ

(t)
i , (4)

where (.)T denotes the matrix transpose operation. Given g(t) and H(t), LM
computes the step ∆θ by solving

∆θ
(t) ← −(H(t) + λI)−1g(t), (5)

where λ is the damping parameter that is modified after each iteration depending
on the outcome of the iteration. In particular, if the computed step leads to a
reduction in the objective function, i.e., f(θ(t) + ∆θ

(t)) < f(θ(t)), the step is
accepted and θ is updated by setting θ

t+1 ← θ
t +∆θ, while the damping λ is

decreased by some factor. On the other hand, if f(θ(t) +∆θ
(t)) ≥ f(θ(t)), ∆θ

(t)

is rejected, λ is increased accordingly and (5) is recomputed; this is repeated
until the cost is reduced.

4 Proposed Algorithm

In this section, we describe our proposed algorithm that is computationally
cheaper than conventional second-order approaches. The main idea behind our
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algorithm is that, instead of computing the Jacobians of all residuals (as de-
scribed in Sec. 3.2), we utilize only a small fraction of measurements to approx-
imate the gradient and Hessian, from which the update step is computed.

Let S(t) ⊆ {1 . . . N} denote the subset of residual indices that are used at
the t-th iteration (note that the set of subsampled indices can remain the same
throughout many iterations, i.e., St0 = · · · = St(t0 ≤ t)). For the ease of nota-
tion, we use S to specify the subset being used at the current iteration. Given
a subset S, analogous to (4), we use the notation gS and HS to denote the ap-
proximate gradient and Hessian obtained by only using residuals in the subset
S(t), i.e.

g
(t)
S

:=
∑

i∈S(t)
J
(t)
i r

(t)
i H

(t)
S

:=
∑

i∈S(t)
(J

(t)
i )TJ

(t)
i . (6)

We also define the subset cost f
(t)
S as f

(t)
S

:=
∑

i∈S fi(θ). Similar to (5), the

approximate update step is denoted by ∆θ̂S(t) , and is computed by

∆θ
(t)
S ← −(H

(t)
S + λI)−1g

(t)
S . (7)

Note that depending on the characteristic of S(t), g
(t)
S and H

(t)
S can be very

far from the true g(t) and H(t), respectively. As a consequence, the update step

∆θ
(t)
S computed from (7), despite resulting in a reduction in f

(t)
S , may lead to an

increase in the original cost f (t). However, as the number of measurements can be
very large, computing the whole set of residuals at each iteration to determine the
acceptance of ∆θS(t) is still very costly. Hence, we employ statistical approaches.

Specifically, we only accept ∆θ
(t)
S if, with a probability not less than 1 − δ

(0 < δ < 1), a reduction in f
(t)
S also leads to a reduction in the true cost f (t).

More details are discussed in the following sections.

4.1 A Probabilistic Test of Sufficient Reduction

We now introduce a method to quickly determine if an update step ∆θ
(t)
S ob-

tained from (7) also leads to a sufficient reduction in the original cost with a

high probability. To begin, let us define θ
(t+1) := θ

(t) +∆θ
(t)
S , and denote by

Xi = fi(θ
(t+1))− fi(θ

(t)) (8)

the change of the i-th residual. We convert Xi to a random variable by drawing
the index i from a uniform distribution over {1, . . . , N}. Taking K random in-
dices (which form the subset S) yields the random variables (Y1, . . . , YK), where

Yk = Xik ik ∼ U{1, . . . , N}. (9)

We can observe that the expectation

E[Yk] = f(θ(t+1))− f(θ(t)) =
∑

i

(

fi(θ
(t+1))− fi(θ

(t))
)

, (10)



Progressive Batching for Efficient Non-linear Least Squares 7

represents the total change of the true objective, and at each iteration we are
interested in finding θ

(t+1) such that E[Yk] < 0. To obtain a lower bound for
the random variables (which will be useful for the test introduced later), we can
clamp Yk to a one-sided range [a,∞) by introducing Zk := max(a, Yk). It can
be noted that E[Yk] ≤ E[Zk] and therefore P (E[Yk] ≥ 0) ≤ P (E[Zk] ≥ 0), hence
we can safely use E[Zk] as a proxy to evaluate E[Yk].

We introduce SK :=
∑K

k=1 Zk, representing (an upper bound to) the observed

reduction, i.e. SK ≥ fS(θ
(t+1))− fS(θ

(t)). Recall that, during optimization, SK

is the only information available to the algorithm, while our real information
of interest is the expectation E[Zk]. Therefore, it is necessary to establish the
relation between E[Zk] and SK . Assume that SK < 0 (i.e., the update step leads
to a reduction in the observed cost), given a probability 0 < δ < 1, and a scalar
0 ≤ α < 1, we are interested in the following criterion,

P (E[SK ] ≤ αSK) ≥ 1− δ, (11)

indicating whether the true cost is also reduced by at least a fraction α of the
observed reduction SK with probability 1−δ. Using Hoeffding’s inequality [39]4,
we obtain

P (E[SK ] ≥ αSK) = P (SK − E[SK ] ≤ (1− α)SK) ≤ exp
(

−
2(1−α)2S2

K

K(b−a)2

)

, (12)

where b ∈ R is the upper bound of the random variables Zk (Zk ≤ b ∀k). While
the lower bound a can be freely chosen, computing b is often more involved in
practice (we will discuss several options to choose b in the following section).5

In order for (11) to hold, we require the r.h.s. of (12) to be upper-bounded

by a user-specified confidence level δ ∈ (0, 1), i.e., exp
(

−
2(1−α)2S2

K

K(b−a)2

)

≤ δ, which

leads to the condition

SK ≤ −
b− a

1− α
·

√

−K log δ

2

(

≤ 0
)

. (13)

Thus, if the condition (13) is satisfied, we can confidently accept the step com-
puted from the subset S. More specifically, based on SK , the following steps are
applied for the LM iterations on the subset:

1. SK ≥ 0: increase λ (e.g. λ← 10λ), since the LM step was not successful for
even the optimized function (the subsample version of the true objective).

2. SK ≤ 0 but Eq. (13) is not satisfied: increase the sample set toK+, λ remains
unchanged.

3. SK ≤ 0 but Eq. (13) is satisfied: decrease λ (e.g. λ← λ/10)

4 Hoeffding’s inequality is one of the main tools in statistical learning theory, but has
seem limited use in computer vision so far (e.g. [40]).

5 Note that these bounds may depend on the current iteration, hence a and b should
be understood as a(t) and b(t).
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Note that Hoeffding’s inequality also holds for sample sets without replace-
ment. This means that indices ik can be unique and obtained by random shuffling
the residuals at the beginning of the algorithm. Let π be a random permuta-
tion of {1, . . . , N}. Then SK is given by SK = {π(k) : k = 1, . . . ,K}. Thus, it
is not necessary to draw batches at every iteration, which drastically reduces
the variance of the iterates θ

(t). Further, using slightly more general versions
of Hoeffding’s inequality allows residual specific upper and lower bounds [ai, bi],
which can be useful especially when residuals can be grouped (e.g. into groups
for the data terms and for a regularizer).

4.2 Bounding the change of residuals

Lower bound a Observe that, both the l.h.s. and r.h.s. of the criterion (13)
depend on the lower bound a. Due to the fact that E[Yk] ≤ E[Zk], the condi-
tion (13) is valid for any choices of a < 0. One fast option to search for a is to
successively select the observed reductions Yk as values for a, and test whether
the condition (13) is satisfied for any of them.

Upper bound b While choosing the upper bound b used in (13) is generally
hard, in practice it can be approximated using several options:

1. Each fi has range [0, f̄ ]. This is the case e.g. when all ri are continuous and
the domain for θ is compact. It is also the case when fi are robustified, i.e.
fi(θ) = ψ(‖ri(θ)‖), where ψ : R≥0 → [0, 1] is a robust kernel (such as the
Geman-McClure or the Welsch kernels). If the upper bound f̄ for each fi is
known, then b in Eq. (13) is given by b = ȳ (since the worst case increase of
a term fi is from 0 to ȳ).

2. Each fi is Lipschitz continuous with constant Lf . In this case we have |fi(θ)−

fi(θ
′)| ≤ Lf‖θ − θ

′‖, in particular for θ = θ
(t) and θ = θ

(t+1). This implies

that |fi(θ
(t+1)) − fi(θ

(t))| ≤ Lf‖θ
(t+1) − θ

(t)‖ for all i, and b in Eq. (13)

is therefore given by b = Lf‖θ
(t+1) − θ

(t)‖. This computation of b can be
extended straightforwardly if all fi are Hölder continuous.

In our experiments, we test our algorithm on both robustified and non-robustified
problems. In order to approximate Lf for non-robustified cases, we propose to
use the maximum change in sampled residuals, i.e.,

Lf = max
i∈S

|fi(θ
(t+1))− fi(θ

(t))|

‖θ(t+1) − θ
(t)‖

. (14)

4.3 Determining New Sample Sizes

At any iteration, when the condition (13) fails, the sample size K is increased
to K+ > K, and the algorithm continues with an extended subset S+ with
|S+| = K+. In this work, we approximate K+ as follows: we use the estimate
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ŜK+ = K+SK/K for SK+ and choose K+ such that the condition Eq. (13) is
satisfied for our estimate ŜK+ . After simplification we obtain

K+ = −
K2(b− a)2 log δ

2S2
K(1− α)2

. (15)

If we introduce δ̃ := exp(2S2
K/(K(b − a)2)) as the confidence level such that

P (E[SK ] ≥ 0) ≤ δ̃ under the observed value SK , then K+ can be stated as
K+ = K log δ

log δ̃
. If K+ > N , then the new batch size is at most N . In summary,

K+ is given by

K+ = min

{

N,

⌈

−
K2(b− a)2 log δ

2S2
K(1− α)2

⌉}

. (16)

4.4 Relaxing the Condition (13)

If TS iterations of LM steps on subsampled residuals are applied, then the proba-
bility that all of these iterations led to a decrease of the full objective is given by
(1−δ)TS . Asking for all steps to be true descent steps can be very restrictive, and
makes the condition (13) unnecessarily strict.6 In practice one is interested that
(i) most iterations (but not necessarily all) lead to a descent of the true objective,
and that (ii) the true objective is reduced at the end of the algorithm (or for a
number of iterations) with very high probability. Let t0 and t be two iterations
counters t0 < t such that the sample sets are constant, S(t0) = . . . = S(t). Let
TS = t− t0 + 1 be the number of successful LM iterations, that use the current
sample set S(t), and introduce the total observed reduction of the sampled cost
after T (successful) iterations,

U
(t0,t)
K :=

∑t

r=t0
S
(r)
K , (17)

and recall that SK = U
(t0,t0)
K . Let the current iteration be a successful step

(leading to a reduction of the sampled objective f
S

(t)
K

). With the introduction of

Uk, following the same reasoning as introduced in Sec. 4.1, our relaxed criterion
reads:

U
(t0,t)
K ≤ −

1− α

b− a

√

−K log δ

2
(18)

If the above criterion (with α ∈ (0, 1)) is not satisfied, then with probability
η ∈ [0, 1) the step is temporarily accepted (and λ reduced). With probability
1− η the step is rejected and the sample size is increased. The rationale is that
allowing further iterations with the current sample set may significantly reduce
the objective value. If the condition (18) is never satisfied for the current sample
set S(t0), then the expected number of “wasted” iterations is 1/(1 − η) (using
the properties of the geometric series).

6 If we allow a “failure” probability η0 for only increasing steps, then δ is given by
δ = 1− TS

√

(1− η0). E.g., setting TS = 100 and η0 = 10−4 yields δ ≈ 10−6.
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Algorithm 1 Stochastic Levenberg-Marquardt

Require: Initial solution θ
(0), initial batch size K0, maximum iterations max iter

Require: Confidence level δ ∈ (0, 1), margin parameter α ∈ [0, 1)
1: Randomly shuffle the residuals {fi} and initialize t← 0, K ← K0

2: while t < max iter and a convergence criterion is not met do
3: S(t) ← {1, . . . ,K}
4: Compute g

S(t) and H
S(t)

g
S(t) :=

∑

i∈S(t)
J
(t)
i

r
(t)
i

H
S(t) :=

∑

i∈S(t)
(J

(t)
i

)TJ
(t)
i

. (19)

and solve

∆θ
(t) ← (H

S(t) + λI)−1
g
S(t) θ

(t+1) ← θ
(t) +∆θ

(t) (20)

5: Determine current lower and upper bounds a and b, and set

SK ←
∑

i∈S(t)
max

{

a,
(

fi(θ
(t+1))− fi(θ

(t))
)}

. (21)

6: if SK ≥ 0 then

7: θ
(t+1) ← θ

(t) and λ← 10λ ⊲ Failure step
8: else if SK satisfies Eq. (13) then
9: λ← λ/10 ⊲ Success step
10: else

11: θ
(t+1) ← θ

(t) and increase K using Eq. (16)
12: end if

13: t← t+ 1
14: end while

15: return θ
(t)

4.5 The complete algorithm

We illustrate the complete method in Alg. 1, which essentially follows a standard
implementation of the Levenberg-Marquardt method. One noteworthy difference
is that the implementation distinguishes between three scenarios depending on
the reduction gain SK (failure step, success step and insufficient step). For clarity
we describe the basic (non-relaxed) variant of the method, and refer to the sup-
plementary material for the implementation based on the relaxed test (Eq. (18)
and the details of estimating the lower bound a. In the experiments we refer to
our algorithm using the acronym ProBLM (Progressive Batching LM).

4.6 Convergence

When max iter→∞, then the convergence properties of the algorithm are the
same as for the regular Levenberg-Marquardt method: if a sample set S(t) re-
mains constant for a number of iterations, the method eventually approaches
a stationary point of fS(t) leading to diminishing reductions SK . Consequently,
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Eq. (13) will not hold after a finite number of iterations, and the batch size
strictly increases until K+ = N is reached.

5 Experiments

We choose dense image alignment (with homography model and photometric
errors), and essential matrix estimation (with geometric errors) to evaluate the
performance our proposed algorithm. Experiments for bundle adjustment can be
found in the supplementary. The image pairs used throughout our experiments
are obtained from a variety of publicly available datasets, including the ETH3D,7

EPFL Multi-view stereo8 and AdelaideMRF9 dataset [41]. In this section, we
focus on presenting representative results that highlight the performance of our
approach. More detailed results and studies of parameters are provided in the
supplementary material. Two types of problems are tested in our experiments:

– Standard NLLS (Problem (1)): To test this type of problem, we perform
dense homography estimation with photometric errors, and essential matrix
refinement using sparse key points (outliers are assumed to be rejected by a
pre-processing step, e.g. using RANSAC [13]).

– Problems with robustified residuals: We also investigate the performance of
our approach on model fitting problems with robust kernels (Problem (2)).
The essential matrix estimation on a sparse set of putative correspondences
(containing outliers) is performed, where the outliers are directly discarded
during the optimization process by applying a robust kernel ψ to the residuals
(in contrast to the previous experiments where RANSAC is used to discard
outliers). We choose ψ to be the smooth truncated least squares kernel,

ψ(r) = τ2

4

(

1−max{0, 1− r2/τ2}2
)

(22)

where τ is the inlier threshold. In this case, the upper bound b on the residual
changes that is used in Eq. (13) is 1

4τ
2.

The standard LM algorithm is used as the baseline to assess the performance
of our proposed approach. In addition, we also compared our method against
L-BFGS. All algorithms are implemented in C++ and executed on an Ubuntu
workstation with an AMD Ryzen 2950X CPU and 64GB RAM. We employ the
open-source OpenCV library10 for pre-processing tasks such as SIFT feature
extraction and robust fitting with RANSAC. We set δ to 0.1 and α to 0.9 in
all experiments. The initial sample size (K0) is set to 0.1N (N is the number
of total measurements). All the experiments use the relaxed version as shown in
Eq. (18), where the parameter η is set to 0.5. A comparison between Eq. (13)
and its relaxed version is provided in the supplementary material.

7 https://www.eth3d.net/datasets
8 https://www.epfl.ch/labs/cvlab/data/data-strechamvs/
9 https://tinyurl.com/y9u7zmqg

10 https://github.com/opencv/opencv

https://www.eth3d.net/datasets
https://www.epfl.ch/labs/cvlab/data/data-strechamvs/
https://tinyurl.com/y9u7zmqg
https://github.com/opencv/opencv
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5.1 Dense Image Alignment with Photometric Errors

This problem is chosen to demonstrate the efficiency of our proposed method as
it often requires optimizing over a very large number of residuals (the number of
pixels in the source image). In particular, given two images I1 and I2, the task
is to estimate the parameters θ ∈ R

d that minimize the photometric error,

min
θ

∑

x∈I1
‖I1(x)− I2(π(x,θ))‖

2, (23)

where x represents the pixel coordinates, and π(x,θ) is the transform operation
of a pixel x w.r.t. the parameters θ. In this experiment π is chosen to be the
homography transformation, thus θ ∈ R

8 (as the last element of the homography
matrix can be set to 1). When linearizing the residual we utilize the combined
forward and backward compositional approach [42] (which averages the gradient
contribution from I1 and I2), since this is more stable in practice and therefore
a more realistic scenario.

We select six image pairs from the datasets (introduced above) to test our
method (results for more image pairs can be found in the supplementary mate-
rials). Fig. 1 shows the optimization progress for the chosen image pairs, where
we plot the evolution of the objectives vs. the run times for our method and
conventional LM. We also compare the results against L-BFGS, where it can
clearly be observed that L-BFGS performs poorly for this particular problem
(note that for image pairs where L-BFGS does not provide reasonable solutions,
we remove their results from the plots).

As can be observed from Fig. 1, ProBLM achieves much faster convergence
rates compared to LM. Moreover, Fig. 1 also empirically shows that our pro-
posed method always converges to the same solutions as LM, thanks to our
efficient progressive batching mechanism. Due to the non-linearity of the under-
lying problem this is somewhat surprising, since the methods will follow different
trajectories in parameter space.

5.2 Essential Matrix Estimation with Squared Residuals

High-resolution image pairs from the “facade” sequence extracted from the
ETH3D dataset are used in this experiment. For each image, we extract SIFT
key points, and use nearest neighbor search to get approximately 5000 putative
correspondences per image pair. The key points are normalized using the corre-
sponding intrinsic matrices provided with the dataset. To obtain an outlier-free
correspondence set, we run 100 RANSAC iterations on the putative matches
to obtain around 2000 inliers per image pair, which are then fed into the non-
linear least squares solvers for refinement. The objective of interest is the total
Sampson error induced by all residuals, and we use the parameterisation of [14].

We first evaluate the performance of the algorithms on a single pair of images
with different random starting points. Fig. 2a shows the objectives versus run
time for a single pair of image on 20 runs, where at the beginning of each run,
a random essential matrix is generated and used as starting solution for all
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Fig. 1: Plots of objective vs. time for our method in comparison with LM and L-
BFGS on dense image alignment. The image pairs used are (from left to right, top
to bottom): Head, Hartley Building, Union House, Old Classics Wing, Johnson,
and Napier Building.

methods. Similar to the case of dense image alignment shown in Fig. 1, ProBLM
demonstrates superior performance throughout all the runs.

The experiment is repeated for 50 different pairs of images. For each pair, we
execute 100 different runs and record their progresses within a run time budget
of 10ms. The results are summarized in Fig. 3a, where we use performance
profiles [43] to visualize the overall performance. For each image pair, we record
the minimum objective f∗ obtained across 100 runs, then measure the percentage
of runs (denoted by ρ) that achieves the cost of ≤ τf∗ (τ ≥ 1) at termination.
Fig. 3a shows the results. Observe that within a time budget of 10ms, a large
fraction of ProBLM runs achieve the best solutions, while most LM runs take
much longer time to converge. This shows that our method is of great interest
for real-time applications.

5.3 Robust Essential Matrix Fitting

As introduced earlier, our method is directly applicable to model fitting prob-
lems with robust kernels. To demonstrate this, we repeat the essential matrix
fitting problem as discussed in the previous section, but we use the set of 5000
putative correspondences as input. To enforce robustness, we apply the smooth
truncated least squares kernel shown in Eq. (22). Graduated Non-convexity [44]
with 5 graduated levels is employed as the optimization framework. At each
level (outer loop), our method is used to replace LM and the problem is op-
timized until convergence before switching to the next level. We compare this
traditional approach where LM is used in the nested loop. Fig. 2b and 3b show



14 H. Le et al.

(a) Essential Matrix Estimation (b) Robust Essential Matrix

Fig. 2: Objectives vs run-time for 20 runs with random initializations for non-
robust (left) and robust essential matrix essential matrix estimation (right).

(a) Essential Matrix Estimation (b) Robust Essential Matrix

Fig. 3: Performance profiles for (left): essential matrix estimation with run time
budget set to 10ms, and (right): robust essential matrix estimation with run
time budget set to 200 ms.

the evolution and performance profile (with the time budget of 200ms) for this
experiment. Similar to the case of clean data, our proposed method outperforms
traditional LM by a large margin. A comparison with RANSAC can be found in
the supplementary material, where we demonstrate that by applying ProBLM,
one achieves comparable solutions to RANSAC within the same amount of run
time, which further strengthens the applicability of our method for a wide range
of vision problems.

6 Conclusion

We propose to accelerate the Levenberg-Marquardt method by utilizing sub-
sampled estimates for the gradient and approximate Hessian information, and
by dynamically adjusting the sample size depending on the current progress. Our
proposed method has a straightforward convergence guarantee, and we demon-
strate superior performance in model fitting tasks relevant in computer vision.

One topic for future research is to investigate in advanced algorithms ad-
dressing large-scale and robustified non-linear least-squares problems in order to
improve the run-time performance and the quality of the returned solution.
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