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Abstract. Convolutional neural networks (CNNs) have made great break-
through in the field of image super-resolution (SR). However, most cur-
rent methods are usually to improve their performance by simply increas-
ing the depth of their network. Although this strategy can get promising
results, it is inefficient in many real-world scenarios because of the high
computational cost. In this paper, we propose an efficient group feature
fusion residual network (GFFRN) for image super-resolution. In detail,
we design a novel group feature fusion residual block (GFFRB) to group
and fuse the features of the intermediate layers. In this way, GFFRB
can enjoy the merits of the lightweight of the group convolution and
the high-efficiency of the skip connections, thus achieving better perfor-
mance compared with most current residual blocks. Experiments on the
benchmark test sets show that our models are more efficient than most
of the state-of-the-art methods.

1 Introduction

Single image super-resolution (SR) is a classical low-level computer vision prob-
lem that tries to restore a high-resolution (HR) image from a single low-resolution
(LR) image. Since the reconstructed HR image contains rich details, SR tech-
niques have been widely used in the field of image processing such as face au-
thentication, public relations security monitoring and so on [1,2].

SR is an inherent ill-posed problem since a multiplicity of solutions exist
for any given LR image. To solve this problem, numerous SR methods have
been proposed, including interpolation-based methods [3], reconstruction-based
methods [4] and learning-based methods [5, 6]. In recent years, the convolutional
neural network (CNN) based SR methods, with their powerful nonlinear expres-
sion ability, have achieved dramatic success in the field of image SR.

Since Dong et al. [7] firstly proposed a three-layer CNN (SRCNN) for image
SR, a large number of CNN based methods have emerged. The early CNN based
SR methods used shallow networks (less than 10 layers) to learn the mapping
function between LR and HR images, such as FSRCNN [8] and ESPCN [9].
Since He et al. [10] proposed ResNet to solve the convergence problem of deep
networks, the SR methods began to grow in depth to improve the reconstruction
accuracy. Kim et al. [11] utilized global residual learning to build a very deep
network (VDSR, about 20 layers). Lim et al. [12] proposed an Enhanced Deep
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Residual Network (EDSR, about 60 layers), which used a stack of residual blocks
to gradually recover the high frequency details from the LR inputs. Zhang et
al. [13] further proposed a Residual Dense Network (RDN, about 150 layers),
which employed dense connections in the residual block to extract abundant
local features. Zhang et al. [14] proposed a Residual Channel Attention Network
(RCAN). By using residual in residual (RIR) structure, the depth of the network
reached 400 layers.

All the methods introduced above show excellent reconstruction performance
by increasing the depth of their network, however, they all have a huge number
of parameters and computations, which will put a high demand on the hardware
resources. Considering that the SR method may be operated on a mobile device,
the computing and storage resources of them are limited. A huge network will
consume more hardware resources and result in longer inference time, which
will seriously affect the user experience. Another time demanding scenario is
video streaming data SR because it contains a large number of images and a
huge network will affect the real-time performance of video image processing.
Therefore, it is particularly important to design a more efficient and lightweight
network.

2 Related work

2.1 Lightweight Neural Network

Recent studies indicate that Skip connection, Recursive network and Group con-
volution are three widely used strategies in current lightweight SR networks. The
details of them are introduced as follows.

(1) Skip connection. Skip connection can enhance the information flow be-
tween different convolutional layers, thus improving the reconstruction accuracy.
The most representative lightweight methods with this strategy are MemNet [15]
and CARN [16]. MemNet designed a memory module to adaptively retain the
useful information of different residual blocks. CARN employed the cascading
mechanism to fuse the information among different residual blocks, thus build-
ing an efficient cascade residual network. However, the skip connections of these
networks are only conducted between different residual blocks, thus the improve-
ment of reconstruction accuracy is very limited.

(2) Recursive network. Recursive network designs a recursive unit and
makes the data pass the unit repeatedly thus building a more complex map-
ping function. Through parameter sharing between different recursive phases,
this strategy reduces the model parameters effectively. The most representative
recursive networks are DRCN [17], DRRN [18], MemNet [15] and SREBN [19].
Although these methods can achieve good performance with fewer parameters,
they also have some problems: 1) Most of them upsample the LR image before
CNN. 2) These methods usually use very deep networks to compensate for the
performance degradation caused by parameter sharing. Both the two problems
increase the time complexity of the network.
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Fig. 1. The structure of current residual blocks: (a) Residual block, (b) Multi-scale
residual block, (c) Residual dense block. The @ operations are element-wise addition
for residual learning.

(3) Group convolution. Group convolution groups the input feature map-
s and convolves them within each group. This strategy can reduce both the
number of the parameters and the calculations of the model. AlexNet [20] first-
ly proposed the group convolution to solve the scarcity of hardware resources.
MobileNet [21] designed a depthwise separable convolution network for mobile
vision applications. In the field of image super-resolution, CARN-m [16] used this
strategy to design a lightweight SR method for mobile devices. However, simply
using group convolution to replace the traditional convolution will result in the
decrease of the accuracy, so we need to combine it with some other strategies to
build more efficient methods.

2.2 Recent Residual Blocks

To design an efficient network, a good way is to design a more efficient residu-
al block. In recent years, many efficient residual blocks have been proposed to
improve the reconstruction accuracy. Lim et al. [12] proposed a residual block
(RB, as shown in figure 1(a)) by removing the BN operation of SRResNet [22]
and got higher reconstruction accuracy. RB is really concise and effective, but its
utilization of local information is limited. To solve this problem, Zhang et al. [13]
proposed a dense residual block (RDB, as shown in figure 1(c)), which designed
dense skip connections to continuously fuse the features of the current layer with
those features of the previous layers. This structure has powerful nonlinear ca-
pability to fully extract the local information. However, the dense connection
also introduces a large number of parameters and computations, which is not
desirable for lightweight networks. Li et al. [23] proposed a multi-scale residual
block (MSRB, as shown in figure 1(b)), which used convolution kernels of dif-
ferent sizes (3 x 3,5 x 5) to adaptively detect the features in different scales.
However, the 5 x 5 filters do not seem efficient in lightweight models.
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Fig. 2. The structure of the proposed group feature fusion residual network (GFFRN).
The modules marked by the red dotted line represent the removed parts in GFFRN-L.
GFFRN-L has the same structure with WDSR [24].

To solve these problems, in this paper, we propose a Group Feature Fusion
Residual Network (GFFRN) and its lightweight version GFFRN-L. Both the two
models consist of a series of Group Feature Fusion Residual Blocks (GFFRB).
GFFRB is a newly proposed residual block in this paper, which takes advantage
of group convolution and skip connection to fully extract abundant local features.
More details are shown in Section 3.

The main contributions are as follows: (1) We propose a novel group fea-
ture fusion residual block (GFFRB), which combines the advantages of both the
lightweight of the group convolution and the high-efficiency of the skip connec-
tions, thus achieving better performance compared with most current residual
blocks. (2) Based on GFFRB, we propose an efficient two-path group feature fu-
sion residual network (GFFRN), which achieves higher efficiency compared with
most state-of-the-art methods. (3) To further reduce the number of parameters
and computations, we also propose a lightweight network GFFRN-L by reducing
the depth and the width of GFFRN. The proposed GFFRN-L achieves the best
performance among the models that have less than 1M parameters.

3 Proposed Method

In this section, we will introduce the details of the proposed GFFRN, GFFRN-L
and GFFRB respectively. Let’s denote I, p and Igp as the input and output
of GFFRN respectively and both of them have C channels. We also denote
Conw(s,n) as a convolutional layer, where s represents the size of the filters and
n represents the number of the filters.
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3.1 Network Architecture of GFFRIN

We first propose an efficient GFFRN for image SR. As shown in figure 2, GF-
FRN has two paths, e.t. a high-path and a low-path. The high-path of GFFRN
has a powerful nonlinear ability, which uses multiple GFFRBs to restore the
high-frequency information. It mainly consists of three parts: shallow feature
extraction net (SFE-Net), deep feature extraction net (DFE-Net) and finally
the upsampling and reconstruction net (Up&Recon-Net). The low-path has a
relatively weak nonlinear ability, which uses a simple structure to restore the
low-frequency information. The network structure of GFFRN is actually an im-
proved version of WDSR [24]. Compared with WDSR, we mainly make improve-
ments in two aspects. Firstly, we add a bottleneck layer [23,13] in the high-path
to make our network fully utilize the hierarchical features. Secondly, we add a
GFFRB in the low-path to properly enhance its feature extraction ability. Note
that the original WDSR only uses a 5 X 5 convolutional layer in the low-path to
extract the low-frequency information.

In the high-path of GFFRN, the first part is SFE-Net and it uses one convo-
lutional layer, Conwv(3,m), to extract shallow features and expand the number
of channels from C' to m, where m denotes the base channel number of the
intermediate layers. The second part is DFE-Net and this part contains D GF-
FRBs and a bottleneck layer [23,13]. The third part is Up&ReconNet. It con-
sists of Conv(3,C x s?) and a sub-pixel convolutional layer in sequence, where
s = (2,3,4) denotes the upscaling factor. In the low-path of GFFRN, it mainly
consists of a convolutional layer Conv(5,m), a GFFRB and an Up&ReconNet.
The final HR image can be obtained by

Tur = fur(Itr) + frr(ILr), (1)

where fyp(-) and frp(-) denote the operations of the high-path and the low-path
respectively.

Loss function We employ L1 loss to optimize the proposed network. Given a
training set {I% o, I,z } Y ;, which contains N LR images and their corresponding
HR images. We need to minimize the L1 loss function between the reconstructed
image Iy r and the ground truth image Iy . L1 loss function is shown in Eq. 2.

N
1 = i
L©) = NZHIHR_IHRHD (2)
i=1
where © represents the parameters of proposed network.

3.2 Lightweight GFFRN (GFFRN-L)

To further reduce the number of the parameters and computations, we also
propose a lightweight network GFFRN-L (Less than 1M parameters). GFFRN-
L has the same structure with WDSR [24]. Compared with GFFRN, there are
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Fig. 3. The structure of the proposed group feature fusion residual block (GFFRB).

fewer residual blocks and channels. As shown in figure 2, the modules marked by
red dotted line represent the removed components in GFFRN-L. By using these
strategies, the number of parameters in GFFRN-L is reduced by 80% compared
with GFFRN. More model details are shown in Section 4.2.

3.3 Group Feature Fusion Residual Block (GFFRB)

As mentioned above, current residual blocks have some drawbacks that cause
them to be inefficient. Inspired by lightweight networks, we propose a more
efficient group feature fusion residual block (GFFRB). As shown in figure 3, the
GFFRB contains four parts: channel expansion layer, group feature fusion layer,
channel compression layer and local residual learning. Next, we will describe the
four parts in details.

Channel Expansion Layer Wider network allows more information to pass
through [24]. However, simply increasing the width of the network will increase
the computation complexity quadratically. To avoid this problem, we utilize
a relatively small base channel number (m = 64). When the feature enters
GFFRB, we first use an efficient convolutional layer Conv(1,m X e) to expand
the channels from m to m x e, where e denotes the expansion factor. Let Fy_1
and Fy be the input and output of the d-th GFFRB respectively and both of
them have m feature maps. This operation can be formulated as

Fg = fee(Fa-1), (3)

where fop(-) denotes the convolutional layer, Fg denotes the feature maps after
channel expansion.
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Group Feature Fusion Layer To further control the computations, inspired
by group convolution, we divide the wide feature into four groups along the
channel axis. However, different from the group convolution used in previous
methods [16], we design a novel group feature fusion layer, which gradually fuses
the features of the current group with the output features of the last group. The
group feature fusion operations have two advantages: 1) It increases both the
depth and the width of the network with fewer parameters. 2) The skip con-
nections in different groups are more sparse than the skip connections in dense
block, which can not only improve the utilization of local features, but also con-
trol the number of parameters. In detail, we firstly divide the Fg into 4 feature
groups (G1,G2,G3,G4) and each group has (gc = m X e/4) channels, where gc
denotes the number of channels in each group. Then we use skip connections
and convolution operations to fuse the features between different groups. Final-
ly, all the fused feature maps are concatenated together. These operations are
formulated as follows.

[G1, Ga, G3, G4] = Grouping(Fg),
Gj1 = ReLU(f,1(Gy)),
Gf2 = ReLU(f42([G2,Gf1])),
Gy3 = ReLU(f43([G3,Gy2])),
Gty = ReLU(fy4([Ga, Gy3])),
Fruse = [Gf1,G a2, Gy3, Gral.

Grouping(-) denotes the operation that averagely groups Fg into four groups
in channel dimension. fg1(-), fg2(:), fg3(), fga(-) denote the convolutional layers
Conwv(3, gc) of the four groups. G ¢1, G2, G t3, G s4 denote the fused feature maps
of the four groups. ReLU(-) represents the ReLU activation function. Fyse
denotes the extracted features from the group feature fusion layer.

Channel Compression Layer After the group feature fusion layer, we use
one convolutional layer Conwv(3,m) to fuse the features of the four groups. This
operation can further improve the utilization of the local multilevel features and
compress the number of channels at the same time. It can be formulated as

Fo = fComp(Ffuse)v (5)

where foomp(-) denotes the convolutional layer, Fo denotes the feature maps
after channel compression.

Local Residual Learning This part we use the local residual learning to
further improve the information flow. The final output of the d-th GFFRB can
be obtained by

Fd:Fd—1+FC~ (6)
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4 Experimental Results

4.1 Datasets

In experiment, we apply DIV2K dataset [25] to train our models. This dataset
is a newly-proposed high-quality image dataset, which contains 800 training
images, 100 validation images and 100 test images. In the testing phase, we
use five widely used benchmark datasets: Set5 [26], Set14 [27], BSDS100 [28],
Urbanl100 [29] and Mangal09 [30]. These datasets contain a variety of images,
so they can fully validate our models.

4.2 Implementation and Training Details

Training details The training configurations of our models are similar to M-
SRN [23]. We use the images of 1-800 and 801-810 in DIV2K dataset as our
training set and validation set respectively. The training data is augmented by
random scaling, rotation and flipping. In the training phase, we randomly select
16000 RGB input patches (C = 3) of size 48 x 48 from all the LR images in every
epoch. The batch size is set to 16, thus every epoch has 1000 iterations of back-
propagation. The model is trained 800 epochs. The learning rate begins with
1 x 10~* and is halved every 200 epochs. Our model is optimized by Adam [31]
by setting 81 = 0.9, 32 = 0.999 and € = 10~8. The network is programmed by
Pytorch and the experiment is performed on a PC with an i9-9900k CPU, 32GB
RAM, and a RTX 2080Ti GPU.

Model details The proposed GFFRN and GFFRN-L consist of a series of
GFFRBs. In the high-path of GFFRN, the number of GFFRB D is set to 12
and the expansion factor e is set to 4. In the low-path of GFFRN, D is set to 1,
e is set to 2. In GFFRN-L, D is set to 6, e is set to 2. The base channel number
m of the two models are all set to 64.

4.3 Comparisons with State-of-the-art Methods

In this section, we compare the proposed GFFRN and GFFRN-L with some
other state-of-the-art SR methods including Bicubic [3], SRCNN [7], VDSR [11],
DRRN [18], IDN [32], CARN [16], SRFBN-S [19], MSRN [23] and SRFBN [19].
In particular, GFFRN has the similar number of parameters to MSRN and
GFFRN-L has the similar number of parameters to CARN. It should be no-
ticed that GFFRN-L do not apply the multi-scale learning approach that used
in CARN because of the two-path network structure. The widely used image
evaluation methods, peak signal-to-noise ratio (PSNR) and structural similarity
index measure (SSIM), are used to evaluate the performance of the proposed
methods. Furthermore, we also compare these models from other dimensions,
including the number of parameters and computational complexity. Similar to
CARN, we use the Multi-Adds to represent the computational complexity of
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Fig. 4. Trade-off between accuracy vs. number of operations and parameters on Setd
x 2 dataset. The z-axis and the y-axis denote the Multi-Adds and PSNR, and the area
of the circle represents the number of parameters. The Multi-Adds are computed by
assuming that the resolution of HR image is 720p.

the model and assume the HR image size to be 720p (1280 x 720) to calculate
Multi-Adds. In figure 4, we compare our GFFRN and GFFRN-L against various
state-of-the-art methods on the Set5 x2 dataset. As shown in the figure, when
considering three aspects of speed, accuracy and the number of parameters, the
proposed GFFRN and GFFRN-L achieve the best performance.

Table 1 lists the experiment results of PSNR and SSIM obtained by using
different methods. Here we only compare models that have roughly similar num-
ber of parameters as ours!. We first to analyse the performance of GFFRN-L.
Compared with CARN, the proposed GFFRN-L achieves comparable results
with fewer parameters and computations. Compared with IDN, GFFRN-L has
twice as many parameters, but the benefits are also huge. GFFRN-L outperforms
IDN by a margin of 0.1-0.5 PSNR on different benchmark test sets. Compared
with SRFBN-S, the proposed GFFRN-L has fewer computations but gets high-
er reconstruction accuracy. Especially when the scaling factor is x4, GFFRN-L
obtains higher accuracy with only 5% computations of SRFBN-S. Secondly, we
analyse the performance of GFFRN. Compared with MSRN, even with fewer
parameters and computations, the proposed GFFRN outperforms it by a large
margin on different benchmark test sets. SRFBN outperforms GFFRN, how-
ever, its benefits mainly come from the recursive structure, which introduces a
huge number of computations. When the scaling factor is x4, the calculations
of SRFBN are more than 20 times of GFFRN, hence the SRFBN is inefficient
in terms of computational complexity.

Figure 8 presents some reconstructed images obtained by using these methods
with different scaling factors. For image ”"img067”, we observe that most of
compared methods can not restore the complete line of the building. In contrast,
our GFFRN restores a complete line, which is closer to the original HR image. For
image ”Belmondo”, all the compared methods restore the words with noticeable
artifacts and blurred edges. While, our GFFRN can recover clearer words. The
same conclusions can be obtained by image ”img034” and image ”14802”. This

! Comparison of the larger models can be found in our supplementary material.
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Table 1. Quantitative comparisons of state-of-the-art methods. Red and blue represent
the best and the second best result respectively.

Scale Model Params Multi-Adds Seth Set14 B100 Urban100  Mangal09
Bicubic — — 33.69/0.9284 30.34/0.8675 29.57/0.8434 26.88/0.8438 30.82/0.9332
SRCNN [7] 0.02M 19G 36.66/0.9542 32.42/0.9063 31.36/0.8879 29.50/0.8946 35.60/0.9663
VDSR [11] 0.67M 612G 37.53/0.9587 33.03/0.9124 31.90,/0.8960 30.76/0.9140 37.22/0.9750
DRRN [18] 0.30M 6797G 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188 37.60/0.9736
IDN [32] 0.59M 124G 37.83/0.9600 33.30/0.9148 32.08/0.8985 31.27/0.9196 -/-

2 CARN [16] 1.59M 224G 37.76,/0.9590 33.52/0.9166 32.09/0.8978 31.51/0.9312 -/-

SRFBN-S [19]  0.37M
GFFRN-L(ours) 0.94M

653G 37.78/0.9597 33.35/0.9156 32.00/0.8970 31.41/0.9207
215G 37.96/0.9603 33.51/0.9169 32.13/0.8992 31.91/0.9263

38.06/0.9757
38.38/0.9766

1370G 38.07/0.9608 33.68/0.9184 32.22/0.9002 32.32/0.9304
5044G 38.11/0.9609 33.82/0.9196 32.29/0.9010 32.62/0.9328
1226G 38.15/0.9610 33.84/0.9202 32.29/0.9010 32.57/0.9326

38.64,/0.9771
39.08/0.9779
38.97/0.9777

MSRN (23] 5.93M
SRFBN [19] 2.14M
GFFRN(ours)  5.32M
Bicubic —
SRCNN [7] 0.02M
VDSR [11] 0.67M
DRRN [18] 0.30M
IDN [32] 0.59M
3 CARN [16] 1.59M

SRFBN-S [19]  0.49M
GFFRN-L(ours) 0.96M

— 30.41/0.8655 27.64/0.7722 27.21/0.7344 24.46/0.7411
19G 32.75/0.9090 29.28/0.8209 28.41/0.7863 26.24/0.7989
612G 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279
6797G 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378
55G 34.11/0.9253 29.99/0.8354 28.95/0.8013 27.42/0.8359
119G 34.29/0.9255 30.29/0.8407 29.06/0.8034 27.38,/0.8404
788G 34.20/0.9255 30.10/0.8372 28.96/0.8010 27.66/0.8415
98G 34.27/0.9263 30.29/0.8409 29.07/0.8039 28.03/0.8493

26.95/0.8556
30.48/0.9117
32.01/0.9340
32.42/0.9359

_/_

_/_
33.02/0.9404
33.31/0.9429

627G 34.48/0.9276 30.40/0.8436 29.13/0.8061 28.31/0.8560
6024G 34.70/0.9292 30.51/0.8461 29.24/0.8084 28.73/0.8641
546G 34.57/0.9286 30.46,/0.8449 29.20,/0.8077 28.54/0.8605

33.56/0.9451
34.18/0.9481
33.89/0.9470

MSRN (23] 6.11M
SRFBN [19] 2.83M
GFFRN(ours)  5.34M
Bicubic —
SRCNN [7] 0.02M
VDSR [11] 0.67M
DRRN [18] 0.30M
IDN [32] 0.59M
4 CARN [16] 1.59M

SRFBN-S [19]  0.63M
GFFRN-L(ours) 0.98M

— 28.43/0.8022 26.10/0.6936 25.97/0.6517 23.14/0.6599
19G 30.48/0.8628 27.49/0.7503 26.90/0.7101 24.52/0.7221
612G 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524
6797G 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638
31G 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632
91G 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837
983G 31.98/0.8923 28.45/0.7779 27.44/0.7313 25.71/0.7719
56G 32.03/0.8934 28.54/0.7803 27.54/0.7347 25.94/0.7815

24.89/0.7866
27.58/0.8555
28.83/0.8870
29.18/0.8914

_/_

_/_
29.91/0.9008
30.23/0.9050

MSRN [23] 6.08M
SRFBN [19] 3.63M
GFFRN(ours)  5.36M

377G 32.25/0.8958 28.63/0.7833 27.61/0.7377 26.22/0.7905
7466G 32.47/0.8983 28.81/0.7868 27.72/0.7409 26.60/0.8015
309G 32.37/0.8974 28.70/0.7853 27.66,/0.7394 26.38/0.7962

30.57/0.9103
31.15/0.9160
30.81/0.9132

is mainly because of the powerful local feature extraction ability of the well-

designed GFFRB. ?

4.4 Discussion

The most important contribution of this paper is the newly proposed group
feature fusion residual block (GFFRB). Based on GFFRB, we design two efficient
SR models GFFRN and GFFRN-L. To demonstrate the effectiveness of GFFRB,
we have done a series of experiments on the two models. In addition, we also
discuss the influence of the group feature fusion layer.

2 More compared images can be found in our supplementary material.
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Fig. 5. Performance comparison of GFFRN with different number of GFFRBs.
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Fig. 6. Performance comparison of the models with different residual blocks.

Analysis of D As we all know, increasing network depth can improve recon-
struction accuracy. In order to verify the impact of the number of GFFRB on
network, we have done a series of experiments. Here we mainly discuss the dif-
ferent numbers of GFFRB in GFFRN (D = 4, 8,12, 16 respectively). For a quick
verification, all the models of this subsection are trained 100 epochs (1 x 10° iter-
ations) in the same environment. As shown in Figure 5, the accuracy of GFFRN
keeps raising with the increasing number of GFFRB. Although increasing the
number of the GFFRB can improve the reconstruction accuracy, it also leads to
a more complex network. By weighting the performance and the complexity of
the network, we use 12 GFFRBs in the final model. Experiments shows that our
final model outperforms MSRN [23] on all the benchmark test sets with fewer
parameters and computations.

Efficiency Analysis of GFFRB The GFFRB is the key component to es-
tablish our network. In this subsection, we compare it with some other widely
used residual blocks, including the residual blocks (RB) used in EDSR [12], the
residual dense block (RDB) used in RDN [13] and the multi-scale residual block
(MSRB) used in MSRN [23]. For a fair comparison, the number of RB in EDSR
decreased from 32 to 5. The number of RDB in RDN decreased from 16 to 4.
The number of MSRB in MSRN is set to 8, which is consistent with the orig-
inal paper. All the models of this subsection are trained 200 epochs (2 x 10°
iterations) in the same environment.

Figure 6 presents the convergence curves obtained by using these models un-
der different scaling factors. From the figure, we can see that compared with other
models, the proposed GFFRN achieves the best performance. We also compare
these models by quantitative indicators, including the number of parameters,
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Table 2. Quantitative comparisons of state-of-the-art methods. All the models are
trained 200 epoches (2 x 10° iterations) in the same environment. Red represents the
best result.

Scale Model Params Multi-Adds Seth Set14 B100 Urbanl00  Mangal09
EDSR [12] 8.8TM 2050G 37.81,/0.9599 33.44/0.9158 32.04/0.8978 31.49/0.9225 37.94/0.9757
MSRN [23] 5.93M 1370G 37.98/0.9605 33.49/0.9168 32.13/0.8990 31.88/0.9261 38.38/0.9765

2 RDN [13] 5.70M 1310G 37.92/0.9603 33.51/0.9173 32.13/0.8995 31.96/0.9273 38.17/0.9764
GFFRN(ours) 5.32M 1226G 38.03/0.9607 33.59/0.9175 32.18/0.8997 32.09/0.9282 38.47/0.9768
EDSR [12] 11.8M 1210G 34.10/0.9250 30.14/0.8389 28.97/0.8020 27.69/0.8428 32.83/0.9400
MSRN [23] 6.11M 627G 34.33/0.9266 30.32/0.8423 29.08/0.8049 28.08/0.8509 33.36/0.9435

3 RDN [13] 5.88M 603G 34.40/0.9274 30.34/0.8423 29.09/0.8047 28.13/0.8520 33.44/0.9439
GFFRN(ours) 5.34M 546G 34.43/0.9274 30.37/0.8432 29.12/0.8059 28.24/0.8547 33.52/0.9448
EDSR [12]  11.23M 1060G 31.88/0.8909 28.43/0.7781 27.46/0.7323 25.72/0.7742 29.86/0.9000
MSRN [23] 6.08M 377G 32.04/0.8933 28.56/0.7809 27.56/0.7352 26.02/0.7831 30.29/0.9055

4 RDN [13] 5.86M 364G 32.09/0.8940 28.58/0.7820 27.58/0.7363 26.06/0.7851 30.39/0.9073
GFFRN(ours) 5.36M 309G 32.20/0.8950 28.61/0.7827 27.60/0.7372 26.19/0.7894 30.53/0.9093

the computational complexity and the performance on different benchmark test
sets. As shown in table 2, compared with other state-of-the-art methods, the
proposed GFFRN gets the highest accuracy on all the benchmark test sets with
the fewest parameters and calculations of all the methods. All of these experi-
ments fully demonstrate that the proposed GFFRB is more efficient than most
current residual blocks.

- BB

a) Dense skip connections
@) o Fiters

Concatenation
fs

(c) Group convolution with skip connections

Fig. 7. Diagram the structural relations of Group convolution, Dense Skip Connections
and Group feature fusion.

Ablation Studies on the group feature fusion layer The novelty of the
proposed GFFRN is the skip connections among different groups. Here we will
analyse the effectiveness of this structure. In Fig. 7, we present the structure of
dense skip connection, the structure of group convolution and the structure of the
group feature fusion layer. Notably, Fig. 7 (¢) is the unfolded format of the group
feature fusion layer in Fig. 3. From the figure, we can find that the structure of
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Table 3. Quantitative comparisons of the models that use different modules. Red
represent the best result.

Scale Model Params  Set) Set14 B100 Urban100  Mangal09
Group Convolution 1.21M 38.00,/0.9605 33.59/0.9177 32.14/0.8993 31.90,/0.9264 38.46/0.9767
2 Dense Skip Connections 1.77M 38.02/0.9606 33.61/0.9180 32.20,/0.9000 32.21/0.9293 38.59/0.9770
Group Feature Fusion ~ 1.49M 38.04/0.9606 33.64/0.9182 32.19/0.8999 32.19/0.9293 38.64/0.9771

group feature fusion layer is the combination of the group convolution and the
dense skip connection.

Next we will do some experiments to compare the efficiency of the three struc-
tures. We use 10 GFFRBs to conduct experiments. We replace the group feature
fusion layer with dense connection and group convolution. For a fair comparison,
the number of dense connection layer is set to 4 and the number of the group in
group convolutional layer is set to 4. In Table 3, we use PSNR/SSIM to measure
the accuracy of the reconstruction result, and the number of the parameters to
measure the storage efficiency. We can see that the model with group convolu-
tion has the least parameters, but gets the poorest performance. When we add
skip connections on the group convolution, the performance improves effectively.
Compared with dense skip connections, our group feature fusion layer has fewer
parameters, but achieves a comparable performance. This fully demonstrates the
effectiveness of the skip connections among different groups.

5 Conclusions and Future Works

In this paper, we propose a novel group feature fusion residual block (GFFRB),
which combines the group convolution with skip connection to fully fuse abun-
dant local features. Experiments show that the well-designed GFFRB outper-
forms most current residual blocks. Based on GFFRB, we propose a two-path
group feature fusion residual network (GFFRN). Experiments show that the
proposed GFFRN achieves higher efficiency compared with most state-of-the-
art methods. We also design a lightweight group feature fusion residual network
(GFFRN-L), which achieves the best performance among the models that have
less than 1M parameters.

Future works can be mainly explored from the following two aspects: (1) In
this paper, we specify that the number of groups is 4. Future works can discuss
the number of groups g to further improve the efficiency of GFFRB. (2) It would
be worthwhile to try to apply the well-designed GFFRB to other computer vision
tasks, such as image denoising and deblurring.
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Fig. 8. Visual comparison of different methods on different images.
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