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Abstract. Most existing gait recognition approaches adopt a two-step
procedure: a preprocessing step to extract silhouettes or skeletons fol-
lowed by recognition. In this paper, we propose an end-to-end model-
based gait recognition method. Specifically, we employ a skinned multi-
person linear (SMPL) model for human modeling, and estimate its pa-
rameters using a pre-trained human mesh recovery (HMR) network. As
the pre-trained HMR is not recognition-oriented, we fine-tune it in an
end-to-end gait recognition framework. To cope with differences between
gait datasets and those used for pre-training the HMR, we introduce a
reconstruction loss between the silhouette masks in the gait datasets
and the rendered silhouettes from the estimated SMPL model produced
by a differentiable renderer. This enables us to adapt the HMR to the
gait dataset without supervision using the ground-truth joint locations.
Experimental results with the OU-MVLP and CASIA-B datasets demon-
strate the state-of-the-art performance of the proposed method for both
gait identification and verification scenarios, a direct consequence of the
explicitly disentangled pose and shape features produced by the proposed
end-to-end model-based framework.

1 Introduction

A video of a walking person contains abundant information about his/her gait
pose sequence (i.e., dynamic parameters) and his/her body shape (i.e., static
parameters). Gait recognition aims to identify a walking person using such dy-
namic and static parameters, and has a number of merits: identification at a
distance; identification without subject cooperation; and difficulty in spoofing.
These merits make gait recognition one of the most important solutions for per-
son identification from CCTYV footage, which has a wide range of applications
in surveillance systems, forensics, and criminal investigation [1-3].

Gait recognition approaches are generally either model-based [4-12] or appea-
rance-based [13-31]. The former mainly relies on the parameters of an articu-
lated human model (e.g., the size of a link and a joint angle sequence), which
are less sensitive to apparent changes caused by covariates (e.g., view angles,
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Fig. 1. While existing two-step approaches require a preprocessing step to first extract
skeletons or silhouettes from RGB gait sequences before using a recognition network,
the proposed method is an end-to-end model-based framework that estimates an SMPL
model using a pre-trained HMR network, and subsequently uses the explicit parame-
terized pose and shape features of the SMPL model for recognition.

carrying status, and clothing), but are generally hard to extract accurately, par-
ticularly from low-resolution images. The latter approach mainly relies on human
silhouette-based representations (e.g., gait energy images (GEIs) [13], frequency-
domain features [25], and chrono-gait images [32]), which are easy to extract,
even from low-resolution images, but are relatively sensitive to the aforemen-
tioned covariates.

Both approaches typically apply a preprocessing step to extract the pose
structure or silhouettes from raw RGB videos with some additional algorithms,
as shown in Fig. 1. For example, human body pose estimation methods (e.g.,
OpenPose [33]) are used to extract the joint locations; traditional background
subtraction or deep learning-based semantic segmentation methods (e.g., Re-
fineNet [34]) are used to segment the silhouettes. The preprocessing step is,
however, not optimally designed for the latter recognition step. Hence, two-step
approaches are not necessarily optimal in terms of recognition.

Several studies have proposed end-to-end appearance-based gait recognition
frameworks [35, 36] that make the whole process optimal for recognition tasks, as
they directly output the recognition results from the input RGB image sequences.
For example, Song et al. [35] proposed a framework combining two convolutional
neural networks (CNNs) that handle silhouette segmentation and gait recogni-
tion, respectively. Zhang et al. [36] proposed an end-to-end model that directly
extracts latent pose and appearance features from masked RGB image sequences
via disentangled representation learning (DRL), and obtains recognition results
by subsequently feeding the latent pose feature sequence (i.e., motion informa-
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tion) to a long short-term memory (LSTM) framework. These methods [35, 36]
are appearance-based approaches, and hence still suffer from the aforementioned
sensitivity to covariates (e.g., view).

By contrast, the bottleneck of model-based approaches (e.g., difficulty of hu-
man model fitting) is being resolved by recent advances in deep learning-based
human model fitting [33,37,38]. For example, Kanazawa et al. [37] proposed a
human mesh recovery (HMR) network that could directly estimate a parametric
3D human model (i.e., a skinned multi-person linear (SMPL) model [39]) to de-
scribe the 3D human body and shape from a single RGB image. In this paper, we
therefore describe the integration of a human model estimation method [37] with
gait recognition, and propose the first end-to-end model-based gait recognition
approach.

The contributions of this study can be summarized as follows.
(1) End-to-end model-based gait recognition.

We propose an end-to-end model-based gait recognition method for the first
time. More specifically, given an RGB gait sequence, we first extract pose and
shape features by fitting the SMPL model and subsequently feed the pose and
shape features to a recognition network. The whole network is then trained in
an end-to-end manner. Unlike the existing DRL method [36], which provides im-
plicit (or not physically interpretable) pose and appearance features, our method
produces explicit (or physically interpretable) pose and shape features as a di-
rect consequence of the model-based approach, which can be regarded as a kind
of explicit DRL method for gait recognition.

(2) A human model fine-tuning scheme using a differentiable renderer
without pose supervision.

We fine-tune a pre-trained HMR network [37] to make it optimal for gait
recognition tasks as well as being adapted to different subject populations in a
target gait dataset (i.e., transfer learning). Because gait datasets do not usually
provide ground-truth poses (i.e., 2D joint locations), which are needed to train
the HMR network [37], we instead use silhouette masks of the target dataset.
More specifically, we fine-tune the HMR network using the reconstruction loss
between the silhouette masks and rendered silhouettes from an estimated 3D
human model with a differentiable renderer, in addition to other losses (e.g.,
recognition loss).

(3) State-of-the-art performance using our model-based approach.

We achieve state-of-the-art performance on two gait datasets, namely OU-
MVLP [20] and CASIA-B [40], demonstrating the robustness of the proposed
method against various covariates (e.g., views, clothes, carried objects). Be-
cause appearance-based approaches are believed to be better than model-based
approaches in the gait recognition research community (indeed, model-based
approaches have not outperformed appearance-based approaches for the last
decade, to the best of our knowledge), our work is sure to generate some excite-
ment by demonstrating that a model-based approach can outperform state-of-
the-art appearance-based approaches.
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2 Related Work

2.1 Gait Recognition

Model-based approaches mainly rely on the recognition of the human pose struc-
ture and movement. Early traditional approaches [4-9] suffered from a high com-
putational cost and inaccurate human model fitting to a low-resolution image,
and hence achieved relatively poor recognition performance. Thanks to recent
advances in human pose estimation methods (e.g., Flowing ConvNets [41] and
OpenPose [33]), human model estimation is no longer the bottleneck, resulting
in an increasing number of model-based approaches [10-12]. These usually per-
form two-step recognition, in which the pose information (e.g., joint heat maps
or exact joint locations) is first estimated, and then LSTM or CNN is applied
to further extract discriminant features for recognition. These techniques have
enabled great improvements compared with traditional model-based approaches.

Appearance-based approaches mainly rely on the recognition of human sil-
houettes. Unfortunately, the silhouette-based representations are easily affected
by many covariates (e.g., view angles, carrying status, and clothing), which
cause larger intra-subject differences than the subtle inter-subject differences.
The many attempts to mitigate these negative effects of covariates can gener-
ally be separated into discriminative and generative approaches. Discriminative
approaches [13-23, 42] mainly focus on extracting discriminative features or sub-
spaces that are invariant to the covariates, whereas generative approaches [24—
31] specialize in generating gait features under the same covariate conditions.
In particular, the introduction of deep learning techniques has significantly im-
proved the recognition accuracy. For example, some CNN-based discriminative
approaches [19-23] apply a Siamese/triplet network to learn similarity metrics for
a pair/triplet of input GEIs/silhouettes. Some generative adversarial network-
based approaches [30, 31] generate a gait template from other covariate condi-
tions to produce a canonical condition with no covariates (e.g., no carried object)
or a target covariate condition (e.g., side view).

Both families, however, require a preprocessing step to extract the joint lo-
cations or silhouette-based representations given RGB gait sequences. Although
[35] proposed an end-to-end framework for silhouette segmentation and gait
recognition, it relies on the extracted silhouettes (i.e., appearance-based repre-
sentation), and hence still suffers from sensitivity to covariates (e.g., view).

2.2 Disentangled Representation Learning

DRL is generally designed to separate the input data into disjoint meaning-
ful variables, and has been widely studied in many areas (e.g., pose-invariant
face recognition [43], shape-guided human image generation [44]). With regard
to gait, there have been relatively few studies. Zhang et al. [36] employed an
autoencoder-based CNN to directly extract latent pose and appearance features
from RGB imagery, and then applied LSTM-based pose features for recognition.
Li et al. [45] proposed a disentanglement method for the identity and covariate
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features for GEIs. They first used an encoder to extract the latent identity and
covariate features, and then used a two-stream decoder to reconstruct GEIs with
and without covariates.

The latent features used in [36, 45] are not, however, physically interpretable
because of the implicit disentanglement process. Moreover, the features may not
be perfectly disentangled when certain assumptions (e.g., appearance consis-
tency within a sequence) are violated. In contrast, our method realizes explicit
disentanglement into the physically interpretable 3D joints and shape features
of an SMPL model.

2.3 3D Human Pose and Shape Estimation

Most approaches formulate this problem as the estimation of parameters for a
parametric 3D human model (i.e., SMPL [39]). For example, Pavlakos et al. [38]
used a ConvNet to predict 2D pose heat maps and silhouettes from an RGB
image, and then used these to infer the pose and shape parameters of the SMPL
through two individual networks. Kanazawa et al. [37] designed an end-to-end
HMR network that directly estimates the pose and shape parameters of human
meshes from a single RGB image. The HMR network is trained in an adversarial
manner to determine whether the estimated parameters are real or not using a
large database of 3D human meshes.

As the estimated SMPL model accurately captures the statistics of human
3D pose and shape, it could be used for numerous tasks (e.g., motion imitation
or appearance transfer in human image synthesis [46]). In this paper, we explore
the usage of the SMPL model for gait recognition. We mainly rely on the existing
HMR network [37] to estimate the pose and shape parameters.

3 End-to-end Model-based Gait Recognition

3.1 Overview

An overview of the proposed network is shown in Fig. 2. Given a period of
size-normalized and registered RGB gait sequence, the SMPL model containing
the pose and shape features is first estimated using a pre-trained HMR net-
work [37]. The estimated shape features are further aggregated by an average
pooling layer to produce a common shape for all frames. Thereafter, we render
2D binary silhouettes with a differentiable renderer from the 3D human mesh
generated by the common shape, frame-by-frame pose, and camera parameters.
The HMR network is then fine-tuned without pose supervision, instead using
the reconstruction loss between the silhouette masks in the gait datasets and
the rendered silhouettes. In this way, the estimated SMPL model becomes more
identity-preserving. Finally, the shape feature and the latent pose features fil-
tered by LSTM/CNN are used for recognition. The whole network is trained
in an end-to-end manner with multiple losses, which are responsible for the
identity-preserving SMPL model estimation and gait recognition.
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Fig. 2. Overview of the proposed network. For each input RGB sequence, an HMR [37]
network first extracts the SMPL parameters, which are further rendered to 2D binary
silhouettes for comparison with the silhouette masks in the gait datasets. The shape
and pose features of the SMPL are then used for recognition.

3.2 HMR Network [37]

Given an input RGB gait sequence, the HMR network estimates a 3D human
body mesh derived from the SMPL model [39], which factors the human body
into shape B and pose 8 components. The shape 3 € R!'© is defined in a
low-dimensional principal component analysis shape space, which describes the
height, weight, and body proportions of individuals. The pose 8 € R is the
combination of the relative 3D rotations of 23 joints in an axis—angle represen-
tation (23 x 3) with respect to its parent in the kinematic tree and the 3D root
orientation, which describes the joint locations of individuals. The SMPL model
outputs a triangulated mesh with 6,890 vertices, and is differentiable with re-
spect to @ and B. Additionally, the weak-perspective camera parameter k € R3
is also estimated. As a result, the HMR network first encodes the input image
into a 2,048-dimensional feature using ResNet-50 [47], and then predicts the 85-
dimensional vector @ =[BT, 07 kT]T using an iterative 3D regression network.

The HMR network was trained using six datasets with different properties:
four datasets [48-51] with 2D joint information (i.e., pose and body part length)
from over 4,000 subjects and two datasets [52,53] with full 3D information,
including body part thickness, but from a limited number of subjects (i.e., just
five and eight subjects, respectively). Therefore, the subject diversity is good for
the pose and the body part length, while it is limited for the body part thickness.
Consequently, the estimation accuracy for the body part thickness is not as high
as that for the pose and body part length (e.g., joint locations).

3.3 Shape Consistency and Pose/Camera Smoothness

Because the original HMR network is designed for a single image, it ignores the
shape consistency and the pose and camera continuities within a sequence. We
therefore modify the HMR network by introducing the inner loss Liyper of the
estimated parameters @ (i.e., combination of shape consistency and pose/camera
smoothness) as additional constraints, as described below.

Suppose that N gait sequences {S;}(i = 1,...,N) are given and the i-th
sequence is composed of T; frames. The HMR network first estimates the pa-
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rameters @] = [ﬂj ]T for the j-th frame of the i-th sequence frame-
by-frame. To make the shape 5J consistent within the input sequence S;, we
aggregate each frame in an average pooling layer to produce a common shape
B; = % Z i1 ,@J This common shape 3; then replaces each frame’s shape ,BJ
in the final estimated SMPL model.

Furthermore, suppose that N gait sequences are composed of C subjects, and
denote the set of sequence indices for the c-th subject as S.. We then introduce
the shape-based inner loss Lghape to make the common shapes Bz within the
same subject closer to each other:

Lbhdpezczwug| Z S 1B - B3 (1)

268 leS.—{i}

As for the pose 9? and camera k:i , they are considered to change smoothly
within a gait sequence S;. We therefore introduce the pose-based inner loss Lpose
and camera-based inner loss Leyy, as
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(2)
where the first and second terms of each expression are first- and second-order
smoothness terms, respectively.

The final inner loss Lipner i a weighted summation of the abovementioned
three losses, and can be written as

Linner = )\shapeLshape + /\poseLpose + )\camLcama (3)

where Ashapes Apose; and Acam are the weight parameters.

3.4 Transfer Learning using a Differentiable Renderer

As the pre-trained HMR network is insufficient in terms of subject diversity,
particularly for the body part thickness (see subsection 3.2), we fine-tune the
HMR network to improve the coverage. Because publicly available gait datasets
never provide the ground-truth SMPL parameters {8, 3}, we instead exploit the
silhouette masks provided by the gait datasets, which adequately reflect the body
part thickness. More specifically, we render 2D binary silhouettes from the 3D
human mesh obtained from the HMR network, and fine-tune the HMR network
so that the rendered silhouettes match the silhouette masks in the gait datasets.
In this way, we can adapt the HMR network to the subject population in the
gait datasets through transfer learning.
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For the purpose of the 3D-to-2D projection, we introduce a neural ren-
derer [54] as a differentiable renderer, which can be integrated with the whole
framework through end-to-end training. Given the shape, pose, and camera pa-
rameters @7 of the j-th frame of the i-th sequence, as estimated by the HMR
network, we render the binary silhouette with the differential render as b(©7).
We then compute the reconstruction loss between the silhouette masks {bz } and
the rendered silhouettes as

1 N T;
recont - N Z leb] @] ||2 (4>

3.5 Constraints on Joint Locations

If we fine-tune the HMR network using only the silhouette masks, we may pro-
duce corrupted poses from overfitting to the silhouette masks because the poses
(or joint locations) are ambiguous in a textureless silhouette mask. For example,
the silhouette masks may have some extra parts with loose clothes or carried ob-
jects, which are never considered in SMPL models of real humans, and unlikely
joint locations may be estimated by overfitting the rendered silhouettes to the
silhouette masks with these extra parts. However, thanks to the good coverage
of the subject diversity for the pose and body part length, the pre-trained HMR
network can estimate the joint locations accurately, even for external datasets
(i.e., the gait datasets considered in this paper).

Therefore, we introduce the joint loss Ljeints to constrain the 3D and 2D joint

locations. The parameters @{ and @Z at the j-th frame of the i-th sequence given
by the fine-tuned and pre-trained HMR networks, respectively, are transformed
to the 3D and 2D joint locations using the mapping functions zsp(@) and
x2op(0), respectively. The joint loss Ljoints is defined as

N T;
1 1 ; ~j
Ljoints = 77 Z Z Yoo zam(8)) — zaim(07)]l5. ()

i=1 L dime{2D,3D}

3.6 Disentangled Shape and Pose Features for Gait Recognition

The explicitly disentangled shape and pose features given by the HMR network
are separately fed into recognition networks. For simplicity, let us drop the se-
quence index in this subsection.

Regarding the shape feature, we directly use the averaged shape feature
fshape = B € R0 of a given sequence for recognition.

For the pose feature, we first concatenate the 3D and 2D joint locations for
a sequence with T frames as P = {p’|p’ € R'?0 j =1,...,T},* and feed them
into an LSTM/CNN for spatiotemporal feature extraction. We use a three-layer
LSTM with 256 hidden units in each cell following [36]. Once we obtain an

4 Five dimensions of 23 joints + one root joint sum up to 5 x (23 + 1) = 120.
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LSTM output sequence H = {h’|hJ € R?56 j = 1,... T}, we take the average
LSeM = (1/T) Z;‘-le h7 € R?°6 as the pose feature for recognition.

We also use a CNN on the pose features, for which [12] mentioned that CNNs
could outperform the LSTM. First, a 2D matrix is formed from the concatenated
3D and 2D joint locations of T frames as [p?!,...,pT] € R1?°XT We employ
a relatively simple CNN architecture consisting of three convolutional layers
and one fully connected layer. Each convolutional layer is followed by a batch
normalization layer and ReLU activation function. We set the kernel size to
3 x 3, and use 64, 128, and 256 channels in the respective layers. The feature size
is reduced in the row direction by setting the vertical stride to 2, as there is a
limited frame number in the column direction. Finally, we use the 52-dimensional
output from the last fully connected layer as the pose features for recognition,

S € R Each feature f € {fsnape, o S ooen } is taken separately for
training and testing.

In the training stage, following [20, 45], we use different loss functions (Lyecog €
{Ltrip, Leont }) for different recognition tasks (gait identification and verification).
For gait identification, we assume that a mini-batch of sequences contains Ny,
triplets {f{,, f&, F7}(i = 1,..., Nuip), where a subject of f¢; is the same as that
of f whereas a subject of f} is different from that of f,. The triplet loss [55]
is defined as

Luip = — > max(m — [If§ — fill5 + |£g - £&l3.0), (6)

where m is the margin.

For gait verification, we assume that a mini-batch of sequences contains Npair
pairs {f5, f5}(i = 1,..., Npair), and the i-th pair has a binary label y; (if
y; = 1, the pair is from the same subject sequence; if y; = 0, the pair is from
different subject sequences). The normalized contrastive loss [56] for the same
and different subject pairs is defined as

Npair Npair

1 7 7 1 7 3
Lcont:ﬁ ZyleP _fG”%—i_Fd Z(l - yi)max(m - ||fP _fG||ng)7 (7)
=1 i=1

where Ny, Ny are the number of same and different subject pairs in this batch.

3.7 Joint Loss Function

We train the whole network in an end-to-end manner with a joint loss function.
This is a weighted summation of the aforementioned losses, and is defined as

Ltotal = )\innerLinner + )\recontLrecont + )\jointsLjoints + )\recogLrecoga (8)

where Ainner; Arecont, and Ajoints are the weight parameters.

In a test case, we use the trained model to extract the feature f for the input
RGB sequences, then compute the L2 distance between f for two sequences as
a dissimilarity score for matching.
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4 Experiments

4.1 Datasets

We evaluated our method on two datasets: OU-MVLP [20] and CASIA-B [40].

OU-MVLP is currently the largest database with various view variations.
There are 10,307 subjects with 14 view angles (0°, 15°, ..., 90°; 180°, 195°, ...,
270°). Each subject has two sequences (#00, #01). Following the protocol of [20],
5,153 subjects were selected for the training set and the remaining 5,154 subjects
were placed in the test set. Sequence #00 and sequence #01 were assigned as a
probe and a gallery, respectively. Probes that did not have corresponding galleries
(i.e., non-enrolled probes) were excluded from the test set.

CASTA-B is one of the most frequently used gait databases. There are 124
subjects with 11 view angles (0°, 18°, ..., 180°). Each subject has 10 sequences
per view. Six are in the normal walking condition (NM), two are carrying a bag
(BG), and the remaining two are wearing a coat (CL). We applied the protocol
of using the first 74 subjects for training, with the remaining 50 subjects used
for testing. In the test cases, NM #1-4 were assigned as galleries, and the other
six were divided into three probes: NM #5-6, BG #1-2, and CL #1-2.

4.2 Implementation Details

We simply obtained the size-normalized and registered human silhouettes from
the raw silhouettes provided by the datasets based on the region center and
height, and cropped the raw RGB sequences using the corresponding locations.
As for other real-scene videos, some state-of-the-art human detection and seg-
mentation methods (e.g., Mask R-CNN [57] and RefineNet [34]) could be applied
to obtain the required RGB sequences and silhouettes for training and testing.

The cropped RGB sequences were then scaled to 224 x 224 to fit the pre-
trained HMR [37] model, and the corresponding silhouette masks were resized to
a smaller 64 x 64 size to reduce the memory requirements. The frame number T’
in a period was set to 15. Thus, we generally selected 15 frames at equal intervals
from a period in sequences, while omitting sequences with fewer than 15 frames.

For both datasets, other layers besides the HMR (which is initialized with
a pre-trained model provided by [37]) used the default initialization. Adam [58]
was chosen as the optimizer. The learning rate was initially set to 1074, and
then decreased to 1077 after a certain number of iterations M. For OU-MVLP,
we set M = 30K and the total number of iterations to 60K. For CASIA-B, we
basically set M = 10K and the total number of iterations to 15K; sometimes, we
decreased the learning rate earlier or applied early stopping to prevent overfitting
to the small training set. For each training iteration, we randomly selected eight
subjects and eight sequences per subject to generate all possible triplets or pairs
in a mini-batch. The margin m in Eqgs. (6) and (7) was set to 0.2. The hyper-
parameters of the inner loss and the joint loss functions in Eqgs. (3) and (8)
were experimentally set to Ashape = 1, Apose = 0.1, Acam = 0.00001, Aipper = 1,
Arecont = 1, /\joints = 100, and /\recog =1



End-to-end Model-based Gait Recognition 11

NM (OQ) . ll VY
ol B
[y >
= I
[\ TAY )
-8 B
. <2 Ld 1
(a) (

b) (©) (d) (e)

Fig. 3. Visualization of estimation results under different views and walking conditions
on CASIA-B: (a) RGB inputs; (b) silhouette masks; (c) estimated SMPL models; (d)
estimated 3D joint locations; (e) estimated 2D joint locations; (f) rendered silhouettes.

We evaluated the recognition performance in terms of the Rank-1 identifica-
tion rate (denoted as Rank-1) and the equal error rate (denoted as EER) for the
identification and verification tasks, respectively.

4.3 Feature Visualization

Some of the estimation results given by the proposed method are visualized
in Fig. 3. This figure shows that the proposed method can estimate reasonable
SMPL models under view, clothing, and carrying status variations, i.e., it obtains
a similar body thickness between frontal and side views, and successfully excludes
carried bags or clothing in the estimated SMPL models to some extent (e.g., the
third row of Fig. 3). This is beneficial for robust gait recognition against changes
in view, clothing, and carried objects. In addition, the pose (or joint locations)
is also reasonably estimated, although some of the joints are not realistic (i.e.,
both left and right arms stay forward); this will be examined in future research.

4.4 Comparison using OU-MVLP

The benchmarks included both appearance-based approaches [60, 25, 18-20, 22,
61]° and a model-based approach [11]. The deep models were trained using all
14 views. As mentioned in subsection 3.4, we trained and tested three features
given by the proposed method (i.e., “pose_.LSTM”, “pose_.CNN” and “shape”)
separately. Following [20], we selected four typical views (i.e., 0°, 30°, 60°, 90°)
and present the test results averaged over each angular difference in Table 1. We
also present more comprehensive results for some benchmarks in Table 2.

The results indicate that the proposed method using the shape feature out-
performs state-of-the-art appearance- and model-based approaches in terms of
both identification and verification tasks. As the view variation increases from
0° to 90°, the accuracy of the existing methods decreases rapidly, whereas our

5 While the original GaitSet paper [22] reported results including the non-enrolled
probes, the results here exclude the non-enrolled probes to ensure a fair comparison.
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Table 1. Rank-1 rates and EERs of comparison methods on OU-MVLP based on the
angular differences. “Mean” is the average result over all 16 probe and gallery view com-
binations. PTSN-O and PTSN-« denote PTSN with OpenPose [33] and with Alpha-
Pose [59] as pose extractors, respectively. The first and second blocks are appearance-
based and model-based approaches, respectively. Ours (ensemble) is an ensemble of
“shape” and “pose_CNN”. Bold and italic bold indicate the best and the second-best
accuracies, respectively. This convention is consistent throughout this paper.

Rank-1 [%] EER [%]

Methods Angular difference Angular difference

0° 30 60° 90° [ Mean | 0° 30° 60° 90° | Mean
Direct Match 77.4 2.4 0.2 0.0 20.3 6.5 25.2 | 41.4 | 46.2 | 27.2
LDA [60] 81.6 10.1 0.8 0.1 24.4 6.2 22.7 35.7 40.1 24.0
VTM [25] 7.4 2.7 0.6 0.2 20.5 6.5 26.8 | 34.2 | 38.5 | 25.0
GEINet [18] 85.7 40.3 13.8 5.4 40.7 2.4 5.9 12.7 17.2 8.1
LB [19] 89.9 | 42.2 | 15.2 4.5 42.6 1.0 3.3 6.7 9.3 4.3
Takemura’s [20] 89.5 | 55.0 | 30.0 | 17.3 | 52.7 1.0 2.0 3.4 4.2 2.4
PSTN [61] 93.9 | 69.2 | 419 | 259 | 63.1 0.6 1.5 2.8 3.7 1.9
GaitSet [22] 99.1 | 96.4 | 86.9 | 79.8 | 92.6 | 0.25 | 0.42 | 0.68 | 0.92 | 0.51
PTSN-O [11] 48.1 18.4 6.6 2.1 18.8 8.8 11.9 15.4 20.5 13.1
PTSN-« [11] 59.7 31.0 13.2 4.7 30.4 6.6 8.7 12.3 17.8 10.2
Ours (shape) 99.6 | 97.7 | 95.0 | 91.4 | 96.7 | 0.12 | 0.19 | 0.23 | 0.29 | 0.19
Ours (pose.LSTM)| 88.1 | 61.9 | 47.3 | 35.1 | 61.5 | 0.36 | 0.55 | 0.79 | 1.06 | 0.62
Ours (pose.CNN) | 98.3 | 91.9 | 81.9 | 745 | 88.8 | 0.19 | 0.30 | 0.41 | 0.58 | 0.33
Ours (ensemble) 99.5 | 98.2 | 95.2 | 91.3 | 96.9 | 0.12 | 0.19 | 0.14 | 0.28 | 0.17

Table 2. Rank-1 rates and EERs averaged over the 14 gallery views, where the identical
view is excluded. Ours is an ensemble. GaitPart [42] only provides the mean Rank-1
rate.

Methods Probe view

0° [15° [30° [45° [ 60° [ 75° [ 90° [180°[195°[210° 225724072557 [270° [Mean

PTSN-O| 6.4 [11.0[15.4|18.8|17.6[15.1| 8.8 | 5.2 [10.6[10.5[17.3|14.6|11.6| 7.7 | 12.2
Rank |[PTSN-a | 11.8[19.0(23.9|26.5(24.9[20.6 |14.7| 6.1 |11.6]14.2|22.1|21.3|17.9|14.3| 17.8
-1 GaitSet |84.7]93.6|96.7|96.7|93.6|95.3|94.2|86.9|92.8| 96.0|96.1|93.0| 94.5| 92.8| 93.3
[%] |GaitPart| - - - - - - - - - - - - - - | 95.1
Ours 92.8/96.2(96.8| 96.3|94.7|96.6|96.6|93.5|95.4(96.3|96.7|96.5(96.5|96.2| 95.8

PTSN-O[16.0({13.3[13.0(11.2|11.6[12.817.1|17.6(14.9[18.9[12.3|13.2|14.9[18.2| 14.6
EER |PTSN-a|15.1]12.5[11.9(11.1|11.2|12.5[14.8|22.2|17.8[21.3|11.8|11.9|13.0|14.7| 14.4
[%] GaitSet |1.45[0.93]0.76|0.75|0.99|0.79|0.86|2.80|1.61|1.53|2.20|1.83|1.15/1.00| 1.33
Ours 0.34/0.34/0.20|0.18/0.31|0.26|0.17|0.28|0.28|0.36|0.34|0.21|0.20|0.20| 0.26

method mitigates the degradation. This demonstrates the robustness of our
method against view variations.

However, our method performs worse with the pose feature than with the
shape feature. This is partly because the extraction accuracy of the pose feature
is sometimes degraded by self-occlusions when only a single-view sequence is used
(e.g., both arms stay forward in Fig. 3). We also find that “pose_.CNN” performs
better than “pose_LSTM,” which is consistent with the conclusions of the recent
pose-based gait recognition study [12]. Despite the abovementioned difficulty,
our method using the pose feature (CNN) outperforms most of the benchmarks
and is even comparable to GaitSet [22], the state-of-the-art appearance-based
method (i.e., slightly worse Rank-1 rate, but better EER).

Moreover, we constructed an ensemble of “shape” and “pose_CNN” by aver-
aging their dissimilarity scores, and this produced a further improvement.
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Table 3. Rank-1 rates [%] of comparison methods on CASIA-B using the first 74
subjects for training. The mean result over all 10 gallery views for each probe view is
given, where the identical view is excluded.

Probe Methods Probe view

07 [187[36° [54° [ 72° [ 90° [108°[126° [144°[162°[180° [Mean

ViDP [62] - | - [e6a42| - |04 - |650| - | - | - B

CNN ensemble [19] |88.7|95.1]98.2(96.4(94.1|91.5]93.9|97.5|98.4|95.8|85.6 | 94.1
Takemura’s [20] 83.2]91.2|95.8(93.4|91.2|87.8|89.4|93.6 | 96.0|95.8|81.6 | 90.8
PSTN [61] 87.0(93.8(96.2|94.4(92.2|91.8]92.0(95.0|96.0|96.4 | 84.8 | 92.7

Song’s GaitNet [35] [75.6[91.3(91.2[92.9/92.5[91.0[91.8(93.8|92.9|94.1|81.9| 89.9
Zhang’s GaitNet [36]]91.2|92.0(90.5|95.6 |86.9(92.6|93.5|96.0|90.9|88.8|89.0| 91.6

NM #5-6|GaitSet [22] 90.8197.9(99.4|96.993.691.7(95.0 | 97.8] 98.9|96.8 | 85.8 | 95.0
GaitPart [42] 94.1|98.6| 99.3|98.5|94.0|92.3(95.9 |198.4/99.2| 97.8(90.4 | 96.2
PoseGait [12] 55.3[69.6]73.9[75.0[68.0[68.2]|71.1[72.9[76.1[70.4]|55.4| 68.7
Ours (shape) 97.1(97.3(98.4|98.4]97.4]|98.3|97.7|96.2[96.9(|97.1|97.5| 97.5

Ours (pose.LSTM) [65.1|59.5(67.2|67.9|66.2|68.1|72.0|66.0|65.2|65.4|64.0| 66.1
Ours (pose_.CNN) 87.1/88.3193.8(95.4]92.1/92.8[90.5[90.7|88.5/92.4[91.7| 91.2

Ours (ensemble) 96.9197.1198.5(98.4|97.7/98.2| 97.6|97.6 | 98.0 [98.4|98.6| 97.9
LB [19] 64.2|80.6 [ 82.7|76.9|64.8|63.1(68.0|76.9[82.2|75.4(61.3| 72.4
Zhang’s GaitNet [36]|83.0|87.8(88.3(93.3/82.6|74.8[89.5(91.0|86.1|81.2|85.6| 85.7
GaitSet [22] 83.8(91.2(91.8|88.8[83.3|81.0(84.1|90.0|92.2|94.4|79.0| 87.2
GaitPart [42] 89.1|94.8(96.7|95.1|88.3|94.9(89.0|93.5(96.1| 93.8( 85.8| 91.5
BG #1-2 [PoseGait [12] 35.3[47.2[52.4[46.9[45.5[43.9[46.1[48.1[49.4|43.6[31.1] 44.5
Ours (shape) 92.0191.7192.2193.092.7[91.6| 92.8|92.3 |88.4[86.5|83.4| 90.6

Ours (pose_.LSTM) |[53.9(50.5(52.4(51.9[49.1|50.6|47.1|49.4|47.0|44.2|45.7| 49.3
Ours (pose_.CNN) 86.8|81.2(84.6|86.8|84.9(83.0(83.9|82.8(82.1|84.0(83.2| 83.9

Ours (ensemble) 94.8]92.9|93.8|94.5(93.1] 92.6|94.0(94.5|89.7]93.6 (90.4| 93.1
LB [19] 37.7|57.2(66.6 |61.1[55.2|54.6(55.2|59.1[58.9(|48.8(39.4| 54.0
Zhang’s GaitNet [36]|42.1|58.2|65.1|70.7|68.0|70.6|65.3|69.4|51.5|50.1|36.6| 58.9
GaitSet [22] 61.4|75.4(80.7|77.3|72.1|70.1|71.5|73.5|73.5/68.4|50.0| 70.4
GaitPart [42] 70.785.5|86.9(83.3|77.1|72.5|76.9|82.2|83.8(80.2|66.5| 78.7
CL #1-2 [PoseGait [12] 24.3129.7141.3[38.8|38.2(38.5|41.6[44.9(42.2(33.4]22.5| 36.0
Ours (shape) 72.1|74.1[77.2|79.0|77.3|76.7[75.2|76.0|70.1|72.8(74.8] 75.1

Ours (pose.LSTM) |40.4|42.5|41.7(38.9|34.9(34.9|37.5|36.1|34.8|33.5|32.0| 37.0
Ours (pose_.CNN) 63.0]62.4|66.3|65.2|61.9]58.2|58.3|59.1|56.8|55.4|55.6| 60.2

Ours (ensemble) 78.2|81.0(182.1|82.8(80.3|76.9|75.5|77.4|72.3|73.5|74.2| 77.6

4.5 Comparison using CASIA-B

Table 3 compares the results from our method with those given by other bench-
marks. We only report the Rank-1 rates, because few previous studies evaluated
the verification accuracy. For three different probe sets, we trained three separate
models for our method. Our method (ensemble) is comparable with the latest
state-of-the-art GaitPart [42], i.e., 1.7% and 1.6% better for “NM” and “BG,”
but 1.1% worse for “CL”, and achieves the best or the second-best accuracy
in most cases. Additionally, compared with the two-step model-based approach
with pose information [12], our pose-based method (pose_.CNN) exhibits sig-
nificantly better performance. This is because our method trains the human
model fitting along with recognition tasks in an end-to-end manner, whereas the
method of [12] extracts poses with the pre-trained OpenPose [33], which is not
optimized for recognition.

4.6 Ablation Study of Loss Functions

We conducted ablation studies using our method with the shape feature (i.e.,
the best individual feature), and analyze the effect of the proposed loss func-
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Table 4. Ablation study of our method (shape) on CASIA-B under NM probe setting.

Fine-tuned loss

Pre-trained HMR |Fine-tuned HMR T T T Lyecog | Rank-1 [%)]
inner joints recon
Vi 11
Vi 94.3
v 7 97.8
v v 93.6
v v 97.5

Input RGB

0
. . reutRGe
Silhouette
masks [,

Silhouette

A\ masks
Pre-trained

A} HMR

Fig. 4. Rendered semantic silhouettes comparison: (a) effect of Ljoints and Lrecon; (b)
effect of Linner.

tions on the recognition performance in Table 4. The pre-trained HMR without
recognition 10ss Lyecog yields the worst accuracy (the first row), whereas intro-
ducing the recognition loss Lyecog significantly improves the accuracy (the second
to the fifth rows). When we separately turn off the inner loss Liyper, joint loss
Lioints, and reconstruction 1oss Lyecon (see the second to the fourth rows), the
accuracy decreases by 3-4%, indicating the contribution of each loss term. More-
over, we show a qualitative comparison of the rendered semantic silhouettes in
Fig. 4. In line with our expectations, Lijoints avoids the pose corruption problem
and Liecon €nables wider body shapes to be learned from the silhouette masks;
Linner helps learn continuous poses, which can fix the error estimations of the
pre-trained HMR. All the results indicate that our method can accurately esti-
mate the SMPL models from RGB sequences, which is beneficial for future gait
recognition studies.

5 Conclusion

We have proposed an end-to-end model-based gait recognition approach that
models the human gait via an SMPL model and provides explicitly disentangled
shape and pose representations. We evaluated the recognition performance of
shape and pose features for different recognition tasks. The experimental results
on two datasets show that our method outperforms a number of state-of-the-art
approaches. Because current recognition networks for pose features ignore the
structure information between joints (e.g., limb length), more suitable networks
will be investigated in the future.

Acknowledgement. This work was supported by JSPS KAKENHI Grant No.
JP18HO04115, JP19H05692, and JP20H00607, and the National Natural Science
Foundation of China (Grant No. 61727802).
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