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Abstract. Instead of more expensive and complex optics, recent years,
many researches are focused on high-quality photography using light-
weight cameras, such as single-ball lens, with computational image pro-
cessing. Traditional methods for image enhancement do not comprehen-
sively address the blurring artifacts caused by strong chromatic aber-
rations in images produced by a simple optical system. In this paper,
we propose a new method to correct both lateral and axial chromatic
aberrations based on their different characteristics. To eliminate lateral
chromatic aberration, cross-channel prior in shearlet domain is proposed
to align texture information of red and blue channels to green channel.
We also propose a new PSF estimation method to better correct axial
chromatic aberration using wave propagation model, where F-number of
the optical system is needed. Simulation results demonstrate our method
can provide aberration-free images while there are still some artifacts in
the results of the state-of-art methods. PSNRs of simulation results in-
crease at least 2 dB and SSIM is on average 6.29% to 41.26% better
than other methods. Real-captured image results prove that the pro-
posed prior can effectively remove lateral chromatic aberration while the
proposed PSF model can further correct the axial chromatic aberration.

1 Introduction

Modern camera lenses use a dozen of individual lens elements to minimize op-
tical aberrations but it raises the cost and weight of cameras. Recent years,
many researchers turn to much simpler optics such as single-chip lens [1], simple
Fresnel lens [2] or the single-ball lens. However, there are still barriers to gen-
erate high-quality images with this kind of lightweight equipment. Chromatic
aberration (CA) is one of the most severe problems. Because camera lenses have
wavelength-dependent refractive indices, it is troublesome to make all color com-
ponents converge to the same point [3, 4]. This phenomenon often reflects at the
edge areas of images. Usually, chromatic aberration can be divided into two
categories: axial chromatic aberration (ACA) and lateral chromatic aberration
(LCA). The former one may cause the effect of image blurring, which can be
corrected by deconvolution, and the later one may cause geometric errors, which
can be corrected by image processing [3].

Traditional CA correction methods only focus on one chromatic aberration.
Among those LCA correction methods, employing global warping is the most
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popular one [5]. These global warping methods need a pre-calibration process
to estimate parameters. Noticing that CA mainly occurs near the edges, Kim
B.K. et al. [6] proposed a method to detect and correct purple fringes using
color information with large gradient magnitudes. Pixels in the detected purple
fringing regions are desaturated to correct aberration. However, it only works
for purple fringes but fails at other color fringes like green fringes. Kang H. et al.
[7] developed a partial differential equation based on the study that the edges
in the green channel are sharper than those in the red and blue channels. It
matches the edges in the red and blue channels to green channel locally. Pi et al.
[8] used a spatially variant model to match the gradient and intensity between
the red or blue channels and the green channel at the edges. All these methods
work well on LCA eliminating. However, without using PSF model of lens, the
images are not able to correct ACA.

As for ACA correction, most of these methods choose to use PSFs to decon-
volve the images. Schuler et al. [9] presented an aberration removal algorithm for
a single lens in YUV color space, which results in a better image quality. He C.
et al. [10] proposed a deblurring method using shearlet transform. The power of
multiscale and multidirectional analysis and the ability of preserving details of
images can be used to surpass the limitation of other methods. Instead of using
PSFs for deconvolution, Hosseini et al. [11] proposed a method by convolving
the blurry images with inversed PSFs to avoid iterative operation.

Heide F. et al. [1] introduced a convex cross-channel prior using normalized
gradient information to correct both ACA and LCA. But it fails to work well on
images with complex texture and severe aberrations, since it only uses vertical
and horizontal gradient information.

As mentioned above, deconvolution methods with LCA correction priors can
correct both two types of aberrations simultaneously, but they need the PSFs of
lens. Thus, a proper PSF estimation is needed to acquire better image quality.
PSF models are usually proposed by analyzing the statistic of different types of
blurry and sharp images. In some circumstances, blur kernels are of parametric
forms and these parameters can be estimated from blurry images including spec-
tral methods [12] and edge-based methods [13]. Gokstorp et al. [14] employed
the Gaussian function to approximate the blur kernel using a pair of sharp and
defocused images. However, in common cases only blurry images are available.
Oliveira et al. [15] presented an algorithm using the circular Radon transform.
But it would fail for certain scenes because the frequency magnitudes are highly
anisotropic. A General Gaussian model was proposed using edge detection and
re-blur approach by Liu et al. [16]. It established a LUT between PSFs and pa-
rameters for further use. However, all of these methods were based on statistic
models and ignored wave propagation characters.

In this paper, based on the distribution of color and texture information of
images in RGB channels, we propose a robust aberration correction approach
which corrects both LCA and ACA. Cross-channel prior in shearlet domain
(CC-SD prior) is introduced to align red and blue channels to green channel, the
sharpest channel. Clear images are recovered and LCA is effectively suppressed.
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PSNR and SSIM have significant improvements in simulation results. Moreover,
to deal with ACA in real-captured images, a more precise PSF estimation method
based on wave propagation model is presented. Results demonstrate that CC-SD
prior combined with wave propagation PSF model can remove LCA and ACA
efficiently.

The rest of this paper is organized as follows. Section 2 presents analysis of
color and texture information distribution and the CC-SD prior. Section 3 shows
proposed PSF estimation model. Section 4 shows experimental results including
simulations and real-captured images. Conclusion is drawn in Section 5.

2 Cross-Channel Prior in Shearlet Domain

In this section, we propose a new prior to deal with LCA, which takes edges from
all direction into account and can handle much severer aberration. We start by
demonstrating image restoration model and introducing the novel CC-SD prior
to correct LCA. Then Alternating Direction Method of Multipliers (ADMM) is
used to solve the minimization problem.

2.1 LCA Correction Model Using CC-SD Prior

Reconstructing the original image from blurry image can be carried out within
the framework of image deconvolution. However, it is a well-known highly ill-
posed problem because only blurry image is known. Regularization terms were
introduced to constraint this problem. In general, many regularization methods
lead to the following minimization function:

min
x

‖Hx− y‖22 +
β1

2
S(x) +

β2

2
J(x), (1)

where x denotes the recovered clear image. y is observed blurry image. The
first term is called data fidelity term. H is the convolution operator related to
spatially invariant PSF in matrix form. The second and third terms are regular-
ization terms. S(x) enforces a heavy-tailed distributed for gradients, like total-
variation [17] or shearlet-regularization [10]. J(x) implements a special constraint
to correct LCA. β1, β2 are penalty factors which keep the compromise between
the data fidelity term and the regularization terms.

The main idea of our proposed method is to align the image texture, like
fringes, of red and blue channels to green channel. For red or blue channel, the
regularization term J(x) is defined as:

J(x) = ‖T(xG)− T(x)‖22, (2)

where x is latent red or blule channel image. T(x) represents the texture infor-
mation extracted from the red or blue channel. xG is the green channel image
recovered by an existing method, such as PSA method [10]. T(xG) represents
the texture information extracted from green channel.
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Fig. 1. (a) Shearlet sub-bands in frequency domain. Images in blue, red and green rect-
angles are low-frequency, middle-frequency and high-frequency sub-bands, respectively.
(b) Three sub-bands and their corresponding sub-images. First, second and last rows
are images of one low-frequency, one middle-frequency and one high-frequency sub-
bands and their corresponding sub-images, respectively. (c) Difference of sub-images
between red/blue and green channel. The whiter the figures are, the larger difference
is between two sub-images.

To extract texture information from images, instead of gradients which only
use vertical and horizontal edge information, we apply shearlet transform [18–20]
which is a multiscale and multidirectional analysis method. Shearlet transform
of x can be implemented in frequency domain by component-wise multiplication:

SHj(x) = F−1(Ĥj . ∗X), (3)

where X denotes the Fourier transform of x and Ĥj is the frequency domain
shearlet base of the jth sub-band. .∗ denotes the component-wise multiplication
operator. F−1(.) is the inverse Fourier transform operator. Shearlet transform
decomposes the images into several sub-images in frequency domain, including
one low frequency component and numbers of middle and high frequency compo-
nents. The number of sub-bands depends on the shearlet level. Therefore, T(x)
can be written as:

Ti(x) = F−1(Ĥi. ∗X), (4)

where Ĥi is the middle and high frequency sub-bands, Ti(x) represents the corre-
sponding sub-image of ith sub-band. Fig. 1 shows the result of shearlet transform
on an aberration-free image. Fig. 1(a) demonstrates the sub-bands of a level 3
shearlet transform. These are filters of different frequency ranges and directions
in frequency domain. Fig. 1(b) shows three sub-bands and its corresponding
sub-images. Low frequency sub-image contains most information of the image,
including color information. Middle and high frequency sub-images are texture
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information of a selected direction. Fig. 1(c) proves our assumption that color
information only exists in low-frequency components and texture information of
three channels are approximately the same.

With the above notations, the proposed optimization problem for red and
blue channel is:

min ‖Hx− y‖22 +
β1

2

∑

j

‖ SHj(x)‖1 +
β2

2

∑

i

‖Ti(xG)− Ti(x)‖22, (5)

where the second term is the shearlet-regularization term [10] used to suppress
the ring effect. The third term is proposed CC-SD prior. β1, β2 are penalty
factors.

2.2 Optimization Using ADMM

In this subsection, we use ADMM [21] to solve the optimization problem. To
solve the L1–norm simply, we introduce auxiliary variables fi for each L1-norm
term. To avoid the inner iterations, another auxiliary variable u is employed for
Hx. The corresponding augmented Lagrangian function is defined as:

L(x, u, f ;µ, ξ, γ) ,α

2
‖u−Hx‖22− < µ, u−Hx > +δΩ(u) +

∑

j

‖fj‖1

+
β1

2

∑

j

‖fj − SHj(x)‖22 −
∑

j

< ξj , fj − SHj(x) >

+
β2

2

∑

i

‖Ti(xG)− Ti(x)‖22 −
∑

i

< γi,Ti(xG)− Ti(x) >,

(6)

where fi and u are auxiliary variables, and

δΩ(u) =

{

0, if u ∈ Ω , {u : ‖u− y‖22 ≤ c}
+∞, otherwise

,

The inequality constraint is related to Morozov’s discrepancy principle [22],
c = τn2σ2. σ2 is the white noise variance of image. τ = −0.006 ∗BSNR+ 1.09,

BSNR = log10(
‖y−mean(y)‖2

2

n2σ2 ), µ, ξj , γi are Lagrange multipliers, α, β1, β2 ≥ 0
are penalty parameters. According ADMM, we can solve the following subprob-
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lems alternatively:































































































xk+1 = argmin
x

α

2
‖uk −Hx− µk

α1
‖22 +

β1

2

∑

j

‖fk
j − SHj(x)−

ξk

β1
‖22

+
β2

2

∑

i

‖Ti(xG)− Ti(u)−
γk

β2
‖22

fk+1
j = argmin

fj
‖fj‖1 +

β1

2
‖fj − SHj(x

k+1 −
ξkj

β1
)‖22

uk+1 = argmin
u

δΩ(u) +
α

2
‖u−Hxk+1 − µk

α
‖22

µk+1 = µk − α(uk+1 −Hxk+1)

ξk+1
j = ξk − β1(f

k+1
j − SHj(x

k+1))

γk+1
i = γk

i − β2(Ti(xG)− Ti(x))

. (7)

The minimization subproblem with respect to x has three quadratic terms
and can be solved through FFT and IFFT [17]. Subproblem respect to fi can
be expressed in the form of 1D soft-threshold shrinkage. And sub-problem with
respect to u can be solved by He’s method [10].

3 PSF Estimation Based on Wave Propagation

Previous section only focuses on LCA correction. In this section, we deal with
ACA by proposing a new PSF estimation model for further deconvolution. The
main influence of blurring reflects on edges. Therefore, the blurring degree of
edges may determine parameters of PSF, like the shape and size. Here, we define
a parameter called gradient ratio:

R =
∇y

∇y1
=

∇(h ∗ x)
∇(h ∗ x ∗ hg(σ0))

(8)

where y represents edge patches extracted from blurry image. y1 represents a
re-blurred edge patch using y convolve with a given Gaussian function. ∇ is
the gradient operator. h is unknown PSF of the imaging system. Fig. 2(a) and
Fig. 2(b) illustrate the flow chart of the algorithm. First, edge detection is used.
Fig. 2(c) shows four templates for edge detection. Then, gradient ratio distribu-

tion R0 of the blurry and re-blurred edges is computed [16] by R0 = ∇y(0,0)
∇y1(0,0)

.

The remaining problem is to link R0 with parameters of the unknown PSF h.

In the sub-sections, instead of only use the statistic model, wave propagation
model is used to establish a LUT between R0 and aberration parameters. Then,
the computed R0 can determine a unique PSF.
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Fig. 2. (a) Flow chart of PSF estimation algorithm. (b) Flow chart of R0 computation.
(c) 4 templates for patch detection. (d) First column is a PSF generated by Gaussian
model [22] where σ0 = (4, 2, 7). Second column is a PSF generated by General Gaussian
model [15] where β0 = (1.9, 1.2, 2.2). Third column is a PSF generated by proposed
model where Wd = (−1, 0.5, 2) and W040 = (0.4, 0.1, 0.5).

3.1 Wave Propagation Model

For any image system, aberrated pupil function is described as [23]:

P(Wd,W040;u, v) = circ(

√
u2 + v2

wXP

) exp(−j
2π

λ
Se(Wd,W040;

u

wXP

,
u

wXP

)), (9)

where Se(Wd,W040;
u

wXP
, v
wXP

) = Wd((
u

wXP
)2+( v

wXP
)2)+W040((

u
wXP

)2+( v
wXP

)2)2

is Seidel Polynomials, which is used to describe aberrations for optical systems.
Wd defines defocus aberration and W040 defines spherical aberration. u, v are
physical coordinates of exit pupil. wXP is the diameter of exit pupil. λ repre-
sents wavelength. And circ(X) is a circular function where circ(X) = 1 ifX ≤ 0.5
and circ(X) = 0 if X > 0.5. According to the computational Fourier optics [23],
PSF of this image system can be written as

hWP (Wd,W040;u, v) = |F−1{P(Wd,W040;−2λwXP f
#fU ,−2λwXP f

#fV )}|2,
(10)

where F−1 is inverse Fourier transform operator. f# is F-number of the optical
system, fU , fV is frequency of the senor plane, λ is wavelength. Fig. 2(d) shows
PSFs generated by different estimating models.
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3.2 Establish the LUT Between Wd,W040 and R0

PSF is assumed as spatially invariant. According to the gradient-based frame-
work [24], the relationship between Wd,W040 and R0 can be written as:

R0 =
∇y(0, 0)

∇y1(0, 0)
=

∫∞

−∞
hWP (Wd,W040, 0, v) dv

∫∞

−∞
h(Wd,W040, σ0, 0, v) dv

(11)

where hWP (Wd,W040, 0, v) denotes the magnitudes along the y-axis of blur ker-
nel, and h(Wd,W040, σ0, 0, v) =

∫∫∞

−∞
hWP (Wd,W040, u−ξ, v−η) hg(σ0, ξ, η) dξ dη.

However, it is difficult to have an analytical solution among Wd, W040 and R0,
A LUT is pre-established by varying Wd and W040, and corresponding R0 can
be calculated by Eq.(11). Using this LUT, Seidel parameters can be located by
computing R0 from blurry images. Then the PSF h can be reconstructed.

4 Experiments

In this section, we present experimental results including simulation results and
real-captured images provided by our lens system which have severe optical aber-
rations. We apply the proposed method and make a comparison with other state-
of-art methods. Codes of comparison methods are downloaded from GitHub
provided by the authors.

4.1 Experiment Image Sets and Parameters Setting

Table 1. Computational Time (Seconds).

IGM[8] CC[1] PSA[10] IDBP[25] TRI[26] 1Shot[11] Proposed

Buildings 683 1668 674 787 / / 860
Cars 689 1968 680 779 / / 854
LEGO 687 1758 674 773 / / 857
Windows 689 1974 680 763 / / 858

LEGO 685 1570 677 1057 454 0.58 862
Taxi 692 1281 678 917 521 0.45 865
Workers 696 1944 676 946 456 0.25 866

Four simulation images and three captured images are tested. The size of
each image is 720 ∗ 720. These images are suitable for illustrating the potential
of proposed algorithm, because they possess abundant details.

Simulation images are captured by Sony ILCE 7 Mark 3 with Tamron 28-
75mm lens, one of the best commercial cameras, which can be regarded as
aberration-free images. Images include one indoor scene, image LEGO, and three
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Fig. 3. (a) Single-ball lens with a 4F system. The ball lens and sensor are shown in
orange and red rectangles, respectively. (b) Estimated PSFs of single-ball lens system.

outdoor scenes. Image Buildings and image Cars have rich texture details. Image
Windows shows a significant color bias. To get blurry images, we convolved each
image in three channels with different blur kernel, as shown in Fig. 2(d).

Real-captured images are acquired from our sing-ball lens system, as shown
in Fig. 3(a). Image Taxi shows a blue toy car while the wheel appears significant
purple fringe. Image Workers suffers less chromatic aberration but still there is
a green fringe on the face of the toy worker. Image LEGO is much vaguer which
makes it more difficult to estimate PSF.

To balance the convergence speed and result performance, we set α = 10 ∗
β1, β1 = β2 = 1 in the simulation process and α = 0.1 ∗ β1, β1 = β2 = 1 in real-
captured images process. For shearlet transform, ShearLab 3D toolbox is used
and a shearlet level 3 is set. During PSF estimation process, we set f# = 1.2.
Wd and W040 vary from -3 to 3 and 0.1 to 2 with an interval of 0.05, respectively,
while we establish LUT. Experiments are tested on a PC with Intelr Core™ i7-
9700 CPU 3.00GHz and 8GB RAM. Time consumption is shown in Table 1

4.2 Comparison of Simulation Results

In this sub-section, we compared the proposed CC-SD prior with other 4 state-of-
art methods, including methods which only use convex optimization, methods
which only process deblurring, and methods which correct color fringes while
deblurring. Pi et al. [8] presented a convex optimization method using intensity
and gradient matchings (IGM). But it only corrects LCA. Heide F. et al. tried to
align three channels by a Cross-Channel prior [1] while deblurring. The results
of PSA method [10] demonstrate that our CC-SD prior indeed corrects the color
misalign. IDBP [25] solves the inverse problems using off-the-shelf denoisers,
which requires less parameter tuning. All algorithms in this sub-section were fed
with the same PSFs for deconvolution, and ran until the per-iteration change
fell below a given threshold. As for the evaluation criterion, PSNR and SSIM
are shown in this section and visual performance is also considered. As for visual
performance evaluation, we mainly focus on the sharpness and color consistency
of edges.

Fig. 4-7 demonstrate 4 different results. In each figure, sub-figure (a) is the
original image, and sub-figure (b) is the blurry image. Three selected areas are
magnified and fringes can be seen distinctly. Sub-figures (c) to (f) are recovered
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Table 2. PSNR (dB)/SSIM Comparison of Simulation result.

Blurry IGM[8] CC[1] PSA[10] IDBP[25] Proposed

Buildings 18.40/0.54 20.58/0.63 18.88/0.80 20.76/0.81 20.40/0.78 24.64/0.89
Cars 19.70/0.63 21.58/0.71 19.98/0.81 22.37/0.84 22.01/0.83 25.11/0.90
LEGO 24.46/0.88 26.48/0.92 24.25/0.88 29.28/0.96 28.48/0.95 31.90/0.98
Windows 19.09/0.66 20.81/0.73 19.39/0.82 21.44/0.95 21.08/0.85 24.71/0.91

images using the state-of-art algorithms and sub-figure (g) is recovered image
using our CC-SD prior.

Fig. 4 shows a number of buildings. The result of IGM method shows the
least color fringes, however it causes desaturation and image is still blurry. Since
these details are small but rich, Cross-Channel method only recovers a sharper
image but the color fringes are still existed. Our proposed algorithm presents
a sharp image with almost none color fringe. Fig. 5 shows a business street.
There is a significant degradation on advertising boards after blurring. Among
these recovery algorithms, our result is the most approximate one to the original
image. In Fig. 6, our algorithm shows a better performance in sharpness and
color consistency as well. Fig. 7 displays a yellow wall with a white window, in
which exists a distinct color bias. Due to advantage of CC-SD prior, color bias
cannot interfere the performance of our algorithm. However, result of Cross-
Channel Prior shows an obvious color shift. PSA and IDBP methods provide
acceptable results but still with some purple fringes.

PSNR and SSIM of all methods is demonstrated in Table 2. Note that our
algorithm consistently outperforms than others. Overall, the proposed method
is able to reconstruct the textures and show more clear and clean edges than
other approaches.

4.3 Comparison of Real-Captured Image Results

In this sub-section, all algorithms contain two steps, PSFs estimation and image
deconvolution, except for IGM method. Proposed algorithm is compared with
other 6 state-of-art methods. Cross-Channel Prior [1], PSA [10] and IDBP [25]
were fed with the same PSFs estimated by proposed wave-propagation method.
TRI [26] method uses the three segments of intensity prior which is motivated by
that the blur process destroys the sparsity of intensity, and shrinks the distance
between two distinct gray levels. 1ShotMaxPol [11] calculates the inversed PSF
and convolves with images to avoid iterative process. The results of proposed
prior without ACA correctionis are also present to show the effect of LCA and
ACA correction, respectively.

For real-captured images, we only compared the visual performance of each
methods. Fig. 8-10 demonstrate the captured blurry images and results using dif-
ferent methods. The corresponding estimated PSFs are shown in Fig 3(b). Three
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Fig. 4. Buildings. Full images and three selected areas marked by yellow, red and green
rectangles respectively.

Fig. 5. Cars. Full images and three selected areas marked by yellow, red and green
rectangles respectively.
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Fig. 6. LEGO. Full images and three selected areas marked by yellow, red and green
rectangles respectively.

Fig. 7. Windows. Full images and three selected areas marked by yellow, red and green
rectangles respectively.
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Fig. 8. Taxi. (a)-(i) Full images and a selected area marked by yellow rectangle.

Fig. 9. Workers. (a)-(i) Full images and a selected area marked by yellow rectangle.
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Fig. 10. LEGO. (a)-(i) Full images and a selected area marked by yellow rectangle.

different scenes were tested and a square area has been magnified to demonstrate
details of results. Although some approaches may have more clear edges, it may
increase some artifacts as cost, such as ring effect and distinct noise. IGMmethod
eliminates the color fringes effectively. The wheel of captured image has severe
purple fringes. Fig. 8(b) shows a totally chromatic-aberration-free but it is still
blurry. Fig. 8 and Fig. 9 have a certain degree of color deviation and affect the
results of Cross-Channel method significantly. All results of TRI method have
a sense of smear in images, as Fig. 10(e) shows. 1Shot-MaxPol method pro-
vides good quality of images but raises some regular unnatural texture and color
fringes still can be seen. Results of PSA method show sharp images but contain
color fringes. Results of LCA correction only, like Fig. 9(h), show chromatic-
aberration-free images but they remain blurry. The proposed method produces
both sharp images and correct images.

5 Conclusion

In the current study, a novel LCA correction method was conducted by intro-
ducing the cross-channel prior in shearlet domain. Employing the CC-SD prior
while deconvolving, we corrected both LCA and ACA. Details can be preserved
and image quality can be promoted by our method. Wave-propagation model for
PSFs estimation was proposed to help deal with ACA in real-captured images.
This model takes Seidel Polynomials into account and surpasses the limitation
of statistic models. Experiments indicated that the proposed algorithm is com-
petitive in PSNR, SSIM and visual performance.
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ence Foundation of China (Grant No. 61827804 and 61991450).
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