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Abstract. Large, pre-trained generative models have been increasingly
popular and useful to both the research and wider communities. Specif-
ically, BigGANs—a class-conditional Generative Adversarial Networks
trained on ImageNet—achieved excellent, state-of-the-art capability in
generating realistic photos. However, fine-tuning or training BigGANs
from scratch is practically impossible for most researchers and engineers
because (1) GAN training is often unstable and suffering from mode-
collapse; and (2) the training requires a significant amount of compu-
tation, 256 Google TPUs for 2 days or 8 × V100 GPUs for 15 days.
Importantly, many pre-trained generative models both in NLP and im-
age domains were found to contain biases that are harmful to the soci-
ety. Thus, we need computationally-feasible methods for modifying and
re-purposing these huge, pre-trained models for downstream tasks. In
this paper, we propose a cost-effective optimization method for improv-
ing and re-purposing BigGANs by fine-tuning only the class-embedding
layer. We show the effectiveness of our model-editing approach in three
tasks: (1) significantly improving the realism and diversity of samples
of complete mode-collapse classes; (2) re-purposing ImageNet BigGANs
for generating images for Places365; and (3) de-biasing or improving the
sample diversity for selected ImageNet classes.

1 Introduction

From GPT-2 [1] to BigGAN [2], large, pre-trained generative models have been
increasingly popular and useful to both the research and wider communities.
Interestingly, these pre-trained models have remarkably high utility but near-
zero re-trainability. That is, GPT-2 or BigGANs were all trained on extremely
large-scale computational infrastructure, which is not available to the rest of
the community. In practice, training or fine-tuning such models is impossible to
most researchers and engineers. Importantly, pre-trained generative models in
both text and image domains were found to capture undesired, hidden biases that
may be harmful to the society [3,4]. Therefore, the community needs techniques
for fine-tuning and re-purposing pre-trained generative models.
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The class-conditional BigGAN [2] has reached an unprecedented state-of-
the-art image quality and diversity on ImageNet by using large networks and
batch sizes. However, fine-tuning or training BigGANs from scratch is impracti-
cal for most researchers and engineers due to two main reasons. First, Genera-
tive Adversarial Networks (GANs) training is notoriously unstable and subject
to mode-collapse [5,2] i.e. the generated distribution does not capture all modes
of the true distribution [5]. Consistent with [6], we observed that BigGAN sam-
ples from a set of ∼50 classes exhibit substantially lower diversity than samples
from other classes do. For example, BigGAN samples from the window screen

class are rubbish examples i.e. noisy patterns that are not recognizable to hu-
mans (Fig. 1a). Similarly, nematode samples are heavily biased towards green
worms on black, but the training data includes worms of a variety of colors and
backgrounds (Fig. 1b).

(A) ImageNet (B) BigGAN [2] (C) AM (ours)

(a) Samples from the window screen class (904).

(b) Samples from the nematode class (111).

Fig. 1: For some classes, 256× 256 BigGAN samples (B) have poor realism and
diversity (i.e. samples are biased towards one type of data) while the real Ima-
geNet images (A) are diverse. AM samples (C) are of higher diversity than the
original BigGAN samples (B).

Second, re-training BigGANs requires significantly expensive computation—
the original 256 × 256 model took 48 hours of training on 256 Google Cloud
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TPUs. On more modest hardware of 8 × V100 GPUs, the training is estimated
to take more than 2 weeks[7] but has not been found to match the published
results in [2]. Importantly, re-training or finetuning BigGANs were found to still
cause a set of classes to collapse as observed in a BigGAN-deep model [6] (in
addition to BigGAN models) released by [2].

In this paper, we propose a cost-effective method for improving sample di-
versity of BigGANs and re-purposing it for generating images of unseen classes.
Leveraging the intuition that the BigGAN generator is already able to synthe-
size photo-realistic images for many ImageNet classes [2], we propose to modify
only the class embeddings while keeping the generator unchanged (Fig. 2). We
demonstrate our simple yet effective approach on three different use cases:3

1. Changing only the embeddings is surprisingly sufficient to “recover” diverse
and plausible samples for complete mode-collapse classes e.g. window screen

(Fig. 1a).
2. We can re-purpose a BigGAN, pre-trained on ImageNet, for generating im-

ages matching unseen Places365 classes (Sec. 3.2).
3. On ImageNet, our method improves the sample diversity by ∼ 50% for the

pre-trained BigGANs released by the authors—at 256 × 256 and 128 × 128
resolutions by finding multiple class embeddings for each class (Sec. 3.7). A
human study confirmed that our method produced more diverse and simi-
larly realistic images compared to BigGAN samples (Sec. 3.6).

2 Methods

2.1 Problem formulation

Let G be a class-conditional generator, here a BigGAN pre-trained by [2], that
takes a class embedding c ∈ R

128 and a latent vector z ∈ R
140 as inputs and

outputs an image G(c, z) ∈ R
256×256×3. We test improving BigGAN’s sample

diversity by only updating the embeddings (pre-trained during GAN training).
Increasing Diversity Intuitively, we search for an input class embedding c

of the generator G such that the set of output images {G(c, zi)} is diverse with
random latent vectors zi ∼ N (0, I). Specifically, we encourage a small change in
the latent variable to yield a large change in the output image [8] by maximizing:

max
c

LD(c) = E
z
i,zj∼N (0,I)

∥

∥φ(G(c, zi))− φ(G(c, zj))
∥

∥

‖zi − zj‖
(1)

where φ(.) is a feature extractor. In [8], φ(.) is an identity function to en-
courage pixel-wise diversity. We also tested with φ(.) being outputs of the conv5
layer and the output softmax layer of AlexNet.

Via hyperparameter tuning, we found that maximizing the above objective
via 10 unique pairs of (zi, zj) selected from Z to be effective (full hyperparameter
details are in Sec. 2.4).

3 Code for reproducibility is available at https://github.com/qilimk/biggan-am.

https://github.com/qilimk/biggan-am
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(A) BigGAN [2] (B) Modifying class embeddings (C) AM (ours)

Fig. 2: With BigGAN embeddings (A), the latent z vectors are mapped to
nearby points (green �) i.e. similarly-looking images. Our embedding optimiza-
tion moves the original embedding to a new vector where the generated samples
(red �) are more diverse. Here, the updated class embedding c changes the back-
ground of a daisy from green grass (�) to brown soil (�). Note that the pose of
the flower (controlled by z) remain the same. Effectively, with only a change in
the embedding, the latent vectors are re-mapped to more spread-out points or
more diverse set of samples (C).

Activation maximization When a class embedding changes, it is critical
to keep the generated samples to be still realistic and in the target class. To
achieve that, we also move the class embedding c of the generator G such that
the output image G(c, z) for any random z ∼ N (0, I) would cause some classifier
P to output a high probability for a target class y (Fig. 3). Here, we let P

be a pre-trained ImageNet classifier [9] that maps an image x ∈ R
256×256×3

onto a softmax probability distribution over 1,000 output classes. Formally, we
maximize the following objective given a pre-defined class yc:

max
c

LAM(c) = E
z∼N (0,I) log P (y = yc | G(c, z)) (2)

The above objective is basically a common term in the classification ob-
jectives for class-conditional GAN discriminators [10,2,11] and also called the
Activation Maximization (AM) in image synthesis using pre-trained classifiers
[12,13,14,15,16]. We try to solve the above AM objective via mini-batch gradient
descent. That is, we iteratively backpropagate through both the classifier P and
the generator G and change the embedding c to maximize the expectation of
the log probabilities over a set Z of random latent vectors.

In sum, we encouraged the samples to be diverse but still remain in a target
class y via the full objective function below (where λ is a hyperparameter):
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Fig. 3: To improve the samples for a target class represented by a one-hot vector
y, we iteratively take steps to find an embedding c (i.e. a row in the embedding
matrix W ) such that all the generated images {G(c, zi)}, for different random
noise vectors zi ∼ N (0, I), would be (1) classified as the target class y; and (2)
diverse i.e. yielding different softmax probability distributions. We backpropa-
gate through both the frozen, pre-trained generator G and classifier P and per-
form gradient descent to maximize the target-class probability of the generated
samples over a batch of random latent vectors {zi}.

max
c

LAM-D(c) = LAM + λLD (3)

2.2 Datasets and Networks

Datasets While the generators and classifiers were pre-trained on the full
1000-class ImageNet 2012 dataset, we evaluated our methods on a subset of 50
classes (hereafter, ImageNet-50) where we qualitatively found BigGAN samples
exhibit the lowest diversity. The selection of 50 classes were informed by two
diversity metrics (see below) but decided by humans before the study.
Generators We used two pre-trained ImageNet BigGAN generators [2], a
256×256 and a 128×128 model, released by the authors in PyTorch [7]. For the
purpose of studying diversity, all generated images in this paper were sampled
from the full, non-truncated prior distribution [2].

2.3 Evaluation metrics

Because there is currently no single metric that is able to capture the multi-
dimensional characteristics of an image set [17], we chose a broad range of com-
mon metrics to measure sample diversity and sample realism separately.
Diversity We measured intra-class diversity by randomly sampling 200 image
pairs from an image set and computing the MS-SSIM [10] and LPIPS [18] scores
for each pair. For each method, we computed a mean score across the 50 classes
× 200 image pairs.
Realism To measure sample realism, we used three standard metrics: Incep-
tion Score (IS) with 10 splits [19], Fréchet Inception Distance (FID) [20], and
Inception Accuracy (IA) [10]. These three metrics were computed for every set of
50,000 images = 50 classes × 1000 images. To evaluate the set of mixed samples
from both BigGAN and AM embeddings, we randomly select 500 images from
each and create a new set contains 1000 images per ImageNet class.
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2.4 Implementation details

We found two effective strategies for implementing the AM method (described in
Sec. 2.1) to improve BigGAN samples: (1) searching within a small region around
the original embeddings (AM-S); (2) searching within a large region around the
mean embedding (AM-L).
Hyperparameters For AM-S, we randomly initialized the embedding within
a Gaussian ball of radius 0.1 around the original embedding. We used a learning
rate of 0.01. For AM-L, we randomly initialized the embedding around the mean
of all 1000 embeddings and used a larger learning rate of 0.1. For both settings,
we maximized Eq. 2 using the Adam optimizer and its default hyperparameters
for 200 steps. We re-sampled a set Z = {zi}20 every 20 steps. Every step, we
kept the embeddings within [−0.59, 0.61] by clipping. To evaluate each trial, we
used the embedding from the last step and sampled 1000 images per class. We
ran 5 trials per class with different random initializations. We used 2 to 4 ×
V100 GPUs for each optimization trial.
Classifiers In the preliminary experiments, we tested four 1000-class-ImageNet
classifiers: AlexNet [9], Inception-v3 [21], ResNet-50 [22], and a ResNet-50 [23]
that is robust to pixel-wise noise. By default, we resized the BigGAN output
images to the appropriate input resolution of each classifier.

With Inception-v3, we achieved an FID score that is (a) substantially bet-
ter than those for the other three classifiers (Table S2; 30.24 vs. 48.74), and
(b) similar to that of the original BigGAN (30.24 vs. 31.36). The same trends
were observed with the Inception Accuracy metrics (Table S2). However, we did
not find any substantial qualitative differences among the samples of the four
treatments. Therefore, we chose AlexNet because of its fastest run time.

3 Experiments and Results

3.1 Repairing complete mode-collapse classes of BigGANs

Consistent with [6], we found that BigGAN samples for some classes, e.g. window
screen, contain similar, human-unrecognizable patterns (see Fig. 1a). However,
re-training BigGANs is impractical to most researchers given its significance
computation requirement.

Here, we apply AM-L (see Sec. 2.4) to “repair” the mode-collapse window screen

embedding to generate more realistic and diverse images. Intuitively, AM-L en-
ables us to make a larger jump out of the local optimum than AM-S.
Results Interesting, by simply changing the embedding, AM-L was able to turn
the original rubbish images into a diverse set of recognizable images of window
screens (see Fig. 1a). Quantitatively, the AM embedding improved BigGAN
window screen samples in all metrics: LPIPS (0.62 → 0.77), IS (2.76 → 2.91),
and IA (0.56 → 0.7).

While the embeddings found by our AMmethods changed the generated sam-
ples entirely, we observed that interpolating in the latent or embedding spaces
still yields realistic intermediate samples (Fig. 4).
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Fig. 4: Interpolation between a z pair in the window screen class using the origi-
nal BigGAN embedding (top) yields similar and unrealistic samples. The same
interpolation with the embedding found by AM (bottom) produced realistic in-
termediate samples between two window screen images.

Significantly faster computation According to a PyTorch BigGAN re-
implementation by authors [2], BigGAN training can take at least 15 days on 8
V100 GPUs. This is significantly more time-consuming and costly than our AM
approach which takes at most 1 hour for generating 5 embeddings (from which
users could choose to use one or more) on a single V100 GPU (see Table 1). The
original DeepMind’s training [2] requires even more expensive and unique hard-
ware of 256 Google Cloud TPU, which is not available to most of the community
and so is not compared here.

Method Time Number of GPUs AWS price
(hours) (Tesla V100) (USD)

1. BigGAN training [7] 24×15 days=360 8 8812.8

2. AM optimization 1 1 3.1

Table 1: BigGAN training is not only 360×more time-consuming but also almost
3,000× more costly. The AWS on-demand price-per-hour is $ 24.48 for 8×V100
and $ 3.06 for 1×V100 [24].

Note that our method is essentially finding a new sampler for the same Big-
GAN model. After a new embedding is found via optimization, the samples are
generated fast via standard GAN sampling procedure [25].

3.2 Synthesizing Places365 images using pre-trained ImageNet

BigGAN

While original BigGAN is not able to synthesize realistic images for all 1000
ImageNet classes (see Fig. 1), it does so for a few hundred of classes.

Therefore, here, we test whether it is possible to re-use the same ImageNet
BigGAN generator for synthesizing images for unseen categories in the target
Places365 dataset [26], which contains 365 classes of scene images. For evaluation,
we randomly chose 50 out of 365 classes in Places365 (hereafter, Places-50).
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Mean initialization As we want to generate images for unseen classes, the
Places365-optimal embeddings are intuitively far from the original ImageNet em-
beddings. Therefore, we chose AM-L (instead of AM-S) for making larges jumps.
We ran the AM-L algorithm for 5 trials per class with the same hyperparameters
as in Sec. 3.1 but with a ResNet-18 classifier [22] pre-trained on Places365.

Top-5 initialization Besides initializing from mean embeddings, we also
tested initializing from the top-5 embeddings whose 10 random generated sam-
ples were given the highest average accuracy scores by the Places365 classifier.
For example, to synthesize the hotel room images for Places365, the top-1 em-
bedding in the ImageNet dataset is for class quilt (Fig. 6). We reproduced 5
AM-L trials but each was initialized with a unique embedding among the top-5.

Baseline We used the original BigGAN samples for the top-1 ImageNet classes
found from the top-5 initialization procedure above as a baseline.

Qualitative Results AM-L found many class embeddings that produced
plausible images for Places365 scene classes using the same ImageNet BigGAN
generator. For example, to match the hotel room class, which does not exist in
ImageNet, AM-L synthesized bedroom scenes with lights and windows whereas
the top-1 class (quilt) samples mostly shows beds with blankets (Fig. 5). See
Fig. 6 for some qualitative differences between the generated images with original
vs. AM embeddings for the same set of random latent vectors.

Fig. 5: The closest ImageNet class that the BigGAN was pre-trained to generate
is quilt, which contains mostly blankets and pillows. Surprisingly, with AM em-
beddings, the same BigGAN can generate remarkable images for unseen category
of hotel room. The rightmost is an example Places365 image for reference.

Quantitative Results Compared to the baseline, AM-L samples have sub-
stantially higher realism in FID (41.25 vs. 53.15) and in ResNet-18 Accuracy
scores (0.49 vs. 0.17). In terms of diversity, AM-L and the baseline performed
similarly and both were slightly worse than the real images in MS-SSIM (0.42 vs.
0.43) and LPIPS (0.65 vs. 0.70). See Table S3 for detailed quantitative results.
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(A) Places365 images (B) Top-1 baseline (BigGAN) (C) AM-L (ours)

plaza parking meter plaza

hotel room quilt hotel room

Fig. 6: AM-L generated plausible images for two Places365 classes, plaza (top)
and hotel room (bottom), which do not exist in the ImageNet training set of
the BigGAN generator. For example, AM-L synthesizes images of squares with
buildings and people in the background for the plaza class (C) while the samples
from the top-1 ImageNet class, here, parking meter, shows parking meters on
the street (B). Similarly, AM-L samples for the hotel room class has the unique
touches of lighting, lamps, and windows (C) that do not exist in the BigGAN
samples for the quilt class (B). The latent vectors are held constant for cor-
responding images in (B) and (C). See Figs. S21, S22, S23, and S24 for more
side-by-side image comparisons.

3.3 Improving sample diversity of 256×256 BigGAN

To evaluate the effectiveness of our method in improving sample diversity for
many classes, here, we ran both AM-S and AM-L on 50 classes in ImageNet-50.
The goal is to compare the original BigGAN samples vs. a mixed set of samples
generated from both the original BigGAN embeddings and AM embeddings
found via our AM method. That is, AM optimization is so inexpensive that users
can generate many embeddings and use multiple of them to sample images.

BigGAN vs. AM Across 50 classes × 5 AM trials, we found that both AM-
S and AM-L produced samples of higher diversity than the original BigGAN
samples. For both MS-SSIM and LPIPS, on average, our AM methods reduced
the gap between the original BigGAN and the real data by ∼50% (Fig. 7a; AM-S
and AM-L vs. BigGAN).

For all 50 classes, we always found at least 1 out of 10 trials (i.e. both AM-
S and AM-L combined) that yielded samples that match the real data in MS-
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(a) Diversity comparison. (b) Realism comparison.

Fig. 7: Each point in the four plots is a mean score across 50 classes from one
AM optimization trial or one BigGAN model. The ultimate goal here is to close
the gap between the BigGAN samples (- - - -) and the ImageNet-50 distribution
(- - - -) in all four metrics. Naively adding noise degraded the embeddings in
both diversity (MS-SSIM and LPIPS) and quality (IS and FID) scores i.e. the
black and gray ∇ actually moved away from the red lines. Our optimization
trials, on average, closed the diversity gap by ∼50% i.e. the AM circles are half
way in between the green and red dash lines (a). By mixing AM samples with
the original BigGAN samples, the BigGAN+AM image-set (◦) has substantially
higher diversity (MS-SSIM and LPIPS) and similar quality (IS and FID) to
BigGAN (�). That is, that multi-embeddings improved the sample diversity of
BigGAN without compromising the quality.

SSIM or LPIPS scores. The statistics also align with our qualitative observations
that AM samples often contain a more diverse set of object poses, shapes and
backgrounds than the BigGAN samples (see Figs. S9–S11).
BigGAN vs. BigGAN+AM Most importantly, the set of images generated
by both BigGAN and two AM embeddings obtained higher diversity in MS-
SSIM and LPIPS while obtaining similar realism FID scores (Fig. 7; BigGAN
vs. BigGAN+AM). We constructed each BigGAN+AM set per class using one
BigGAN and one AM embedding (selected by humans out of 5 embeddings).

3.4 Adding noise to or finetuning the class embeddings did not

improve diversity

Adding noise A naive attempt to improve sample diversity is adding small
random noise to the embedding vector of a low-diversity class. Across 50 classes,
we found that adding small noise ∼ N (0, 0.1) almost did not quantitatively
change the image quality and diversity (Fig. 7; Noise-S) while adding larger
noise ∼ N (0, 0.3) degraded the samples on both criteria (Fig. 7; Noise-L).

For example, daisy samples gradually turned into human-unrecognizable rub-
bish images as we increased the noise (Fig. S4).
Finetuning Another strategy to improve sample diversity is to finetune Big-
GANs. However, how to finetune a BigGAN to improve its sample diversity is
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(a) Diversity comparison (b) Realism comparison

Fig. 8: Each point in the four plots is a mean score across 50 classes and five AM-
S trials or one 128× 128 BigGAN model. Finetuning the 138k snapshot neither
improved the sample diversity nor realism (purple ∆ vs. green �). Optimizing
the embeddings via AM-S consistently improved the diversity in both MS-SSIM
and LPIPS (a). IS and FID metrics disagree on whether AM-S (cyan ◦) sample
quality is better or worse than that of the BigGAN samples. See Fig. 9 for a
side-by-side comparison of the samples from these five snapshots.

an open question. The BigGAN pre-trained model would start to degrade if we
kept training it using the original hyperparameters as reported in [2].

To minimize the GAN training instability and compare with other approaches
in this paper, we only finetuned one embedding at a time, keeping the other em-
beddings and all parameters in the generator and discriminator frozen. Because
[2] only released the discriminator for their 128× 128 generator but not for the
256 × 256 model, we only finetuned the 128 × 128 model. For each class, we
added a small amount of noise ∼ N (0, 0.1) to the associated embedding vector
and finetuned it using the original BigGAN training objective for 10 iterations
until the training collapsed. Across 50 classes × 5 trials, quantitatively, finetun-
ing did not improve the sample diversity but lowered the realism (Fig. 8; purple
∆ vs. green �).

3.5 Explicitly encouraging diversity yielded worse sample realism

Inspired by [8], here, we used the sample diversity further by incorporating a
diversity term into the previous two AM-S and AM-L methods (Sec. 2.1) to
produce two new variants AM-D-S and AM-D-L. We tested encouraging diversity
in the (1) image space; (2) conv5 feature space; and (3) softmax outputs of
AlexNet and found they can qualitatively bias the optimization towards different
interesting spaces of diversity.

However, the addition of the diversity term quantitatively improved the di-
versity but at a large cost of lower sample quality (Fig. 7b AM-S vs. AM-D-S and
AM-L vs. AM-D-L). Similarly, the IA scores of the AM-D methods were consis-
tently lower than those of the original AM methods (Table S1). See Sec. S1 for
more details.



12 Q. Li et al.

We hypothesize that the intrinsic noise from mini-batch SGD [27] also con-
tributes to the increased sample diversity caused by AM embeddings.

3.6 Humans rated AM samples more diverse and similarly realistic

Because quantitative image evaluation metrics are imperfect [17], we ran a hu-
man study to compare the AM vs. original BigGAN samples. For each class,
across all 20 embeddings from 5 trials × 4 methods (AM-S, AM-L, AM-D-S,
and AM-D-L), we manually chose one embedding that qualitatively is a balance
between diversity and realism to sample images to represent our AM method
in the study. As a reference, this set of AM images were more diverse and less
realistic than BigGAN samples according to the quantitative metrics (Fig. 7;
AM-human vs. BigGAN).
Experiments We created two separate online surveys for diversity and realism,
respectively. For each class, the diversity survey showed a panel of 8 × 8 AM
images side-by-side a panel of 8× 8 BigGAN samples and asked participants to
rate which panel is more diverse on the scale of 1–5. That is, 1 or 5 denotes the
left or right panel is clearly more diverse, while 3 indicates both sets are similarly
diverse. For each class, the AM and BigGAN panels were randomly positioned
left or right. The realism survey was a duplicate of the diversity except that
each panel only showed 3 × 3 images so that participants could focus more on
the details.
Results For both tests, we had 52 participants who are mostly university
students and do not work with Machine Learning or GANs. On average, AM
samples were rated to be more diverse and similarly realistic compared to Big-
GAN samples. That is, AM images were given better than the neutral score of
3, i.e. 2.24 ± 0.85 in diversity and 2.94 ± 1.15 in realism.

Also, AM samples were rated to be more diverse in 42/50 classes and more
realistic in 22/50 classes. See Figs. S9–S11 for your own comparisons.

3.7 Generalization to a 128 × 128 BigGAN

To test whether our method generalizes to a different GAN at a lower resolution,
we applied our AM-S method (see Sec. 3.1) to a pre-trained 128× 128 BigGAN
released by [7]. As in previous experiments, we ran 50 classes × 5 trials in total.
To evaluate each trial, we used the last-step embedding to sample 1000 images
per class.

Consistent with the result on the 256× 256 resolution, here, AM-S improved
the diversity over the pre-trained model on both MS-SSIM and LPIPS (Fig. 8a;
138k). In terms of quality, FID and IS showed a mixed result of whether AM-S
sample realism is lower or higher. See Fig. S17 for side-by-side comparisons.

3.8 Generalization to different training snapshots of 128 × 128

BigGAN

We have shown that BigGAN sample diversity can be improved substantially by
changing only the embeddings (Sec. 3.1) which revealed that the generator was
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Fig. 9: For the parachute class, the original 128×128 BigGAN samples (top panel)
mostly contained tiny parachutes in the sky (B) and gradually degraded into blue
sky images only (C–F). AM (bottom panel) instead exhibited a more diverse set
of close-up and far-away parachutes (B) and managed to paint the parachutes
for nearly-collapsed models (E–F). The samples in this figure correspond to the
five snapshots (138k—146k) reported in the quantitative comparison in Fig. 8.
See Figs. S6, S7, S8 for more qualitative comparisons.

actually capable of synthesizing those diverse images. Here, we test how much
sample diversity and quality can be improved by AM as the BigGAN training
gradually collapses, which might impair not only the embeddings but also the
generator’s parameters.

Experiments We took the pre-trained 128×128 BigGAN model (saved at the
138k-th iteration) and continued training it for 9000 more iterations with the
same hyperparameters as in [7]. We applied the AM-S method with the same
hyperparameters as in Sec. 3.7 to four BigGAN snapshots captured at the 140k,
142, 144k, and 146k iteration, respectively.

Results AM-S consistently improved the sample diversity of all snapshots.
For some classes, AM qualitatively improved both sample diversity and quality
(Figs. 9 and S6–S8). However, the diversity and realism of both AM-S and the
original BigGAN samples gradually dropped together (Fig. 8; AM-S vs. Big-
GAN). The result suggests that, as the GAN training gradually collapsed, the
synthesis capability is so degraded that changing the class embeddings alone is
not sufficient to significantly improve the samples.

4 Related work

Latent space traversal Searching in the latent space of a GAN generator net-
work to synthesize images has been shown effective for many tasks including (1)
in-painting [28]; (2) image editing [29]; (3) creating natural adversarial examples
[30]; or (4) feature visualization [14]. While all prior work in this line of research
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optimized the latent variable z, we instead optimize the class embeddings c of
a class-conditional generator over a set of random z vectors.

Our method might be the most related to Plug & Play Generative Networks
(PPGN) [13] in that both methods sample from the distribution pG(x,y) jointly
defined by a generator and a pre-trained classifier. While [13] trained an uncondi-
tional generator that inverts the features of an ImageNet classifier, our method
is generally applicable to any pre-trained class-conditional generator. Impor-
tantly, our goal is novel—to improve the sample diversity of any pre-trained
class-conditional generator (here, BigGANs) by changing its class embeddings.
Improving sample quality Two methods, MH-GAN [31] and DRS [32],
have recently been proposed to improve the samples of a pre-trained GAN by
harnessing the discriminator to reject low-probability generated samples. How-
ever, these methods are able to only improve sample quality but not diversity.
In addition, they assume that the discriminator is (a) available, which may not
always be the case e.g. in the official BigGAN releases [2]; and (b) optimally
trained for their samplers to recover exactly the true distribution. Similar to
MH-GAN and PPGN, our method is similar to a Markov chain Monte Carlo
(MCMC) sampler that has no rejection steps. A major difference is that we only
perform the iterative optimization once to update the embedding matrix. After
a desired embedding is found, our subsequent samplings of images are fast fol-
lowing standard GANs. In contrast, MH-GAN, DRS, and PPGN samplers often
require many rejection or update steps to produce a single image.
Generalization Understanding the image synthesis capability of a trained
GAN generator is an active research area. Recent findings showed that GANs
trained on a dataset of scene images contain neurons that can paint common
objects such as “trees” or “doors” [33]. [34] found that BigGAN is able to perform
some general image transforms such as zoom, rotate or brightness adjustment
up to a certain limit. However, these methods optimize only the latent variable
[34] or both the latent and the generator parameters [33], but not the class
embeddings as ours.

5 Conclusion

We showed that the low sample diversity of pre-trained GAN generators can be
improved by simply changing the class embeddings, not the generator. Note that
one could “recover” the missing modes using our AM methods and improve the
sample quality further by sampling from a truncated prior distribution [2]. Our
method is also a promising method for de-biasing GAN models. Compared to
finetuning or re-training BigGANs from scratch, our method is more tractable
even considering that one has to run five 200-step optimization trials to find a
desired class embedding.
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