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Abstract. In recent years, tracking-by-detection has become the most
popular multi-object tracking (MOT) method, and deep convolutional
neural networks (CNNs)-based appearance features have been success-
fully applied to enhance the performance of candidate association. Sev-
eral MOT methods adopt single-object tracking (SOT) and handcrafted
rules to deal with incomplete detection, resulting in numerous false pos-
itives (FPs) and false negatives (FNs). However, a separately trained
SOT network is not directly adaptable because domains can differ, and
handcrafted rules contain a considerable number of hyperparameters,
thus making it difficult to optimize the MOT method. To address this
issue, we propose a versatile affinity network (VAN) that can perform the
entire MOT process in a single network including target specific SOT to
handle incomplete detection issues, affinity computation between target
and candidates, and decision of tracking termination. We train the VAN
in an end-to-end manner by using event-aware learning that is designed
to reduce the potential error caused by FNs, FPs, and identity switching.
The proposed VAN significantly reduces the number of hyperparameters
and handcrafted rules required for the MOT framework and success-
fully improves the MOT performance. We implement the VAN using
two baselines with different candidate refinement methods to demon-
strate the effects of the proposed VAN. We also conduct extensive ex-
periments including ablation studies on three public benchmark datasets:
2D MOT2015, MOT2016, and MOT2017. The results indicate that the
proposed method successfully improves the object tracking performance
compared with that of baseline methods, and outperforms recent state-
of-the-art MOT methods in terms of several tracking metrics including
MOT accuracy (MOTA), identity F1 score (IDF1), percentage of mostly
tracked targets (MT), and FP.

Keywords: Multi-Object Tracking, Multiple-Target Tracking, Visual
Object Tracking, Target Association, Similarity Learning

1 Introduction

Multi-object tracking (MOT) is a core problem in computer vision and appears
in various fields, such as video surveillance, humancomputer interaction, and au-
tonomous driving. In recent years, tracking-by-detection has become the most
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popular MOT method. This method associates external detection results with
targets to construct object trajectories [1–6]. The main operation in tracking-
by-detection is the computation of affinity scores between targets and detection
candidates. Many researchers have attempted to utilize various types of infor-
mation to compute the affinity, such as appearance features, motion features,
and location features. Deep convolutional neural networks (CNNs) have been
successfully applied to MOT methods to significantly improve the extraction
of useful features for candidate associations to mitigate the identity-switching
problem. CNNs for MOT are designed to identify targets in place of handcrafted
similarity measures for computing the similarity between targets and candidates
[7–10]. However, despite the benefits of CNNs, MOT methods still suffer from
incomplete detection, leading to numerous false positives (FPs) and false nega-
tives (FNs) that can even make it impossible to associate targets with candidates.
One potential solution to this problem is to include supplementary candidates
for incomplete detection. Several MOT methods generate additional candidates
to complement missing candidates by predicting potential locations using motion
models and independent single-object tracking (SOT) [11–13, 10, 14].

However, utilizing SOT for MOT prediction involves two problems. First,
the integration of SOT is not straightforward because scores generated from
SOT are not compatible with the affinity values between targets and candi-
dates. Therefore, the integration of SOT requires additional handcrafted rules
and hyperparameters that are difficult to be optimized. Additionally, a separately
trained SOT does not guarantee optimal MOT accuracy because SOT is primar-
ily designed to discriminate between targets and their surrounding backgrounds,
leading to drift issues relative to other targets. Second, the additional candidate
may cause another FPs if it is not carefully generated. SOT can worsen this FP
problem if the target is initialized with the FP candidate and is not terminated
immediately. In this case, SOT continuously tracks the FP, thereby increasing
the FP until the tracking is terminated with a certain rule; this phenomenon is
called ghost tracking.

To address these issues, we propose a versatile affinity network (VAN) that
can perform the entire MOT process in a single network including target-specific
SOT to handle incomplete detection, affinity computation between target candi-
dates, and decision of tracking termination. This process is performed by making
the SOT prediction scores compatible with the affinity values between targets
and candidates. We trained the VAN in an end-to-end manner by using event-
aware learning that is designed to reduce the potential error caused by FNs,
FPs, and tracking termination. The proposed VAN significantly reduced the ef-
fort required to tune hyperparameters and did not require handcrafted rules for
integrating the SOT and decision of tracking termination. The overall process
of proposed method is illustrated in Fig. 1.

We performed extensive experiments to validate the effectiveness of the pro-
posed method by using three public benchmark datasets: 2DMOT2015, MOT2016,
and MOT2017 [15]. The proposed method outperformed existing state-of-the-
art online MOT methods in terms of various metrics including MOT accuracy
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Fig. 1. Overview of a tracking method based on the proposed VAN.

(MOTA), identity F1 score (IDF1), percentage of mostly tracked targets (MT),
and FNs. Additionally, we performed experiments to conduct ablation studies
on a validation set by comparing a baseline method to variants of the proposed
method to clarify how the proposed VAN improves tracking performance.

The main contributions of this study are as follows.

– We propose a novel VAN that is designed to perform the entire MOT pro-
cess including SOT, affinity computation used to associate candidates, and
decision of tracking termination.

– We train the VAN in an end-to-end manner by using event-aware learn-
ing that is designed to reduce the potential error caused by FNs, FPs, and
tracking termination.

– We perform extensive experiments to demonstrate and verify that the pro-
posed method improves the tracking performance.

2 Related Work

In recent years, the tracking-by-detection framework has become the most com-
mon MOT method. This framework solves an MOT problem as a detection
association problem [1–6]. The core principle of tracking-by-detection is the as-
sociation method and features used to compute the affinity between targets.
Early MOT methods focused on the association method and used various opti-
mization algorithms to solve the association problem.

Offline trackers can utilize all frame information to determine a trajectory
[16–18]. Therefore, they can use a global optimization method such as network
flow [19–22], the Hungarian method [23, 24], and multiple hypothesis tracking
[25, 26]. Offline trackers typically provide higher performance compared to online
trackers. However, their application is limited because they cannot run in real-
time. In contrast, online trackers can only utilize current and past frames. As
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an association is computed in every frame, linear assignment is frequently used
to associate targets [7, 27, 28, 13]. Compared with offline trackers, online trackers
tend to focus more on the features used to compute the affinity between targets.

In the recent studies on MOT, various features have been proposed to asso-
ciate targets with candidates. These features can be categorized into three types,
i.e., appearance, motion, and location. Affinity is defined using different com-
binations of these three features. [29] uses the location of candidates combined
with neighbor, while other methods, such as [4, 9], combine appearance features
with motion features.

The MOT methods developed in recent years have achieved success by utiliz-
ing deep CNNs, and they are designed to replace the conventional handcrafted
affinity function to calculate the similarity between detection candidates. Certain
methods [12, 8, 10] use deep features to associate candidates and long short-term
memory (LSTM) [30, 29] to enhance discrimination features by utilizing tem-
poral information. Recurrent neural networks (RNNs) are adopted to associate
targets with candidates [9]. Owing to the use of large-scale datasets to re-identify
the targets, CNN features can discriminate targets in various environments, such
as occlusion, scale change, and reappearance. Recently, the authors of [31] adopt
the classification and regression networks from an object detector and propose
the regression-based tracking method that only utilizes object candidates as re-
gion proposals.

Even though deep CNNs successfully associate targets with candidates, the
MOT problem remains difficult to solve owing to incomplete detections, which
cause false alarms and false negatives. Even if an association is perfect, a missing
target cannot be associated with any candidate if there are no suitable candi-
dates. To address this problem, some MOT methods, such as [11, 10, 13, 18, 12],
adopt SOT to overcome missing detection using SOT prediction as a comple-
mentary candidate. [11] uses a correlation-filter-based tracker [32] to achieve high
speeds and utilizes SOT scores in a candidate decision process. CNN feature-
based single object trackers, such as [33], are directly used in [10]. [12, 13] re-
gard all detections as SOT candidates and develop an SOT module inside a
framework. These approaches use a single object tracker to generate additional
candidates, particularly for finding lost targets. However, SOT and MOT are
not fully integrated; thus, the affinity network and single object trackers are
generally trained independently.

Even though single object trackers can reduce false negatives, directly ex-
tending an SOT algorithm to an MOT problem is not straightforward because
the former is mainly designed to discriminate a target from its surrounding back-
ground. In addition, as mentioned in Section 1, an SOT algorithm that exhibits
high performance in an SOT task does not ensure high performance in an MOT
task. Our method uses a VAN to compute the entire affinity scores for both
SOT and MOT association task. This network naturally integrates SOT into an
MOT association task by sharing target affinity, and as a result, the association
becomes intuitive and tracking performance is improved.
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Fig. 2. Differences between methods using SOT: a) method with independent SOT
and affinity networks, and b) proposed method with a versatile affinity network.

3 Proposed Method

3.1 Overview

In every frame, the proposed MOT method takes an image frame, detections, and
target trajectories as inputs. First, detection candidates are refined to filter FP
candidates by using two-class classifiers. The remaining candidates, previously
tracked targets, and corresponding search regions are then passed through the
VAN. In the feature extraction network, detection candidates and tracked targets
with corresponding search regions are processed and CNN features are obtained.
The extracted features can be reused in all tracking processes.

In an affinity network, target features, including initial appearance features
and temporal features, are correlated with search regions and detection can-
didates to compute affinity scores. Based on the affinity score matrix, targets
and candidates including SOT results are associated using an optimization al-
gorithm, new target is initialized, and the target that disappears is terminated.
Fig. 1 shows the overall process of the proposed method.

3.2 Candidate Refinement

False positive candidates are a critical problem in MOT because they generate
continuous false trajectories when they are initialized as new targets, making
association extremely difficult. These false positive candidates can be filtered
by applying an additional classifier, as discussed in [34, 31]. The authors of [34]
adopted the feature extraction portion of a region-based fully convolutional net-
work (R-FCN) detector [35] with SqueezeNet [36] as a backbone network. Their
classifier uses entire image frames for feature extraction and the detection can-
didates in a single frame share a feature map. The feature maps corresponding
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Fig. 3. VAN architecture. The feature extraction network shares layers and the tem-
plate branch consists of different association layers for reflecting temporal features and
anchors. The outputs of SOT branch are an affinity map and regression value map,
whereas the output of the association branch is a single affinity value.

to each detection candidate are classified into two classes: background and ob-
ject. The authors of [31] utilized the classification network of Faster R-CNN [37]
with ResNet-101 [38] as a backbone network. Because the candidate refinement
process can be viewed as part of the detection problem, we separate the perfor-
mance gains from this process and implement our method using two algorithms
as baseline trackers. Our method follows the same candidate refinement method
and models used in [34, 31] to determine the pure contributions of our proposed
VAN. Two baseline methods discussed above are denoted as RFCN and FRCNN
respectively.

In our proposed method, the set of detection candidates in a t-th frame is
denoted as Dt = {dt}, where each detection is denoted as dt =

{

dxt , d
y
t , d

w
t , d

h
t

}

.
The features of an input image frame It are extracted using the backbone net-
work. The classification scores corresponding to each candidate are calculated
by applying ROI pooling with a softmax function in the final layer to filter can-
didates with scores lower than a threshold. Finally, non-maximum suppression
(NMS) is applied based on the classification scores and remaining candidates are
fed into the next step.

3.3 Versatile Affinity Network

In this subsection, we describe the proposed tracking framework based on the
VAN and the overall network architecture. Tracking methods using SOT, such as
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those in [11–13, 18], typically derive predictions from previous frames utilizing
SOT. SOT results are then considered as candidates and affinity calculation
is performed by a different network (Fig. 2a). In this type of framework, the
affinity computed by the SOT network cannot be directly used in the association
step. Even if the calculated affinity is used, an additional cost function must be
employed to make the scores obtained from SOT compatible with the affinity
network. In the proposed method, all candidates share affinity values, regardless
of whether they are detection candidates or candidates from SOT prediction.
SOT prediction results can be directly adopted in the association and target
management step. Therefore, additional hyperparameter tuning and heuristic
rules are not required (see Fig. 2b).

The basic structure of the VAN follows that of the Siamese CNN proposed in
[39]. In our versatile network, SOT uses classification and regression branches,
whereas the affinity task only utilizes a classification branch. At t-th frame, the
network takes an image frame It, a set pf previously tracked target trajectories
from the previous frame S(t−1), and a set of detection candidates Dt as inputs.
The image patches extracted from the target and detection candidate locations
are resized to 127 × 127 pixels, and the search region for SOT is resized to 255 ×
255 pixels. The feature extraction network consists of three convolutional layers
and retains a fully convolutional structure. The feature extraction network of
the Siamese CNN can take any size of input and shares all weights for inputs,
including targets, detections, and search regions. Each tracked target skt inside
set S(t) maintains its corresponding features, ϕ (st), through the tracking phase.
Additionally, each target has its representative temporally concatenated features
ψ (st), which consist of features from initial target location ϕ (s1), intermediate
location ϕ (sm), and very recent location ϕ (st) where the intermediate location
m = [ t+1

2 ]. Initial features are fixed when a target is initialized, and intermediate
features come features from the median frame index between the initial and most
recent frames. Recent features are updated at every frame. Therefore, the k-th
tracking target in frame t is denoted as st =

{

sxt , s
y
t , s

w
t , s

h
t , ϕ (st) , ψ (st)

}

. This
structure can enhance the robustness of target features, to handle occlusion
and appearance changes. The feature extraction network is trained to generate
embedding features suitable for comparing target features to candidate features.
In other words, this network is optimized for computing correct affinity scores
between targets and candidates. The size of the search region is twice that of
each target’s bounding box and the search region is denoted as R. To predict
new locations using SOT from frames t−1 to t, the features of the search regions
corresponding to each tracked target are extracted. Simultaneously, the features
of detection candidates are also extracted. In summary, in the feature extraction
phase, we extract feature set ϕ

(

sk
)

, ϕ
(

Rk
)

and ϕ (dn), where k and n are the
indexes of the targets and detection candidates, respectively.

T

he representative features of a target and corresponding features from the
search region pass through the affinity network to generate an affinity map and
regression results, which are used to predict the next location of each target.
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The features from a target sk and its corresponding search region Rk are fed
through the affinity layer and regression layer. We denote the output of the
affinity layer as φ (·) for the detection and search regions, and φ′ (·) for the
temporally concatenated target template. The correlation operation is denoted
as ⋆. The features φ′

(

ψ
(

sk
))

and φ
(

ϕ
(

Rk
))

are used to calculate an affinity
map Ak as follows:

Ak = φ′
(

ψ
(

sk
))

⋆ φ
(

ϕ
(

Rk
))

. (1)

Among the affinity values, the best value corresponds to the predicted location
for the next frame. This value is used in the association procedure. The regres-
sion value corresponding to the best location is applied to the current bounding
box and the box is refined. The regression value indicates the normalized dis-
tance between the anchors and ground truth in the form of {dx, dy, dw, dh}. The
regression map is calculated as follows:

Ek = ρ′
(

ψ
(

sk
))

⋆ ρ
(

ϕ
(

Rk
))

. (2)

where the regression layers for the target template and the search region are
denoted as ρ′ (·) and ρ (·) respectively.

The detection features, ϕ (dt), pass through the affinity layer with target
features and resulting in a 1 × 1 × 2c vector, where c is the number of anchors.
The affinity between a single target sk and detection dn is calculated as

ank = φ′
(

ψ
(

sk
))

⋆ φ (ϕ (dn)) . (3)

Because the purpose of the affinity network is to compare a target bounding
box to a detection, we apply the softmax function across the channel to generate
normalized affinity values. Among the resulting 1× 1× c affinity values, we only
use the maximum value. The VAN computes the affinity values between all
potential pairs of targets and detection candidates. In this manner, the network
enables a tracker to perform both SOT and MOT associations. The network
architecture and pipeline for this process were illustrated in Fig. 3.

3.4 Event-Aware Training

To train the proposed VAN, we utilized large-scale datasets containing ID infor-
mation corresponding to each target to sample target and candidate pairs. The
network is trained using the combination of classification loss and regression loss
as proposed in [39]. We extracted target-candidate pairs from the YouTube-BB,
ImageNet-VID, 2D MOT2015, and MOT2017 training sets. We randomly se-
lected two frames from video sequences at 0 to 10 frame intervals and extracted
positive samples with IoU > 0.6 and negative samples with IoU < 0.4 to make
the network generalization power relative to the ground truth. Among selected
two frames, target templates for temporally concatenated features are selected
based on the ground truth with random perturbations.

Additionally, to make the network to have ability to discriminate the tar-
get with other candidate, we use event-aware training strategy motivated by



VAN: Versatile Affinity Network 9

a) positive pairs b) negative pairs from 

the different identities

c) negative pairs from 

the terminated target

d) negative pairs from 

the false positive

Fig. 4. Example of strategies to extract sample pairs for event-aware training.

distractor-aware training proposed in [40]. We designed the event-aware training
suitable for MOT task to reduce the potential error caused by FNs, FPs, and
tracking termination. To obtain semantically meaningful samples, we generated
samples by using simulation trackers. The simulation trackers were pretrained
using classical sampling technique. We ran the tracker with detection candi-
dates, and calculated the affinity of whole target-candidate pairs. We decided
the targets and candidates pairs included in a given event situation by using
ground-truth assignments and extract sample pairs for preventing the situation.
The event comprises three categories: false negative, false positive, and tracking
termination. First, we extracted the negative pairs from two targets which has
different identity (Fig. 4b). To extract the hard negative samples (distractors),
we chose the candidate that had highest affinity except the true assignment.
The FP could be reduced by degrading the SOT score if the SOT is initialized
with FP candidate. We extracted the negative pairs from FP target generated
during simulation (Fig. 4d). Also, the termination of track could arise another
FP. Then, we explicitly cropped the negative pairs when the tracking was ter-
minated by occlusion or exiting (Fig. 4c). These samples enabled the VAN to
decide whether the tracking is terminated or not. Finally, the FN could be re-
duced by training the network elaborately using plenty of positive pairs within
same identities (Fig. 4a).

3.5 Candidate Association

We associate targets and candidates by using the affinity values calculated in
the previous section. We do not calculate affinity values for all possible pairs
of targets and candidates because doing so would have been computationally
expensive. We limit the possible change in targets (e.g., location and size). We
calculate the affinity for pairs that satisfy this limitation and assign infinite
negative affinity to other pairs. In this study, we apply different detailed tracking
managements for each baseline methods.

For the RFCN baseline, we predict target locations using SOT and add the
score to the affinity matrix. To prevent the SOT result being matched with other
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target, we assign infinite negative affinity to pairs that have different identity.
Next, we compute the affinities for all potential target-candidate pairs, assign
candidates only to the activated target using the Hungarian algorithm [24]. If
the target is not associated with any candidate, and the SOT score is low, we
deactivate this target. During this process, the SOT can naturally supplement
missing detections without arising ghost tracking. Deactivated targets can asso-
ciated with the remaining detection results for re-activation when these targets
reappear on next frame.

For the FRCNN baseline, all targets are used to predict the next target based
on SOT using the VAN. Targets are deactivated if the SOT score is not sufficient
or the classification score is low. The affinity values for pairs of only deactivated
targets and detection candidates are calculated using the VAN. If there exist
additional matching, and the affinity is sufficiently high, a deactivated target is
reactivated and is updated using the associated candidate location. The VAN is
able to substitute the regression, classification, and reID module of the baseline
tracker.

After all associations are completed, the remaining candidates that have no
associations with any targets and exhibit low affinity value with all targets are
added to the tracker and activated as new targets.

4 Experiments

We conducted several experiments to determine the effectiveness of the pro-
posed VAN on three MOT benchmark datasets: 2D MOT2015, MOT2016, and
MOT2017 [15]. The results of other trackers and the proposed method were
evaluated using the official MOT challenge benchmark score board1.

4.1 Implementation Details

The proposed method was implemented using PyTorch and tested on a worksta-
tion with a 6-core Intel i7@3.60 GHz CPU and NVIDIA Titan Xp GPU. We used
an R-FCN architecture with SqueezeNet as the backbone network for the RFCN
baseline and the Faster R-CNN detector with ResNet-101 as a backbone network
for the FRCNN baseline. We followed the same tracking management strategy
for both baselines, excluding the core tracking steps. The minimum threshold
value for filtering candidates was set to 0.4. The VAN was implemented based
on the Siamese CNNs [39] and the three convolutional layers of AlexNet [41] is
utilized for feature extraction. The VAN was trained using stochastic gradient
descent over 90 epochs with a learning rate of ranging from 10−2 to 10−6. We
generated training pairs from the YouTube-BB, ImageNet-VID, 2D MOT2015,
and MOT2017 training sets with sets of two random frames extracted at in-
tervals between 0 and 10 frames. The target template images were resized to
127 × 127 pixels and the search regions were resized to 255 × 255 pixels. We

1 https://motchallenge.net



VAN: Versatile Affinity Network 11

concatenated the initial features, recent features, and intermediate features of
each targets to reflect the temporal attention of targets. In the initial frames,
the intermediate and recent features were cloned from the initial features. For
both baselines, the classification threshold for target initialization were set to
0.3 and the maximum lost time for termination is set to 30 frames. We limited
the possible change of location as 1/10 of the diagonal length of the frame, and
the possible size change as 1/3 of the previous target size.

4.2 Evaluation on MOT Benchmarks

The proposed method was evaluated on the 2D MOT2015, MOT2016, and
MOT2017 test datasets using on an official website. We adopted the CLEAR
MOT metrics [58] to evaluate the performance of the tracker on the MOT
datasets and compare it with other state-of-the-art trackers. The representa-
tive metric was multiple object tracking accuracy (MOTA), which reflects the
false negatives (FN), false positives (FP), and identity switches (IDS). Other
metrics are also reported, including identity F1 scores (IDF1), percentage of
mostly tracked targets (MT), mostly lost targets (ML). We implement two ver-
sion of trackers corresponding to the baseline approach which are denoted as
VAN(RFCN) and VAN(FRCNN) respectively.

The 2D MOT2015 test dataset consists of 11 video sequences obtained from
various scene with ACF detection results. The tracking performance evaluated
on 2D MOT2015 test dataset are listed in Table 1. Note that in case of [34],
we evaluated the results ourselves because there are no official results on 2D
MOT2015 dataset. The MOT2016 test dataset contains 7 videos that are en-
tirely disjoint with the training set with DPM detection results. The results
obtained for the MOT2016 test dataset are reported in Table 2. The MOT2017
test dataset contains the same video sequences as the MOT2016 dataset, but dif-
ferent detections are provided. This dataset focuses on evaluating trackers based
on various detection results. Three types of detectors are used in this dataset:
DPM, SDP, and Faster-RCNN. The results for the MOT2017 test dataset are
listed in Table 3. We evaluated the proposed tracker using the same network
model and hyperparameters throughout the testing process.

Compared to the baseline methods, the proposed VAN exhibits significant
improvements on every benchmark datasets. The proposed method also achieves
excellent results in terms of MOTA, ML, and FN compared to existing state-
of-the-art MOT methods, even offline methods that can utilize global optimiza-
tion. In particular, our method significantly reduces the FN by integrating SOT
prediction into the association step. The experimental results demonstrate the
excellent performance of the proposed VAN.

We simply extended our method for comparisons with an offline method by
using trajectory interpolation to complement the missing part of the trajectory
by using neighbor frames. This method was denoted as VAN-off; it achieves
higher performance than the online version.
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Table 1. Tracking Performance on the 2D MOT2015 benchmark test set. Best in bold.

Type Method MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓

offline

JPDA m [42] 23.8 33.8 5.0 58.1 6373 40084 365

R1TA [43] 24.3 24.1 5.5 46.6 6644 38582 1271
SCNN [8] 29.0 34.3 8.5 48.4 5160 37798 639

MHT DAM [26] 32.4 45.3 16.0 43.8 9064 32060 435
JMC [44] 35.6 45.1 23.2 39.3 10580 28508 457
VAN-off 47.4 49.5 24.0 26.8 6044 25164 1087

online

SCEA [28] 29.1 37.2 8.9 47.3 6060 36912 604
MDP [13] 30.3 44.7 13.0 38.4 9717 32422 680
AMIR [29] 37.6 46.0 15.8 26.8 7933 29397 1026
AP [7] 38.5 47.1 8.7 37.4 4006 33203 586

KCF [11] 38.9 44.5 16.6 31.6 7321 29501 720
Base (RFCN) [34] 33.1 44.3 9.1 46.2 6806 36226 615
VAN (RFCN) 34.7 45.9 10.5 47.8 6907 32698 540

Base (FRCNN) [31] 44.1 46.7 18.0 26.2 6477 26577 1318
VAN (FRCNN) 46.0 48.3 19.3 28.4 4531 27340 1280

Table 2. Tracking Performance on the MOT2016 benchmark test set. Best in bold.

Type Method MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓

offline

MHT DAM [26] 45.8 46.1 16.2 43.2 6412 91758 590
NOMT [45] 46.4 53.3 18.3 41.4 9753 87565 359

LMP [46] 48.8 51.3 18.2 40.1 6654 86245 481
eTC [47] 49.2 56.1 17.3 40.3 8400 83702 606
HCC [48] 49.3 50.7 17.8 39.9 5333 86795 391
NOTA [49] 49.8 55.3 17.9 37.7 7248 83614 616
VAN-off 57.3 57.5 24.8 33.9 3845 73489 550

online

oICF [50] 43.2 49.3 11.3 48.5 6651 96515 381

STAM [12] 46.0 50.0 14.6 43.6 6895 91117 473
DMAN [10] 46.1 54.8 17.4 42.6 7909 89874 532
AMIR [29] 47.2 46.3 14.0 41.6 2681 92856 774
KCF [11] 48.8 47.2 15.8 38.1 5875 86567 906

Base (RFCN) [34] 47.6 50.9 15.2 38.3 9253 85431 792
VAN (RFCN) 48.9 53.2 15.2 36.2 9987 82427 838

Base (FRCNN) [31] 54.4 52.5 19.0 36.9 3280 79149 682
VAN (FRCNN) 54.6 54.2 19.4 36.2 2307 79895 619
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Table 3. Tracking Performance on the MOT2017 benchmark test set. Best in bold.

Type Method MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓

offline

IoU17 [51] 45.5 39.4 15.7 40.5 19993 281643 5988
EDMT [52] 50.0 51.3 21.6 36.3 32279 247297 2264
TLMHT [53] 50.6 56.5 17.6 43.4 22213 255030 1407

MHT DAM [26] 50.7 47.2 20.8 36.9 22875 252889 2314
JCC [54] 51.2 54.5 20.9 37.0 25937 247822 1802
FWT [55] 51.3 47.6 21.4 35.2 24101 247921 2648
VAN-off 57.4 57.9 26.3 33.7 14316 224064 1788

online

PHD GSDL [56] 48.0 49.6 17.1 35.6 23199 265954 3988
AM ADM [57] 48.1 52.1 13.4 39.7 25061 265495 2214
DMAN [10] 48.2 55.7 19.3 38.3 26218 263608 2194

HAM SADF [57] 48.3 51.1 17.1 41.7 20967 269038 1871

FAMNet [14] 52.0 48.7 19.1 33.4 14138 253616 5318
Base(RFCN) [34] 50.9 52.7 17.5 35.7 24069 250768 2474
VAN (RFCN) 52.0 53.9 20.2 33.4 31275 237004 2817

Base(FRCNN) [31] 53.5 52.3 19.5 36.6 12201 248047 2072
VAN (FRCNN) 55.2 54.2 20.0 35.5 8522 241848 2220

4.3 Ablation Study

We performed additional experiments to conduct ablation studies by using vari-
ous versions of the proposed tracker to determine which modules affect tracking
performance and to verify the effectiveness of the proposed approach. The ex-
periments for the ablation studies were performed on a subset of the MOT2017
training dataset that was not used in training phase because the corresponding
testing dataset did not provide ground truth labels for validation. We evaluated
the SDP sequences of the MOT2017 dataset. We implemented five variants of
each baseline tracker. The baseline tracker follows the existing MOT method
without using SOT. The Base+SOT directly utilizes the SOT [39] and gener-
ates additional candidates for missing targets. Even when using SOT results
without any fine tuning, the tracking performance of the RFCN baseline was
improved. Note that the performance of Base+SOT for FRCNN baseline was
degraded because this baseline uses a well-trained regression network for object
detection, which has better performance than the raw SOT. Next, we trained
the SOT module to improve the discrimination ability for the MOT datasets by
training the networks using extra MOT datasets following the training approach
of [39] while preserving the baseline association method. This approach is de-
noted as Base+TSOT in Table 4. This approach exhibits additional performance
gains compared to the method directly using SOT. To demonstrate the effect
of event-aware training and VAN architecture itself, we trained the proposed
VAN without using event-aware learning strategy. Further, tracking termination
were performed using existing methods. We denote this version as VAN-EA.
This result shows the effectiveness of architecture of VAN itself to perform SOT
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and affinity computation. Finally, we utilized the proposed method. The VAN
reduced the effort required to tune the hyperparameters and could significantly
reduce FN and IDS with help of event-aware learning. These ablation studies
prove that the proposed VAN and event-aware learning is a promising solution
for MOT problems.

Table 4. Ablation study of various tracker versions on the MOT2017 benchmark val-
idation set.

Base Method MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓

RFCN

Base 60.0 61.1 25.6 27.1 1864 42504 605
Base+SOT 61.2 53.9 31.1 23.4 4092 38341 1099
Base+TSOT 62.7 55.9 32.2 23.1 3503 37561 813
VAN-EA 63.6 63.5 31.1 24.7 3057 37225 539

VAN 64.2 63.7 33.5 21.2 3618 35906 685

FRCNN

Base 67.7 68.0 40.4 17.4 803 35055 368
Base+SOT 63.6 62.9 42.3 16.7 4844 33414 2676
Base+TSOT 66.6 66.5 39.0 17.3 1253 35704 520
VAN-EA 68.6 69.2 43.5 17.2 1320 33578 322
VAN 69.1 70.7 44.3 16.6 1671 32656 305

5 Conclusions

We proposed a novel MOT method using a VAN to perform the entire MOT pro-
cess in a single network including SOT, affinity computation, and target manage-
ment. During the tracking process, the results of target-specific SOT prediction
and detection candidates are associated with targets by sharing network weights
and compatible affinity values obtained from a unified network. The proposed
method exhibited remarkable performance on several MOT benchmarks com-
pared to state-of-the-art online MOT methods, making it a promising solution
for MOT problems.
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